Elementary Concepts in Statistics

Overview of Elementary Concepts in Statistics. In this introduction, we will briefly
discuss those elementary statistical concepts that provide the necessary foundations for
more specialized expertise in any area of statistical data analysis. The selected topics
illustrate the basic assumptions of most statistical methods and/or have been
demonstrated in research to be necessary components of one's general understanding of
the "quantitative nature™ of reality (Nisbett, et al., 1987). Because of space limitations, we
will focus mostly on the functional aspects of the concepts discussed and the presentation
will be very short. Further information on each of those concepts can be found in
statistical textbooks. Recommended introductory textbooks are: Kachigan (1986), and
Runyon and Haber (1976); for a more advanced discussion of elementary theory and
assumptions of statistics, see the classic books by Hays (1988), and Kendall and Stuart
(1979).

What are variables. Variables are things that we measure, control, or manipulate in
research. They differ in many respects, most notably in the role they are given in our
research and in the type of measures that can be applied to them.

Correlational vs. experimental research. Most empirical research belongs clearly to one
of those two general categories. In correlational research we do not (or at least try not to)
influence any variables but only measure them and look for relations (correlations)
between some set of variables, such as blood pressure and cholesterol level. In
experimental research, we manipulate some variables and then measure the effects of this
manipulation on other variables; for example, a researcher might artificially increase
blood pressure and then record cholesterol level. Data analysis in experimental research
also comes down to calculating "correlations” between variables, specifically, those
manipulated and those affected by the manipulation. However, experimental data may
potentially provide qualitatively better information: Only experimental data can
conclusively demonstrate causal relations between variables. For example, if we found
that whenever we change variable A then variable B changes, then we can conclude that
"A influences B." Data from correlational research can only be "interpreted” in causal
terms based on some theories that we have, but correlational data cannot conclusively
prove causality.

Dependent vs. independent variables. Independent variables are those that are
manipulated whereas dependent variables are only measured or registered. This
distinction appears terminologically confusing to many because, as some students say,
"all variables depend on something." However, once you get used to this distinction, it
becomes indispensable. The terms dependent and independent variable apply mostly to
experimental research where some variables are manipulated, and in this sense they are
"independent” from the initial reaction patterns, features, intentions, etc. of the subjects.



Some other variables are expected to be "dependent” on the manipulation or experimental
conditions. That is to say, they depend on "what the subject will do" in response.
Somewhat contrary to the nature of this distinction, these terms are also used in studies
where we do not literally manipulate independent variables, but only assign subjects to
"experimental groups” based on some pre-existing properties of the subjects. For
example, if in an experiment, males are compared with females regarding their white cell
count (WCC), Gender could be called the independent variable and WCC the dependent
variable.

Measurement scales. Variables differ in "how well" they can be measured, i.e., in how
much measurable information their measurement scale can provide. There is obviously
some measurement error involved in every measurement, which determines the "amount
of information™ that we can obtain. Another factor that determines the amount of
information that can be provided by a variable is its "type of measurement scale."
Specifically variables are classified as (a) nominal, (b) ordinal, (c) interval or (d) ratio.

a. Nominal variables allow for only qualitative classification. That is, they can be
measured only in terms of whether the individual items belong to some
distinctively different categories, but we cannot quantify or even rank order those
categories. For example, all we can say is that 2 individuals are different in terms
of variable A (e.g., they are of different race), but we cannot say which one "has
more" of the quality represented by the variable. Typical examples of nominal
variables are gender, race, color, city, etc.

b. Ordinal variables allow us to rank order the items we measure in terms of which
has less and which has more of the quality represented by the variable, but still
they do not allow us to say "how much more." A typical example of an ordinal
variable is the socioeconomic status of families. For example, we know that
upper-middle is higher than middle but we cannot say that it is, for example, 18%
higher. Also this very distinction between nominal, ordinal, and interval scales
itself represents a good example of an ordinal variable. For example, we can say
that nominal measurement provides less information than ordinal measurement,
but we cannot say "how much less™ or how this difference compares to the
difference between ordinal and interval scales.

c. Interval variables allow us not only to rank order the items that are measured, but
also to quantify and compare the sizes of differences between them. For example,
temperature, as measured in degrees Fahrenheit or Celsius, constitutes an interval
scale. We can say that a temperature of 40 degrees is higher than a temperature of
30 degrees, and that an increase from 20 to 40 degrees is twice as much as an
increase from 30 to 40 degrees.

d. Ratio variables are very similar to interval variables; in addition to all the
properties of interval variables, they feature an identifiable absolute zero point,
thus they allow for statements such as x is two times more than y. Typical
examples of ratio scales are measures of time or space. For example, as the Kelvin
temperature scale is a ratio scale, not only can we say that a temperature of 200
degrees is higher than one of 100 degrees, we can correctly state that it is twice as



high. Interval scales do not have the ratio property. Most statistical data analysis
procedures do not distinguish between the interval and ratio properties of the
measurement scales.

Relations between variables. Regardless of their type, two or more variables are related if
in a sample of observations, the values of those variables are distributed in a consistent
manner. In other words, variables are related if their values systematically correspond to
each other for these observations. For example, Gender and WCC would be considered to
be related if most males had high WCC and most females low WCC, or vice versa;
Height is related to Weight because typically tall individuals are heavier than short ones;
1Q is related to the Number of Errors in a test, if people with higher 1Q's make fewer
errors.

Why relations between variables are important. Generally speaking, the ultimate goal of
every research or scientific analysis is finding relations between variables. The
philosophy of science teaches us that there is no other way of representing "meaning"
except in terms of relations between some quantities or qualities; either way involves
relations between variables. Thus, the advancement of science must always involve
finding new relations between variables. Correlational research involves measuring such
relations in the most straightforward manner. However, experimental research is not any
different in this respect. For example, the above mentioned experiment comparing WCC
in males and females can be described as looking for a correlation between two variables:
Gender and WCC. Statistics does nothing else but help us evaluate relations between
variables. Actually, all of the hundreds of procedures that are described in this manual
can be interpreted in terms of evaluating various kinds of inter-variable relations.

Two basic features of every relation between variables. The two most elementary formal
properties of every relation between variables are the relation's (a) magnitude (or "size™)
and (b) its reliability (or "truthfulness™).

a. Magnitude (or "size™). The magnitude is much easier to understand and measure
than reliability. For example, if every male in our sample was found to have a
higher WCC than any female in the sample, we could say that the magnitude of
the relation between the two variables (Gender and WCC) is very high in our
sample. In other words, we could predict one based on the other (at least among
the members of our sample).

b. Reliability (or "truthfulness™). The reliability of a relation is a much less intuitive
concept, but still extremely important. It pertains to the "representativeness™ of
the result found in our specific sample for the entire population. In other words, it
says how probable it is that a similar relation would be found if the experiment
was replicated with other samples drawn from the same population. Remember
that we are almost never "ultimately” interested only in what is going on in our



sample; we are interested in the sample only to the extent it can provide
information about the population. If our study meets some specific criteria (to be
mentioned later), then the reliability of a relation between variables observed in
our sample can be quantitatively estimated and represented using a standard
measure (technically called p-value or statistical significance level, see the next
paragraph).

What is "statistical significance™ (p-value). The statistical significance of a result is the
probability that the observed relationship (e.g., between variables) or a difference (e.g.,
between means) in a sample occurred by pure chance ("luck of the draw™), and that in the
population from which the sample was drawn, no such relationship or differences exist.
Using less technical terms, one could say that the statistical significance of a result tells
us something about the degree to which the result is "true" (in the sense of being
"representative of the population™). More technically, the value of the p-value represents
a decreasing index of the reliability of a result (see Brownlee, 1960). The higher the p-
value, the less we can believe that the observed relation between variables in the sample
is a reliable indicator of the relation between the respective variables in the population.
Specifically, the p-value represents the probability of error that is involved in accepting
our observed result as valid, that is, as "representative of the population.” For example, a
p-value of .05 (i.e.,1/20) indicates that there is a 5% probability that the relation between
the variables found in our sample is a "fluke." In other words, assuming that in the
population there was no relation between those variables whatsoever, and we were
repeating experiments like ours one after another, we could expect that approximately in
every 20 replications of the experiment there would be one in which the relation between
the variables in question would be equal or stronger than in ours. (Note that this is not the
same as saying that, given that there IS a relationship between the variables, we can
expect to replicate the results 5% of the time or 95% of the time; when there is a
relationship between the variables in the population, the probability of replicating the
study and finding that relationship is related to the statistical power of the design. See
also, Power Analysis). In many areas of research, the p-value of .05 is customarily treated
as a "border-line acceptable™ error level.

How to determine that a result is "really" significant. There is no way to avoid
arbitrariness in the final decision as to what level of significance will be treated as really
"significant.” That is, the selection of some level of significance, up to which the results
will be rejected as invalid, is arbitrary. In practice, the final decision usually depends on
whether the outcome was predicted a priori or only found post hoc in the course of many
analyses and comparisons performed on the data set, on the total amount of consistent
supportive evidence in the entire data set, and on "traditions" existing in the particular
area of research. Typically, in many sciences, results that yield p< .05 are considered
borderline statistically significant but remember that this level of significance still
involves a pretty high probability of error (5%). Results that are significant at the p £ .01
level are commonly considered statistically significant, and p = .005 or p = .001 levels
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are often called "highly" significant. But remember that those classifications represent
nothing else but arbitrary conventions that are only informally based on general research
experience.

Statistical significance and the number of analyses performed. Needless to say, the more
analyses you perform on a data set, the more results will meet "by chance" the
conventional significance level. For example, if you calculate correlations between ten
variables (i.e., 45 different correlation coefficients), then you should expect to find by
chance that about two (i.e., one in every 20) correlation coefficients are significant at the
p £ .05 level, even if the values of the variables were totally random and those variables
do not correlate in the population. Some statistical methods that involve many
comparisons, and thus a good chance for such errors, include some "correction™ or
adjustment for the total number of comparisons. However, many statistical methods
(especially simple exploratory data analyses) do not offer any straightforward remedies to
this problem. Therefore, it is up to the researcher to carefully evaluate the reliability of
unexpected findings. Many examples in this manual offer specific advice on how to do
this; relevant information can also be found in most research methods textbooks.

Strength vs. reliability of a relation between variables. We said before that strength and
reliability are two different features of relationships between variables. However, they are
not totally independent. In general, in a sample of a particular size, the larger the
magnitude of the relation between variables, the more reliable the relation (see the next
paragraph).

Why stronger relations between variables are more significant. Assuming that there is no
relation between the respective variables in the population, the most likely outcome
would be also finding no relation between those variables in the research sample. Thus,
the stronger the relation found in the sample, the less likely it is that there is no
corresponding relation in the population. As you see, the magnitude and significance of a
relation appear to be closely related, and we could calculate the significance from the
magnitude and vice-versa; however, this is true only if the sample size is kept constant,
because the relation of a given strength could be either highly significant or not
significant at all, depending on the sample size (see the next paragraph).

<>

Why significance of a relation between variables depends on the size of the sample. If
there are very few observations, then there are also respectively few possible
combinations of the values of the variables, and thus the probability of obtaining by
chance a combination of those values indicative of a strong relation is relatively high.
Consider the following illustration. If we are interested in two variables (Gender:
male/female and WCC: high/low) and there are only four subjects in our sample (two
males and two females), then the probability that we will find, purely by chance, a 100%
relation between the two variables can be as high as one-eighth. Specifically, there is a



one-in-eight chance that both males will have a high WCC and both females a low WCC,
or vice versa. Now consider the probability of obtaining such a perfect match by chance
if our sample consisted of 100 subjects; the probability of obtaining such an outcome by
chance would be practically zero. Let's look at a more general example. Imagine a
theoretical population in which the average value of WCC in males and females is
exactly the same. Needless to say, if we start replicating a simple experiment by drawing
pairs of samples (of males and females) of a particular size from this population and
calculating the difference between the average WCC in each pair of samples, most of the
experiments will yield results close to 0. However, from time to time, a pair of samples
will be drawn where the difference between males and females will be quite different
from 0. How often will it happen? The smaller the sample size in each experiment, the
more likely it is that we will obtain such erroneous results, which in this case would be
results indicative of the existence of a relation between gender and WCC obtained from a
population in which such a relation does not exist.

Example. "Baby boys to baby girls ratio." Consider the following example from research
on statistical reasoning (Nisbett, et al., 1987). There are two hospitals: in the first one,
120 babies are born every day, in the other, only 12. On average, the ratio of baby boys to
baby girls born every day in each hospital is 50/50. However, one day, in one of those
hospitals twice as many baby girls were born as baby boys. In which hospital was it more
likely to happen? The answer is obvious for a statistician, but as research shows, not so
obvious for a lay person: It is much more likely to happen in the small hospital. The
reason for this is that technically speaking, the probability of a random deviation of a
particular size (from the population mean), decreases with the increase in the sample size.

Why small relations can be proven significant only in large samples. The examples in the
previous paragraphs indicate that if a relationship between variables in question is
"objectively” (i.e., in the population) small, then there is no way to identify such a
relation in a study unless the research sample is correspondingly large. Even if our
sample is in fact "perfectly representative™ the effect will not be statistically significant if
the sample is small. Analogously, if a relation in question is "objectively" very large (i.e.,
in the population), then it can be found to be highly significant even in a study based on a
very small sample. Consider the following additional illustration. If a coin is slightly
asymmetrical, and when tossed is somewhat more likely to produce heads than tails (e.g.,
60% vs. 40%), then ten tosses would not be sufficient to convince anyone that the coin is
asymmetrical, even if the outcome obtained (six heads and four tails) was perfectly
representative of the bias of the coin. However, is it so that 10 tosses is not enough to
prove anything? No, if the effect in question were large enough, then ten tosses could be
quite enough. For instance, imagine now that the coin is so asymmetrical that no matter
how you toss it, the outcome will be heads. If you tossed such a coin ten times and each
toss produced heads, most people would consider it sufficient evidence that something is
"wrong" with the coin. In other words, it would be considered convincing evidence that
in the theoretical population of an infinite number of tosses of this coin there would be



more heads than tails. Thus, if a relation is large, then it can be found to be significant
even in a small sample.

Can "no relation" be a significant result? The smaller the relation between variables, the
larger the sample size that is necessary to prove it significant. For example, imagine how
many tosses would be necessary to prove that a coin is asymmetrical if its bias were only
.000001%! Thus, the necessary minimum sample size increases as the magnitude of the
effect to be demonstrated decreases. When the magnitude of the effect approaches 0, the
necessary sample size to conclusively prove it approaches infinity. That is to say, if there
is almost no relation between two variables, then the sample size must be almost equal to
the population size, which is assumed to be infinitely large. Statistical significance
represents the probability that a similar outcome would be obtained if we tested the entire
population. Thus, everything that would be found after testing the entire population
would be, by definition, significant at the highest possible level, and this also includes all
"no relation™ results.

How to measure the magnitude (strength) of relations between variables. There are very
many measures of the magnitude of relationships between variables which have been
developed by statisticians; the choice of a specific measure in given circumstances
depends on the number of variables involved, measurement scales used, nature of the
relations, etc. Almost all of them, however, follow one general principle: they attempt to
somehow evaluate the observed relation by comparing it to the "maximum imaginable
relation” between those specific variables. Technically speaking, a common way to
perform such evaluations is to look at how differentiated are the values of the variables,
and then calculate what part of this "overall available differentiation™ is accounted for by
instances when that differentiation is "common™ in the two (or more) variables in
question. Speaking less technically, we compare "what is common in those variables" to
"what potentially could have been common if the variables were perfectly related.” Let us
consider a simple illustration. Let us say that in our sample, the average index of WCC is
100 in males and 102 in females. Thus, we could say that on average, the deviation of
each individual score from the grand mean (101) contains a component due to the gender
of the subject; the size of this component is 1. That value, in a sense, represents some
measure of relation between Gender and WCC. However, this value is a very poor
measure, because it does not tell us how relatively large this component is, given the
"overall differentiation” of WCC scores. Consider two extreme possibilities:

a. If all WCC scores of males were equal exactly to 100, and those of females equal
to 102, then all deviations from the grand mean in our sample would be entirely
accounted for by gender. We would say that in our sample, gender is perfectly
correlated with WCC, that is, 100% of the observed differences between subjects
regarding their WCC is accounted for by their gender.

b. If WCC scores were in the range of 0-1000, the same difference (of 2) between
the average WCC of males and females found in the study would account for such
a small part of the overall differentiation of scores that most likely it would be



considered negligible. For example, one more subject taken into account could
change, or even reverse the direction of the difference. Therefore, every good
measure of relations between variables must take into account the overall
differentiation of individual scores in the sample and evaluate the relation in terms
of (relatively) how much of this differentiation is accounted for by the relation in
question.

Common "general format" of most statistical tests. Because the ultimate goal of most
statistical tests is to evaluate relations between variables, most statistical tests follow the
general format that was explained in the previous paragraph. Technically speaking, they
represent a ratio of some measure of the differentiation common in the variables in
question to the overall differentiation of those variables. For example, they represent a
ratio of the part of the overall differentiation of the WCC scores that can be accounted for
by gender to the overall differentiation of the WCC scores. This ratio is usually called a
ratio of explained variation to total variation. In statistics, the term explained variation
does not necessarily imply that we "conceptually understand" it. It is used only to denote
the common variation in the variables in question, that is, the part of variation in one
variable that is "explained" by the specific values of the other variable, and vice versa.

How the "level of statistical significance™ is calculated. Let us assume that we have
already calculated a measure of a relation between two variables (as explained above).
The next question is "how significant is this relation?" For example, is 40% of the
explained variance between the two variables enough to consider the relation significant?
The answer is "it depends." Specifically, the significance depends mostly on the sample
size. As explained before, in very large samples, even very small relations between
variables will be significant, whereas in very small samples even very large relations
cannot be considered reliable (significant). Thus, in order to determine the level of
statistical significance, we need a function that represents the relationship between
"magnitude™ and "significance" of relations between two variables, depending on the
sample size. The function we need would tell us exactly "how likely it is to obtain a
relation of a given magnitude (or larger) from a sample of a given size, assuming that
there is no such relation between those variables in the population.” In other words, that
function would give us the significance (p) level, and it would tell us the probability of
error involved in rejecting the idea that the relation in question does not exist in the
population. This "alternative™ hypothesis (that there is no relation in the population) is
usually called the null hypothesis. It would be ideal if the probability function was linear,
and for example, only had different slopes for different sample sizes. Unfortunately, the
function is more complex, and is not always exactly the same; however, in most cases we
know its shape and can use it to determine the significance levels for our findings in
samples of a particular size. Most of those functions are related to a general type of
function which is called normal.



Why the "Normal distribution™ is important. The "Normal distribution” is important
because in most cases, it well approximates the function that was introduced in the
previous paragraph (for a detailed illustration, see Are all test statistics normally
distributed?). The distribution of many test statistics is normal or follows some form that
can be derived from the normal distribution. In this sense, philosophically speaking, the
Normal distribution represents one of the empirically verified elementary "truths about
the general nature of reality,” and its status can be compared to the one of fundamental
laws of natural sciences. The exact shape of the normal distribution (the characteristic
"bell curve") is defined by a function which has only two parameters: mean and standard
deviation.

A characteristic property of the Normal distribution is that 68% of all of its observations
fall within a range of +1 standard deviation from the mean, and a range of +2 standard
deviations includes 95% of the scores. In other words, in a Normal distribution,
observations that have a standardized value of less than -2 or more than +2 have a relative
frequency of 5% or less. (Standardized value means that a value is expressed in terms of
its difference from the mean, divided by the standard deviation.) If you have access to
STATISTICA, you can explore the exact values of probability associated with different
values in the normal distribution using the interactive Probability Calculator tool; for
example, if you enter the Z value (i.e., standardized value) of 4, the associated probability
computed by STATISTICA will be less than .0001, because in the normal distribution
almost all observations (i.e., more than 99.99%) fall within the range of +4 standard
deviations. The animation below shows the tail area associated with other Z values.
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Illustration of how the normal distribution is used in statistical reasoning (induction).
Recall the example discussed above, where pairs of samples of males and females were
drawn from a population in which the average value of WCC in males and females was
exactly the same. Although the most likely outcome of such experiments (one pair of
samples per experiment) was that the difference between the average WCC in males and
females in each pair is close to zero, from time to time, a pair of samples will be drawn
where the difference between males and females is quite different from 0. How often
does it happen? If the sample size is large enough, the results of such replications are
"normally distributed" (this important principle is explained and illustrated in the next
paragraph), and thus knowing the shape of the normal curve, we can precisely calculate
the probability of obtaining "by chance” outcomes representing various levels of
deviation from the hypothetical population mean of 0. If such a calculated probability is
so low that it meets the previously accepted criterion of statistical significance, then we
have only one choice: conclude that our result gives a better approximation of what is
going on in the population than the "null hypothesis™ (remember that the null hypothesis
was considered only for "technical reasons” as a benchmark against which our empirical




result was evaluated). Note that this entire reasoning is based on the assumption that the
shape of the distribution of those "replications” (technically, the "sampling distribution™)
is normal. This assumption is discussed in the next paragraph.

Are all test statistics normally distributed? Not all, but most of them are either based on
the normal distribution directly or on distributions that are related to, and can be derived
from normal, such as t, F, or Chi-square. Typically, those tests require that the variables
analyzed are themselves normally distributed in the population, that is, they meet the so-
called "normality assumption.” Many observed variables actually are normally
distributed, which is another reason why the normal distribution represents a "general
feature™ of empirical reality. The problem may occur when one tries to use a normal
distribution-based test to analyze data from variables that are themselves not normally
distributed (see tests of normality in Nonparametrics or ANOVA/MANOVA). In such
cases we have two general choices. First, we can use some alternative "nonparametric"
test (or so-called "distribution-free test” see, Nonparametrics); but this is often
inconvenient because such tests are typically less powerful and less flexible in terms of
types of conclusions that they can provide. Alternatively, in many cases we can still use
the normal distribution-based test if we only make sure that the size of our samples is
large enough. The latter option is based on an extremely important principle which is
largely responsible for the popularity of tests that are based on the normal function.
Namely, as the sample size increases, the shape of the sampling distribution (i.e.,
distribution of a statistic from the sample; this term was first used by Fisher, 1928a)
approaches normal shape, even if the distribution of the variable in question is not
normal. This principle is illustrated in the following animation showing a series of
sampling distributions (created with gradually increasing sample sizes of: 2, 5, 10, 15,
and 30) using a variable that is clearly non-normal in the population, that is, the
distribution of its values is clearly skewed.
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However, as the sample size (of samples used to create the sampling distribution of the

mean) increases, the shape of the sampling distribution becomes normal. Note that for

n=30, the shape of that distribution is "almost" perfectly normal (see the close match of
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the fit). This principle is called the central limit theorem (this term was first used by
Pdlya, 1920; German, "Zentraler Grenzwertsatz™).

How do we know the consequences of violating the normality assumption? Although
many of the statements made in the preceding paragraphs can be proven mathematically,
some of them do not have theoretical proofs and can be demonstrated only empirically,
via so-called Monte-Carlo experiments. In these experiments, large numbers of samples
are generated by a computer following predesigned specifications and the results from
such samples are analyzed using a variety of tests. This way we can empirically evaluate
the type and magnitude of errors or biases to which we are exposed when certain
theoretical assumptions of the tests we are using are not met by our data. Specifically,
Monte-Carlo studies were used extensively with normal distribution-based tests to
determine how sensitive they are to violations of the assumption of normal distribution of
the analyzed variables in the population. The general conclusion from these studies is that
the consequences of such violations are less severe than previously thought. Although
these conclusions should not entirely discourage anyone from being concerned about the
normality assumption, they have increased the overall popularity of the distribution-
dependent statistical tests in all areas of research.



Basic Statistics

Descriptive Statistics

"True" Mean and Confidence Interval. Probably the most often used
descriptive statistic is the mean. The mean is a particularly informative measure
of the "central tendency" of the variable if it is reported along with its confidence
intervals. As mentioned earlier, usually we are interested in statistics (such as the
mean) from our sample only to the extent to which they can infer information
about the population. The confidence intervals for the mean give us a range of
values around the mean where we expect the "true" (population) mean is located

(with a given level of certainty, see also Elementary Concepts). For example, if

the mean in your sample is 23, and the lower and upper limits of the p=.05
confidence interval are 19 and 27 respectively, then you can conclude that there
is a 95% probability that the population mean is greater than 19 and lower than
27. If you set the p-level to a smaller value, then the interval would become wider
thereby increasing the "certainty" of the estimate, and vice versa; as we all know
from the weather forecast, the more "vague" the prediction (i.e., wider the
confidence interval), the more likely it will materialize. Note that the width of the
confidence interval depends on the sample size and on the variation of data
values. The larger the sample size, the more reliable its mean. The larger the

variation, the less reliable the mean (see also Elementary Concepts). The

calculation of confidence intervals is based on the assumption that the variable is
normally distributed in the population. The estimate may not be valid if this
assumption is not met, unless the sample size is large, say /=100 or more.
Shape of the Distribution, Normality. An important aspect of the "description"
of a variable is the shape of its distribution, which tells you the frequency of

values from different ranges of the variable. Typically, a researcher is interested
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in how well the distribution can be approximated by the normal distribution (see
the animation below for an example of this distribution) (see also Elementary
Concepfts). Simple descriptive statistics can provide some information relevant to
this issue. For example, if the skewness (which measures the deviation of the
distribution from symmetry) is clearly different from 0, then that distribution is

asymmetrical, while normal distributions are perfectly symmetrical. If the Aurfosis

(which measures "peakedness" of the distribution) is clearly different from 0, then
the distribution is either flatter or more peaked than normal; the kurtosis of the

normal distribution is O.

Dengity Function: Digtribution Function:

A

More precise information can be obtained by performing one of the fests of

normality to determine the probability that the sample came from a normally
distributed population of observations (e.g., the so-called Kolmogorov-Smirnov
test, or the Shapiro-Wilks' W test. However, none of these tests can entirely
substitute for a visual examination of the data using a histogram (i.e., a graph

that shows the frequency distribution of a variable).
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The graph allows you to evaluate the normality of the empirical distribution
because it also shows the normal curve superimposed over the histogram. It also

allows you to examine various aspects of the distribution qualitatively. For
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example, the distribution could be bimodal (have 2 peaks). This might suggest
that the sample is not homogeneous but possibly its elements came from two
different populations, each more or less normally distributed. In such cases, in
order to understand the nature of the variable in question, you should look for a

way to quantitatively identify the two sub-samples.

Correlations
Purpose (What is Correlation?) Correlation is a measure of the relation
between two or more variables. The measurement scales used should be at least

interval scales, but other correlation coefficients are available to handle other

types of data. Correlation coefficients can range from -1.00 to +1.00. The value of

-1.00 represents a perfect negative correlation while a value of +1.00 represents

a perfect positive correlation. A value of 0.00 represents a lack of correlation.
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The most widely-used type of correlation coefficient is Pearson r, also called
linear or product- moment correlation.
Simple Linear Correlation (Pearson r). Pearson correlation (hereafter called

correlation), assumes that the two variables are measured on at least interval
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scales (see Elementary Concepls), and it determines the extent to which values

of the two variables are "proportional" to each other. The value of correlation (i.e.,
correlation coefficient) does not depend on the specific measurement units used;
for example, the correlation between height and weight will be identical
regardless of whether /nches and pounds, or centimeters and kilograms are used
as measurement units. Proportional means /linearly related, that is, the correlation
is high if it can be "summarized" by a straight line (sloped upwards or

downwards).

Fil CORRE2.5TG: MEASURE]Y ws. MEASLREA

MEASURES vs, MEASLIRES
103

- I
[17] e L ¥ -str'-m T s
3 :' .
0 RO £ the
A ity et b | i |_u-l-¢l'_"l A
L] SRS e e S
] .f-.*u-‘,hr * ; E- +f -y
8 '_ i ot
7 - o S i
E 97 23 o 100 WM MR 03 T S8 99 00 1 Im 1m
BRAIUP: 1 GROUR: 2
]
2 1 )
X g | H bt E_ A0 -
m el il
e A . "'F
100 fﬁﬁu%?i,ﬁ E Jﬂ@?‘@;l
AR, .
L I*-I":l + E o
a *, }-Ex

I |
9F 93 93 900 1 02 03 97 S8 99 100 101 102 103
GROUP: 3 GROUP: 4

MEASLIRER

This line is called the regression line or least squares line, because it is
determined such that the sum of the squared distances of all the data points from
the line is the lowest possible. Note that the concept of squared distances will
have important functional consequences on how the value of the correlation
coefficient reacts to various specific arrangements of data (as we will later see).
How to Interpret the Values of Correlations. As mentioned before, the
correlation coefficient (r) represents the linear relationship between two variables.
If the correlation coefficient is squared, then the resulting value (r2, the coefficient

of determination) will represent the proportion of common variation in the two

variables (i.e., the "strength" or "magnitude" of the relationship). In order to
evaluate the correlation between variables, it is important to know this

"magnitude" or "strength" as well as the significance of the correlation.
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Significance of Correlations. The significance level calculated for each
correlation is a primary source of information about the reliability of the

correlation. As explained before (see Elementary Concepts), the significance of a

correlation coefficient of a particular magnitude will change depending on the
size of the sample from which it was computed. The test of significance is based
on the assumption that the distribution of the residual values (i.e., the deviations
from the regression line) for the dependent variable y follows the normal
distribution, and that the variability of the residual values is the same for all
values of the independent variable x. However, Monte Carlo studies suggest that
meeting those assumptions closely is not absolutely crucial if your sample size is
not very small and when the departure from normality is not very large. It is
impossible to formulate precise recommendations based on those Monte- Carlo
results, but many researchers follow a rule of thumb that if your sample size is 50
or more then serious biases are unlikely, and if your sample size is over 100 then
you should not be concerned at all with the normality assumptions. There are,
however, much more common and serious threats to the validity of information
that a correlation coefficient can provide; they are briefly discussed in the
following paragraphs.

Outliers. Outliers are atypical (by definition), infrequent observations. Because
of the way in which the regression line is determined (especially the fact that it is
based on minimizing not the sum of simple distances but the sum of squares of
distances of data points from the line), outliers have a profound influence on the
slope of the regression line and consequently on the value of the correlation
coefficient. A single outlier is capable of considerably changing the slope of the
regression line and, consequently, the value of the correlation, as demonstrated
in the following example. Note, that as shown on that illustration, just one outlier
can be entirely responsible for a high value of the correlation that otherwise
(without the outlier) would be close to zero. Needless to say, one should never
base important conclusions on the value of the correlation coefficient alone (i.e.,

examining the respective scatterplot is always recommended).
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Note that if the sample size is relatively small, then including or excluding specific
data points that are not as clearly "outliers" as the one shown in the previous
example may have a profound influence on the regression line (and the
correlation coefficient). This is illustrated in the following example where we call

the points being excluded "outliers;" one may argue, however, that they are not

outliers but rather extreme values.

F BEFDRE AMY DUTLIERS ARE REWNYED
"
BEFORE
4 o ANY
@ QUTLIERS
o WERE

7 REMOVED
= w] °
{18}
&5 a =
=
g o
= 3 Lal

(]
1 (]
]
o
: i 1 r=+26
G 1 3 5 7 g 1
VARIABLE X

Typically, we believe that outliers represent a random error that we would like to
be able to control. Unfortunately, there is no widely accepted method to remove
outliers automatically (however, see the next paragraph), thus what we are left
with is to identify any outliers by examining a scatterplot of each important

correlation. Needless to say, outliers may not only artificially increase the value of



a correlation coefficient, but they can also decrease the value of a "legitimate"
correlation.

See also Confidence Ellipse.

Quantitative Approach to Outliers. Some researchers use quantitative
methods to exclude outliers. For example, they exclude observations that are

outside the range of +2 standard deviations (or even +1.5 sd's) around the group

or design cell mean. In some areas of research, such "cleaning" of the data is
absolutely necessary. For example, in cognitive psychology research on reaction
times, even if almost all scores in an experiment are in the range of 300-700
milliseconds, just a few "distracted reactions" of 10-15 seconds will completely
change the overall picture. Unfortunately, defining an outlier is subjective (as it
should be), and the decisions concerning how to identify them must be made on
an individual basis (taking into account specific experimental paradigms and/or
"accepted practice" and general research experience in the respective area). It
should also be noted that in some rare cases, the relative frequency of outliers
across a number of groups or cells of a design can be subjected to analysis and
provide interpretable results. For example, outliers could be indicative of the
occurrence of a phenomenon that is qualitatively different than the typical pattern
observed or expected in the sample, thus the relative frequency of outliers could
provide evidence of a relative frequency of departure from the process or
phenomenon that is typical for the majority of cases in a group. See also

Confidence Ellipse.

Correlations in Non-homogeneous Groups. A lack of homogeneity in the
sample from which a correlation was calculated can be another factor that biases
the value of the correlation. Imagine a case where a correlation coefficient is
calculated from data points which came from two different experimental groups
but this fact is ignored when the correlation is calculated. Let us assume that the
experimental manipulation in one of the groups increased the values of both
correlated variables and thus the data from each group form a distinctive "cloud"

in the scatterplot (as shown in the graph below).
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In such cases, a high correlation may result that is entirely due to the
arrangement of the two groups, but which does not represent the "true" relation
between the two variables, which may practically be equal to 0 (as could be seen
if we looked at each group separately, see the following graph).
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If you suspect the influence of such a phenomenon on your correlations and
know how to identify such "subsets" of data, try to run the correlations separately
in each subset of observations. If you do not know how to identify the
hypothetical subsets, try to examine the data with some exploratory multivariate
techniques (e.g., Cluster Analysis).

Nonlinear Relations between Variables. Another potential source of
problems with the linear (Pearson r) correlation is the shape of the relation. As
mentioned before, Pearson rmeasures a relation between two variables only to
the extent to which it is linear; deviations from linearity will increase the total sum
of squared distances from the regression line even if they represent a "true" and

very close relationship between two variables. The possibility of such non-linear



relationships is another reason why examining scatterplots is a necessary step in
evaluating every correlation. For example, the following graph demonstrates an
extremely strong correlation between the two variables which is not well

described by the linear function.
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Measuring Nonlinear Relations. What do you do if a correlation is strong but
clearly nonlinear (as concluded from examining scatterplots)? Unfortunately,
there is no simple answer to this question, because there is no easy-to-use
equivalent of Pearson rthat is capable of handling nonlinear relations. If the
curve is monotonous (continuously decreasing or increasing) you could try to
transform one or both of the variables to remove the curvilinearity and then
recalculate the correlation. For example, a typical transformation used in such
cases is the logarithmic function which will "squeeze" together the values at one
end of the range. Another option available if the relation is monotonous is to try a

nonparametric correlation (e.g., Spearman R, see Nonparametrics and

Distribution Fitting) which is sensitive only to the ordinal arrangement of values,

thus, by definition, it ignores monotonous curvilinearity. However, nonparametric
correlations are generally less sensitive and sometimes this method will not
produce any gains. Unfortunately, the two most precise methods are not easy to
use and require a good deal of "experimentation" with the data. Therefore you

could:

A. Try to identify the specific function that best describes the curve. After a function
has been found, you can test its "goodness-of-fit" to your data.
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B. Alternatively, you could experiment with dividing one of the variables into a
number of segments (e.g., 4 or 5) of an equal width, treat this new variable as a
grouping variable and run an analysis of variance on the data.

Exploratory Examination of Correlation Matrices. A common first step of many
data analyses that involve more than a very few variables is to run a correlation matrix of
all variables and then examine it for expected (and unexpected) significant relations.
When this is done, you need to be aware of the general nature of statistical significance
(see Elementary Concepts); specifically, if you run many tests (in this case, many
correlations), then significant results will be found "surprisingly often” due to pure
chance. For example, by definition, a coefficient significant at the .05 level will occur by
chance once in every 20 coefficients. There is no "automatic” way to weed out the "true"
correlations. Thus, you should treat all results that were not predicted or planned with
particular caution and look for their consistency with other results; ultimately, though, the
most conclusive (although costly) control for such a randomness factor is to replicate the
study. This issue is general and it pertains to all analyses that involve "multiple
comparisons and statistical significance.” This problem is also briefly discussed in the
context of post-hoc comparisons of means and the Breakdowns option.

Casewise vs. Pairwise Deletion of Missing Data. The default way of

deleting missing data while calculating a correlation matrix is to exclude all cases
that have missing data in at least one of the selected variables; that is, by
casewise deletion of missing data. Only this way will you get a "true" correlation
matrix, where all correlations are obtained from the same set of observations.
However, if missing data are randomly distributed across cases, you could easily
end up with no "valid" cases in the data set, because each of them will have at
least one missing data in some variable. The most common solution used in such
instances is to use so-called pairwise deletion of missing data in correlation
matrices, where a correlation between each pair of variables is calculated from
all cases that have valid data on those two variables. In many instances there is
nothing wrong with that method, especially when the total percentage of missing
data is low, say 10%, and they are relatively randomly distributed between cases
and variables. However, it may sometimes lead to serious problems.

For example, a systematic bias may result from a "hidden" systematic distribution
of missing data, causing different correlation coefficients in the same correlation
matrix to be based on different subsets of subjects. In addition to the possibly

biased conclusions that you could derive from such "pairwise calculated"



correlation matrices, real problems may occur when you subject such matrices to

another analysis (e.qg., multiple regression, factor analysis, or cluster analysis)

that expects a "true correlation matrix," with a certain level of consistency and
"transitivity" between different coefficients. Thus, if you are using the pairwise
method of deleting the missing data, be sure to examine the distribution of

missing data across the cells of the matrix for possible systematic "patterns."

How to Identify Biases Caused by the Bias due to Pairwise Deletion of

Missing Data. If the pairwise deletion of missing data does not introduce any
systematic bias to the correlation matrix, then all those pairwise descriptive
statistics for one variable should be very similar. However, if they differ, then
there are good reasons to suspect a bias. For example, if the mean (or standard
deviation) of the values of variable A that were taken into account in calculating
its correlation with variable B is much lower than the mean (or standard
deviation) of those values of variable A that were used in calculating its
correlation with variable C, then we would have good reason to suspect that
those two correlations (A-B and A-C) are based on different subsets of data, and
thus, that there is a bias in the correlation matrix caused by a non-random
distribution of missing data.

Pairwise Deletion of Missing Data vs. Mean Substitution. Another
common method to avoid loosing data due to casewise deletion is the so-called
mean substitution of missing data (replacing all missing data in a variable by the
mean of that variable). Mean substitution offers some advantages and some
disadvantages as compared to pairwise deletion. Its main advantage is that it
produces "internally consistent" sets of results ("true" correlation matrices). The

main disadvantages are:

A. Mean substitution artificially decreases the variation of scores, and this decrease
in individual variables is proportional to the number of missing data (i.e., the
more missing data, the more "perfectly average scores™ will be artificially added
to the data set).

B. Because it substitutes missing data with artificially created "average" data points,
mean substitution may considerably change the values of correlations.



Spurious Correlations. Although you cannot prove causal relations based on
correlation coefficients (see Elementary Concepts), you can still identify so-called
spurious correlations; that is, correlations that are due mostly to the influences of "other"
variables. For example, there is a correlation between the total amount of losses in a fire
and the number of firemen that were putting out the fire; however, what this correlation
does not indicate is that if you call fewer firemen then you would lower the losses. There
is a third variable (the initial size of the fire) that influences both the amount of losses and
the number of firemen. If you "control” for this variable (e.g., consider only fires of a
fixed size), then the correlation will either disappear or perhaps even change its sign. The
main problem with spurious correlations is that we typically do not know what the
"hidden™ agent is. However, in cases when we know where to look, we can use partial
correlations that control for (partial out) the influence of specified variables.

Are correlation coefficients "additive?" No, they are not. For example, an
average of correlation coefficients in a number of samples does not represent an
"average correlation" in all those samples. Because the value of the correlation
coefficient is not a linear function of the magnitude of the relation between the
variables, correlation coefficients cannot simply be averaged. In cases when you
need to average correlations, they first have to be converted into additive
measures. For example, before averaging, you can square them to obtain
coefficients of determination which are additive (as explained before in this
section), or convert them into so-called Fisher zvalues, which are also additive.
How to Determine Whether Two Correlation Coefficients are Significant.
A test is available that will evaluate the significance of differences between two
correlation coefficients in two samples. The outcome of this test depends not only
on the size of the raw difference between the two coefficients but also on the size
of the samples and on the size of the coefficients themselves. Consistent with the
previously discussed principle, the larger the sample size, the smaller the effect
that can be proven significant in that sample. In general, due to the fact that the
reliability of the correlation coefficient increases with its absolute value, relatively
small differences between large correlation coefficients can be significant. For
example, a difference of .10 between two correlations may not be significant if
the two coefficients are .15 and .25, although in the same sample, the same

difference of .10 can be highly significant if the two coefficients are .80 and .90.



t-test for independent samples

Purpose, Assumptions. The £test is the most commonly used method to
evaluate the differences in means between two groups. For example, the #test
can be used to test for a difference in test scores between a group of patients
who were given a drug and a control group who received a placebo.
Theoretically, the t-test can be used even if the sample sizes are very small (e.g.,
as small as 10; some researchers claim that even smaller ri's are possible), as
long as the variables are normally distributed within each group and the variation
of scores in the two groups is not reliably different (see also Elementary
Concepfts). As mentioned before, the normality assumption can be evaluated by
looking at the distribution of the data (via histograms) or by performing a
normality test. The equality of variances assumption can be verified with the F
test, or you can use the more robust Levene's test. If these conditions are not
met, then you can evaluate the differences in means between two groups using

one of the nonparametric alternatives to the & test (see Nonparametrics and

Distribution Fitting).

The p-level reported with a £test represents the probability of error involved in
accepting our research hypothesis about the existence of a difference.
Technically speaking, this is the probability of error associated with rejecting the
hypothesis of no difference between the two categories of observations
(corresponding to the groups) in the population when, in fact, the hypothesis is
true. Some researchers suggest that if the difference is in the predicted direction,
you can consider only one half (one "tail") of the probability distribution and thus
divide the standard p-level reported with a #test (a "two-tailed" probability) by
two. Others, however, suggest that you should always report the standard, two-
tailed t-test probability.

See also, Student's t Distribution.




Arrangement of Data. In order to perform the £test for independent samples,
one independent (grouping) variable (e.g., Gender: male/female) and at least one
dependent variable (e.g., a test score) are required. The means of the dependent
variable will be compared between selected groups based on the specified
values (e.g., male and female) of the independent variable. The following data
set can be analyzed with a #test comparing the average WCC score in males
and females.

GENDER WCC

case 1 male 111
case 2 male 110
case 3 male 109
case 4 female 102
case 5 female 104

mean WCC in males = 110
mean WCC in females = 103

t-test graphs. In the £test analysis, comparisons of means and measures of

variation in the two groups can be visualized in box and whisker plots (for an

example, see the graph below).
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These graphs help you to quickly evaluate and "intuitively visualize" the strength
of the relation between the grouping and the dependent variable.

More Complex Group Comparisons. It often happens in research practice
that you need to compare more than two groups (e.g., drug 7, drug 2, and

placebo), or compare groups created by more than one independent variable
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while controlling for the separate influence of each of them (e.qg., Gender, type of
Drug, and size of Dose). In these cases, you need to analyze the data using

Analysis of Variance, which can be considered to be a generalization of the #

test. In fact, for two group comparisons, ANOVA will give results identical to a #
test (#*°2 [dff = F[7,df)). However, when the design is more complex, ANOVA
offers numerous advantages that £tests cannot provide (even if you run a series

of £ tests comparing various cells of the design).

t-test for dependent samples
Within-group Variation. As explained in Elementary Concepts, the size of a

relation between two variables, such as the one measured by a difference in
means between two groups, depends to a large extent on the differentiation of
values within the group. Depending on how differentiated the values are in each
group, a given "raw difference" in group means will indicate either a stronger or
weaker relationship between the independent (grouping) and dependent variable.
For example, if the mean WCC (White Cell Count) was 102 in males and 104 in
females, then this difference of "only" 2 points would be extremely important if all
values for males fell within a range of 101 to 103, and all scores for females fell
within a range of 103 to 105; for example, we would be able to predict WCC
pretty well based on gender. However, if the same difference of 2 was obtained
from very differentiated scores (e.g., if their range was 0-200), then we would
consider the difference entirely negligible. That is to say, reduction of the within-
group variation increases the sensitivity of our test.

Purpose. The ttest for dependent samples helps us to take advantage of one
specific type of design in which an important source of within-group variation (or
so-called, error) can be easily identified and excluded from the analysis.
Specifically, if two groups of observations (that are to be compared) are based on

the same sample of subjects who were tested fwice (e.g., before and aftera
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treatment), then a considerable part of the within-group variation in both groups
of scores can be attributed to the initial individual differences between subjects.
Note that, in a sense, this fact is not much different than in cases when the two

groups are entirely independent (see £test for independent samples), where

individual differences also contribute to the error variance; but in the case of
independent samples, we cannot do anything about it because we cannot identify
(or "subtract") the variation due to individual differences in subjects. However, if
the same sample was tested twice, then we can easily identify (or "subtract") this
variation. Specifically, instead of treating each group separately, and analyzing
raw scores, we can look only at the differences between the two measures (e.g.,
"pre-test" and "post test") in each subject. By subtracting the first score from the
second for each subject and then analyzing only those "pure (paired)
differences," we will exclude the entire part of the variation in our data set that
results from unequal base levels of individual subjects. This is precisely what is
being done in the £test for dependent samples, and, as compared to the £test for
independent samples, it always produces "better" results (i.e., it is always more
sensitive).

Assumptions. The theoretical assumptions of the £test for independent

samples also apply to the dependent samples test; that is, the paired differences
should be normally distributed. If these assumptions are clearly not met, then one
of the nonparametric alternative tests should be used.

See also, Student's t Distribution.

Arrangement of Data. Technically, we can apply the £test for dependent
samples to any two variables in our data set. However, applying this test will
make very little sense if the values of the two variables in the data set are not
logically and methodologically comparable. For example, if you compare the
average WCC in a sample of patients before and after a treatment, but using a
different counting method or different units in the second measurement, then a

highly significant £test value could be obtained due to an artifact; that is, to the



change of units of measurement. Following, is an example of a data set that can

be analyzed using the #test for dependent samples.

WCC WCC
before after
case 1 111.9 113
case 2 109 110
case 3 143 144
case 4 101 102

case 5 80 80.9

average change between WCC
"before™ and "after =1

The average difference between the two conditions is relatively small (d=7) as
compared to the differentiation (range) of the raw scores (from 80 to 143, in the
first sample). However, the £test for dependent samples analysis is performed
only on the paired differences , "ignoring" the raw scores and their potential
differentiation. Thus, the size of this particular difference of 7 will be compared
not to the differentiation of raw scores but to the differentiation of the /individual
difference scores, which is relatively small: 0.2 (from 0.9to 7.7). Compared to
that variability, the difference of 7is extremely large and can yield a highly

significant fvalue.
Matrices of t-tests. £tests for dependent samples can be calculated for long

lists of variables, and reviewed in the form of matrices produced with casewise or

pairwise deletion of missing data, much like the correlation matrices. Thus, the

precautions discussed in the context of correlations also apply to £test matrices;

see:

a. the issue of artifacts caused by the pairwise deletion of missing data in t-tests and
b. the issue of "randomly" significant test values.

More Complex Group Comparisons. If there are more than two "correlated
samples" (e.q., before treatment, after treatment 1, and after treatment 2), then
analysis of variance with repeated measures should be used. The repeated

measures ANOVA can be considered a generalization of the t-test for dependent



samples and it offers various features that increase the overall sensitivity of the
analysis. For example, it can simultaneously control not only for the base level of
the dependent variable, but it can control for other factors and/or include in the
design more than one interrelated dependent variable (MANOVA; for additional
details refer to ANOVA/MANOVA).

Breakdown: Descriptive Statistics by Groups

Purpose. The breakdowns analysis calculates descriptive statistics and
correlations for dependent variables in each of a number of groups defined by
one or more grouping (/independent) variables.

Arrangement of Data. In the following example data set (spreadsheet), the
dependent variable WCC (White Cell Count) can be broken down by 2
independent variables: Gender (values: males and females), and Height (values:

tall and shori).
GENDER |HEIGHT WwcCC

case 1 male short| 101
case 2 male tall| 110
case 3 male tall 92
case 4 female tall | 112
case 5 female short 95

The resulting breakdowns might look as follows (we are assuming that Gender

was specified as the first independent variable, and Hejght as the second).

Entire sample

Mean=100
SD=13
N=120
Males Females
Mean=99 Mean=101
SD=13 SD=13
N=60 N=60

Tall/males |Short/males ' Tall/females Short/females
Mean=98 | Mean=100 | Mean=101 | Mean=101



SD=13 SD=13 SD=13 SD=13
N=30 N=30 N=30 N=30

The composition of the "intermediate" level cells of the "breakdown tree" depends
on the order in which independent variables are arranged. For example, in the
above example, you see the means for "all males" and "all females" but you do
not see the means for "all tall subjects" and "all short subjects" which would have
been produced had you specified independent variable Hejght as the first
grouping variable rather than the second.

Statistical Tests in Breakdowns. Breakdowns are typically used as an
exploratory data analysis technique; the typical question that this technique can
help answer is very simple: Are the groups created by the independent variables
different regarding the dependent variable? If you are interested in differences
concerning the means, then the appropriate test is the breakdowns one-way
ANOVA (Ftest). If you are interested in variation differences, then you should
test for homogeneity of variances.

Other Related Data Analysis Techniques. Although for exploratory data
analysis, breakdowns can use more than one independent variable, the statistical
procedures in breakdowns assume the existence of a single grouping factor
(even if, in fact, the breakdown results from a combination of a number of

grouping variables). Thus, those statistics do not reveal or even take into account

any possible /nteractions between grouping variables in the design. For example,
there could be differences between the influence of one independent variable on
the dependent variable at different levels of another independent variable (e.g.,
tall people could have lower WCC than short ones, but only if they are males;
see the "tree" data above). You can explore such effects by examining
breakdowns "visually," using different orders of independent variables, but the
magnitude or significance of such effects cannot be estimated by the breakdown
statistics.

Post-Hoc Comparisons of Means. Usually, after obtaining a statistically

significant F test from the ANOVA, one wants to know which of the means



contributed to the effect (i.e., which groups are particularly different from each

other). One could of course perform a series of simple £tests to compare all

possible pairs of means. However, such a procedure would capitalize on chance.
This means that the reported probability levels would actually overestimate the
statistical significance of mean differences. Without going into too much detail,
suppose you took 20 samples of 10 random numbers each, and computed 20
means. Then, take the group (sample) with the highest mean and compare it with
that of the lowest mean. The #test for independent samples will test whether or
not those two means are significantly different from each other, provided they
were the only two samples taken. Post-hoc comparison techniques on the other
hand specifically take into account the fact that more than two samples were

taken.
Breakdowns vs. Discriminant Function Analysis. Breakdowns can be

considered as a first step toward another type of analysis that explores

differences between groups: Discriminant function analysis. Similar to

breakdowns, discriminant function analysis explores the differences between
groups created by values (group codes) of an independent (grouping) variable.
However, unlike breakdowns, discriminant function analysis simultaneously
analyzes more than one dependent variable and it identifies "patterns” of values
of those dependent variables. Technically, it determines a linear combination of
the dependent variables that best predicts the group membership. For example,
discriminant function analysis can be used to analyze differences between three
groups of persons who have chosen different professions (e.g., lawyers,
physicians, and engineers) in terms of various aspects of their scholastic
performance in high school. One could claim that such analysis could "explain”
the choice of a profession in terms of specific talents shown in high school; thus
discriminant function analysis can be considered to be an "exploratory extension"
of simple breakdowns.

Breakdowns vs. Frequency Tables. Another related type of analysis that

cannot be directly performed with breakdowns is comparisons of frequencies of
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cases (r71s) between groups. Specifically, often the r7s in individual cells are not

equal because the assignment of subjects to those groups typically results not
from an experimenter's manipulation, but from subjects' pre-existing dispositions.
If, in spite of the random selection of the entire sample, the r7's are unequal, then
it may suggest that the independent variables are related. For example,
crosstabulating levels of independent variables Age and Education most likely
would not create groups of equal n, because education is distributed differently in
different age groups. If you are interested in such comparisons, you can explore
specific frequencies in the breakdowns tables, trying different orders of
independent variables. However, in order to subject such differences to statistical
tests, you should use crosstabulations and frequency tables, Log-Linear
Analysis, or Correspondence Analysis (for more advanced analyses on multi-way
frequency tables).

Graphical breakdowns. Graphs can often identify effects (both expected and
unexpected) in the data more quickly and sometimes "better" than any other data
analysis method. Categorized graphs allow you to plot the means, distributions,
correlations, etc. across the groups of a given table (e.g., categorized
histograms, categorized probability plots, categorized box and whisker plots).
The graph below shows a categorized histogram which enables you to quickly
evaluate and visualize the shape of the data for each group (group1-female,

group2-female, etc.).
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The categorized scatterplot (in the graph below) shows the differences between

patterns of correlations between dependent variables across the groups.



Additionally, if the software has a brushing facility which supports animated

brushing, you can select (i.e., highlight) in a matrix scatterplot all data points that

belong to a certain category in order to examine how those specific observations

contribute to relations between other variables in the same data set.
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Frequency tables
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Purpose. Frequency or one-way tables represent the simplest method for

analyzing categorical (nominal) data (refer to Elementary Concepts). They are

often used as one of the exploratory procedures to review how different
categories of values are distributed in the sample. For example, in a survey of
spectator interest in different sports, we could summarize the respondents'

interest in watching football in a frequency table as follows:

STATISTICA FOOTBALL: ""Watching football"
BASIC
STATS

Cumulatv Cumulatv
Category Count| Count |Percent | Percent
ALWAYS : Always interested 39 39 39.00000 | 39.0000
USUALLY : Usually interested 16 55/16.00000 | 55.0000
SOMETIMS: Sometimes interested 26 81 26.00000 | 81.0000
NEVER : Never interested 19 100 /19.00000 | 100.0000
Missing 0 100 | 0.00000 | 100.0000

The table above shows the number, proportion, and cumulative proportion of
respondents who characterized their interest in watching football as either (1)
Always interested, (2) Usually inferested, (3) Sometimes inferested, or (4) Never
Interested.

Applications. In practically every research project, a first "look" at the data
usually includes frequency tables. For example, in survey research, frequency
tables can show the number of males and females who participated in the
survey, the number of respondents from particular ethnic and racial backgrounds,
and so on. Responses on some labeled attitude measurement scales (e.g.,
interest in watching football) can also be nicely summarized via the frequency
table. In medical research, one may tabulate the number of patients displaying
specific symptoms; in industrial research one may tabulate the frequency of
different causes leading to catastrophic failure of products during stress tests
(e.g., which parts are actually responsible for the complete malfunction of
television sets under extreme temperatures?). Customarily, if a data set includes
any categorical data, then one of the first steps in the data analysis is to compute

a frequency table for those categorical variables.



Crosstabulation and stub-and-banner tables

Purpose and Arrangement of Table. Crosstabulation is a combination of two
(or more) frequency tables arranged such that each cell in the resulting table
represents a unique combination of specific values of crosstabulated variables.
Thus, crosstabulation allows us to examine frequencies of observations that
belong to specific categories on more than one variable. By examining these
frequencies, we can identify relations between crosstabulated variables. Only
categorical (nominal) variables or variables with a relatively small number of
different meaningful values should be crosstabulated. Note that in the cases
where we do want to include a continuous variable in a crosstabulation (e.g.,
income), we can first recode it into a particular number of distinct ranges (e.g.,
low, medium, high).

2x2 Table. The simplest form of crosstabulation is the 2 by 2 table where two
variables are "crossed," and each variable has only two distinct values. For
example, suppose we conduct a simple study in which males and females are
asked to choose one of two different brands of soda pop (brand A and brand B);
the data file can be arranged like this:

GENDER |SODA

case 1 MALE
case 2| FEMALE
case 3| FEMALE
case 4  FEMALE
case 5 MALE

P mW>ww>

The resulting crosstabulation could look as follows.

SODA: A SODA: B
GENDER: MALE |20 (40%) (30 (60%) |50 (50%)
GENDER: FEMALE [30 (60%) (20 (40%) (50 (50%)

50 (50%) |50 (50%) |100 (100%)



Each cell represents a unique combination of values of the two crosstabulated
variables (row variable Genderand column variable Soda), and the numbers in
each cell tell us how many observations fall into each combination of values. In
general, this table shows us that more females than males chose the soda pop
brand A, and that more males than females chose soda B. Thus, gender and
preference for a particular brand of soda may be related (later we will see how
this relationship can be measured).

Marginal Frequencies. The values in the margins of the table are simply one-
way (frequency) tables for all values in the table. They are important in that they
help us to evaluate the arrangement of frequencies in individual columns or rows.
For example, the frequencies of 40% and 60% of males and females
(respectively) who chose soda A (see the first column of the above table), would
not indicate any relationship between Genderand Soda if the marginal
frequencies for Genderwere also 40% and 60%; in that case they would simply
reflect the different proportions of males and females in the study. Thus, the
differences between the distributions of frequencies in individual rows (or
columns) and in the respective margins informs us about the relationship
between the crosstabulated variables.

Column, Row, and Total Percentages. The example in the previous
paragraph demonstrates that in order to evaluate relationships between
crosstabulated variables, we need to compare the proportions of marginal and
individual column or row frequencies. Such comparisons are easiest to perform

when the frequencies are presented as percentages.

Graphical Representations of Crosstabulations. For analytic purposes, the
individual rows or columns of a table can be represented as column graphs.
However, often it is useful to visualize the entire table in a single graph. A two-
way table can be visualized in a 3-dimensional histogram; alternatively, a
categorized histogram can be produced, where one variable is represented by

individual histograms which are drawn at each level (category) of the other



variable in the crosstabulation. The advantage of the 3D histogram is that it
produces an integrated picture of the entire table; the advantage of the
categorized graph is that it allows us to precisely evaluate specific frequencies in
each cell of the table.

Stub-and-Banner Tables. Stub-and-Banner tables, or Banners for short, are a
way to display several two-way tables in a compressed form. This type of table is
most easily explained with an example. Let us return to the survey of sports
spectators example. (Note that, in order simplify matters, only the response

categories A/ways and Usually were tabulated in the table below.)

STATISTICA Stub-and-Banner Table:
BASIC Row Percent
STATS
Factor FOOTBALL FOOTBALL | Row
ALWAYS | USUALLY | Total
BASEBALL: ALWAYS 92.31 7.69| 66.67
BASEBALL: USUALLY 61.54 38.46 | 33.33
BASEBALL: Total 82.05 17.95 100.00
TENNIS: ALWAYS 87.50 12.50 | 66.67
TENNIS: USUALLY 87.50 12.50 | 33.33
TENNIS: Total 87.50 12.50 {100.00
BOXING: ALWAYS 77.78 22.22 | 52.94
BOXING: USUALLY 100.00 0.00 | 47.06
BOXING : Total 88.24 11.76 |100.00

Interpreting the Banner Table. In the table above, we see the two-way tables
of expressed interest in Footballby expressed interest in Baseball, Tennis, and
Boxing. The table entries represent percentages of rows, so that the percentages
across columns will add up to 100 percent. For example, the number in the upper
left hand corner of the Scrollsheet (92.37) shows that 92.37 percent of all
respondents who said they are always interested in watching football also said
that they were always interested in watching baseball. Further down we can see
that the percent of those always interested in watching football who were also

always interested in watching tennis was 87.50 percent; for boxing this number is



77.78 percent. The percentages in the last column (Row Total) are always
relative to the total number of cases.

Multi-way Tables with Control Variables. When only two variables are
crosstabulated, we call the resulting table a fiwo-way table. However, the general
idea of crosstabulating values of variables can be generalized to more than just
two variables. For example, to return to the "soda" example presented earlier
(see above), a third variable could be added to the data set. This variable might
contain information about the state in which the study was conducted (either

Nebraska or New York).

GENDER |SODA STATE

case 1 MALE A INEBRASKA
case 2 | FEMALE B INEW YORK
case 3 | FEMALE B INEBRASKA
case 4 | FEMALE A INEBRASKA
case 5 MALE B INEW YORK

The crosstabulation of these variables would result in a 3-way table:

STATE: NEW YORK |STATE: NEBRASKA
SODA: A |SODA: B SODA: A |SODA: B

G:MALE 20 30 50 5 45 50
G:FEMALE 30 20 50 45 5 50
50 50 100 50 50 100

Theoretically, an unlimited number of variables can be crosstabulated in a single
multi-way table. However, research practice shows that it is usually difficult to
examine and "understand" tables that involve more than 4 variables. It is
recommended to analyze relationships between the factors in such tables using

modeling techniques such as Log-Linear Analysis or Correspondence Analysis.

Graphical Representations of Multi-way Tables. You can produce "double

categorized" histograms, 3D histograms,



or line-plots that will summarize the frequencies for up to 3 factors in a single
graph.

Batches (cascades) of graphs can be used to summarize higher-way tables (as

shown in the graph below).




Statistics in Crosstabulation Tables

General Introduction. Crosstabulations generally allow us to identify relationships
between the crosstabulated variables. The following table illustrates an example
of a very strong relationship between two variables: variable Age (Adultvs. Chila)
and variable Cookie preference (A vs. B).

COOKIE: A |COOKIE: B

AGE: ADULT 50 0 50
AGE: CHILD 0 50 50
50 50 100

All adults chose cookie A, while all children chose cookie B. In this case there is
little doubt about the reliability of the finding, because it is hardly conceivable that
one would obtain such a pattern of frequencies by chance alone; that is, without
the existence of a "true" difference between the cookie preferences of adults and
children. However, in real-life, relations between variables are typically much
weaker, and thus the question arises as to how to measure those relationships,
and how to evaluate their reliability (statistical significance). The following review
includes the most common measures of relationships between fwo categorical
variables; that is, measures for two-way tables. The techniques used to analyze
simultaneous relations between more than two variables in higher order
crosstabulations are discussed in the context of the Log-Linear Analysis module

and the Correspondence Analysis.

Pearson Chi-square. The Pearson Chi-square is the most common test for
significance of the relationship between categorical variables. This measure is
based on the fact that we can compute the expected frequencies in a two-way
table (i.e., frequencies that we would expectif there was no relationship between
the variables). For example, suppose we ask 20 males and 20 females to choose
between two brands of soda pop (brands A and B). If there is no relationship

between preference and gender, then we would expect about an equal number



of choices of brand A and brand B for each sex. The Chi-square test becomes
increasingly significant as the numbers deviate further from this expected pattern;
that is, the more this pattern of choices for males and females differs.

The value of the Chi-square and its significance level depends on the overall
number of observations and the number of cells in the table. Consistent with the

principles discussed in Elementary Concepts, relatively small deviations of the

relative frequencies across cells from the expected pattern will prove significant if
the number of observations is large.

The only assumption underlying the use of the Chi-square (other than random
selection of the sample) is that the expected frequencies are not very small. The
reason for this is that, actually, the Chi~square inherently tests the underlying
probabilities in each cell; and when the expected cell frequencies fall, for
example, below 5, those probabilities cannot be estimated with sufficient
precision. For further discussion of this issue refer to Everitt (1977), Hays (1988),
or Kendall and Stuart (1979).

Maximume-Likelihood Chi-square. The Maximum-Likelihood Chi-square tests the
same hypothesis as the Pearson Ch/- square statistic; however, its computation
is based on Maximum-Likelihood theory. In practice, the M-L Ch/i-square is
usually very close in magnitude to the Pearson Ch/- square statistic. For more
details about this statistic refer to Bishop, Fienberg, and Holland (1975), or
Fienberg, S. E. (1977); the Log-Linear Analysis chapter of the manual also

discusses this statistic in greater detail.

Yates Correction. The approximation of the Ch/i-square statistic in small 2 x 2
tables can be improved by reducing the absolute value of differences between
expected and observed frequencies by 0.5 before squaring ( Yafes' correction).
This correction, which makes the estimation more conservative, is usually
applied when the table contains only small observed frequencies, so that some
expected frequencies become less than 10 (for further discussion of this
correction, see Conover, 1974; Everitt, 1977; Hays, 1988; Kendall & Stuart,
1979; and Mantel, 1974).



Fisher Exact Test. This test is only available for 2x2 tables; it is based on the
following rationale: Given the marginal frequencies in the table, and assuming
that in the population the two factors in the table are not related, how likely is it to
obtain cell frequencies as uneven or worse than the ones that were observed?
For small n, this probability can be computed exact/y by counting all possible
tables that can be constructed based on the marginal frequencies. Thus, the
Fisher exact test computes the exact probability under the null hypothesis of
obtaining the current distribution of frequencies across cells, or one that is more
uneven.

McNemar Chi-square. This test is applicable in situations where the frequencies
in the 2 x 2 table represent dependent samples. For example, in a before-after
design study, we may count the number of students who fail a test of minimal
math skills at the beginning of the semester and at the end of the semester. Two
Chi-square values are reported: A/D and B/C. The Chi-square A/D tests the
hypothesis that the frequencies in cells A and D (upper left, lower right) are
identical. The Chi-square B/C tests the hypothesis that the frequencies in cells B
and C (upper right, lower left) are identical.

Coefficient Phi. The Phi-square is a measure of correlation between two
categorical variables in a 2 x 2 table. Its value can range from 0 (no relation
between factors; Chi-square=0.0) to 7 (perfect relation between the two factors in
the table). For more details concerning this statistic see Castellan and Siegel
(1988, p. 232).

Tetrachoric Correlation. This statistic is also only computed for (applicable to) 2 x
2 tables. If the 2 x 2 table can be thought of as the result of two continuous
variables that were (artificially) forced into two categories each, then the
tetrachoric correlation coefficient will estimate the correlation between the two.
Coefficient of Contingency. The coefficient of contingency is a Chi-square based
measure of the relation between two categorical variables (proposed by Pearson,
the originator of the Chi-square test). Its advantage over the ordinary Chi-square

is that it is more easily interpreted, since its range is always limited to 0through 7



(where 0 means complete independence). The disadvantage of this statistic is
that its specific upper limit is "limited" by the size of the table; C can reach the
limit of 7 only if the number of categories is unlimited (see Siegel, 1956, p. 201).
Interpretation of Contingency Measures. An important disadvantage of measures
of contingency (reviewed above) is that they do not lend themselves to clear
interpretations in terms of probability or "proportion of variance," as is the case,
for example, of the Pearson r(see Correlations). There is no commonly accepted
measure of relation between categories that has such a clear interpretation.
Statistics Based on Ranks. In many cases the categories used in the
crosstabulation contain meaningful rank-ordering information; that is, they

measure some characteristic on an <>ordinal scale (see Elementary Concepis).

Suppose we asked a sample of respondents to indicate their interest in watching
different sports on a 4-point scale with the explicit labels (1) a/ways, (2) usually,
(3) sometimes, and (4) never interested. Obviously, we can assume that the
response sometimes interested is indicative of less interest than a/ways
Interested, and so on. Thus, we could rank the respondents with regard to their
expressed interest in, for example, watching football. When categorical variables
can be interpreted in this manner, there are several additional indices that can be
computed to express the relationship between variables.

Spearman R. Spearman R can be thought of as the regular Pearson product-
moment correlation coefficient (Pearson 7); that is, in terms of the proportion of
variability accounted for, except that Spearman Ris computed from ranks. As
mentioned above, Spearman R assumes that the variables under consideration

were measured on at least an ordlinal (rank order) scale; that is, the individual

observations (cases) can be ranked into two ordered series. Detailed discussions
of the Spearman R statistic, its power and efficiency can be found in Gibbons
(1985), Hays (1981), McNemar (1969), Siegel (1956), Siegel and Castellan
(1988), Kendall (1948), Olds (1949), or Hotelling and Pabst (1936).

Kendall tau. Kendall /auis equivalent to the Spearman R statistic with regard to

the underlying assumptions. It is also comparable in terms of its statistical power.



However, Spearman R and Kendall fau are usually not identical in magnitude
because their underlying logic, as well as their computational formulas are very
different. Siegel and Castellan (1988) express the relationship of the two
measures in terms of the inequality:

-1 <=3 *Kendalltau -2 * Spearman R <=1

More importantly, Kendall zavand Spearman R imply different interpretations:
While Spearman R can be thought of as the regular Pearson product-moment
correlation coefficient as computed from ranks, Kendall fau rather represents a
probability. Specifically, it is the difference between the probability that the
observed data are in the same order for the two variables versus the probability
that the observed data are in different orders for the two variables. Kendall (1948,
1975), Everitt (1977), and Siegel and Castellan (1988) discuss Kendall fauin
greater detail. Two different variants of /auv are computed, usually called fau», and
fau.. These measures differ only with regard as to how tied ranks are handled. In
most cases these values will be fairly similar, and when discrepancies occur, it is
probably always safest to interpret the lowest value.

Sommer's d: d(X|Y), d(Y|X). Sommer's dis an asymmetric measure of
association related to # (see Siegel & Castellan, 1988, p. 303-310).

Gamma. The Gamma statistic is preferable to Spearman R or Kendall fauwhen
the data contain many tied observations. In terms of the underlying assumptions,
Gamma is equivalent to Spearman R or Kendall fav; in terms of its interpretation
and computation, it is more similar to Kendall /zavthan Spearman R. In short,
Gamma is also a probability, specifically, it is computed as the difference
between the probability that the rank ordering of the two variables agree minus
the probability that they disagree, divided by 1 minus the probability of ties. Thus,
Gamma is basically equivalent to Kendall fau, except that ties are explicitly taken
into account. Detailed discussions of the Gamma statistic can be found in
Goodman and Kruskal (1954, 1959, 1963, 1972), Siegel (1956), and Siegel and
Castellan (1988).



Uncertainty Coefficients. These are indices of sfochastic dependence; the
concept of sfochastic dependence is derived from the information theory
approach to the analysis of frequency tables and the user should refer to the
appropriate references (see Kullback, 1959; Ku & Kullback, 1968; Ku, Varner, &
Kullback, 1971; see also Bishop, Fienberg, & Holland, 1975, p. 344-348). S( Y, X)
refers to symmetrical dependence, S(X]Y) and S( Y1.X) refer to asymmetrical
dependence.

Multiple Responses/Dichotomies. Multiple response variables or multiple
dichotomies often arise when summarizing survey data. The nature of such

variables or factors in a table is best illustrated with examples.

Multiple Response Variables

Multiple Dichotomies

Crosstabulation of Multiple Responses/Dichotomies
Paired Crosstabulation of Multiple Response Variables
A Final Comment

Multiple Response Variables. As part of a larger market survey, suppose you
asked a sample of consumers to name their three favorite soft drinks. The
specific item on the questionnaire may look like this:

Write down your three favorite soft drinks:

1: 2: 3:

Thus, the questionnaires returned to you will contain somewhere between 0 and 3
answers to this item. Also, a wide variety of soft drinks will most likely be named. Your

goal is to summarize the responses to this item; that is, to produce a table that
summarizes the percent of respondents who mentioned a respective soft drink.

The next question is how to enter the responses into a data file. Suppose 50

different soft drinks were mentioned among all of the questionnaires. You could
of course set up 50 variables - one for each soft drink - and then enter a 7 for the
respective respondent and variable (soft drink), if he or she mentioned the
respective soft drink (and a 0if not); for example:

COKE |PEPSI [SPRITE |. . ..

case 1 0 1 0
case 2 1 1 0
case 3 0 0 1



This method of coding the responses would be very tedious and "wasteful." Note
that each respondent can only give a maximum of three responses; yet we use
50 variables to code those responses. (However, if we are only interested in
these three soft drinks, then this method of coding just those three variables
would be satisfactory; to tabulate soft drink preferences, we could then treat the
three variables as a multiple dichotomy; see below.)

Coding multiple response variables. Alternatively, we could set up three
variables, and a coding scheme for the 50 soft drinks. Then we could enter the
respective codes (or alpha labels) into the three variables, in the same way that
respondents wrote them down in the questionnaire.

Resp.1 |Resp. 2 Resp. 3

case 1 COKE PEPSI JOLT
case 2 SPRITE | SNAPPLE |DR. PEPPER
case 3 PERRIER GATORADE [MOUNTAIN DEW

To produce a table of the number of respondents by soft drink we would now

treat Resp. 71to Resp3as a multiple response variable. That table could look like

this:

N=500 Count Prent. of Prent. of
Category Responses | Cases
COKE: Coca Cola 44 5.23 8.80
PEPSI: Pepsi Cola 43 5.11 8.60
MOUNTAIN: Mountain Dew 81 9.62 16.20
PEPPER: Doctor Pepper 74 8.79 14.80

842 100.00 | 168.40

Interpreting the multiple response frequency table. The total number of
respondents was /=500. Note that the counts in the first column of the table do
not add up to 500, but rather to 842. That is the total number of responses; since
each respondent could make up to 3 responses (write down three names of soft

drinks), the total number of responses is naturally greater than the number of



respondents. For example, referring back to the sample listing of the data file
shown above, the first case (Coke, Pepsi, Jolf) "contributes" three times to the
frequency table, once to the category Coke, once to the category Pepsi, and
once to the category Jo/t. The second and third columns in the table above report
the percentages relative to the number of responses (second column) as well as
respondents (third column). Thus, the entry 8.80 in the first row and last column
in the table above means that 8.8% of all respondents mentioned Coke either as
their first, second, or third soft drink preference.
Multiple Dichotomies. Suppose in the above example we were only interested in
Coke, Pepsi, and Sprite. As pointed out earlier, one way to code the data in that
case would be as follows:

COKE PEPSI SPRITE |. ...

case 1 1
case 2 1 1
case 3 1

In other words, one variable was created for each soft drink, then a value of 7
was entered into the respective variable whenever the respective drink was
mentioned by the respective respondent. Note that each variable represents a
dichofomy; that is, only " 7's and "nof 7's are allowed (we could have entered 7's
and Us, but to save typing we can also simply leave the Js blank or missing).
When tabulating these variables, we would like to obtain a summary table very
similar to the one shown earlier for multiple response variables; that is, we would
like to compute the number and percent of respondents (and responses) for each
soft drink. In a sense, we "compact" the three variables Coke, Pepsi, and Sprite
into a single variable (Soft Drink) consisting of multiple dichotomies.
Crosstabulation of Multiple Responses/Dichotomies. All of these types of
variables can then be used in crosstabulation tables. For example, we could
crosstabulate a multiple dichotomy for Soft Drink (coded as described in the
previous paragraph) with a multiple response variable Favorite Fast Foods (with

many categories such as Hamburgers, Pizza, etc.), by the simple categorical



variable Gender. As in the frequency table, the percentages and marginal totals
in that table can be computed from the total number of respondents as well as

the total number of responses. For example, consider the following hypothetical

respondent:
Gender |Coke |Pepsi |Sprite [Foodl |Food2
FEMALE | 1 1 FISH |PIZZA

This female respondent mentioned Coke and Pepsi as her favorite drinks, and
Fish and Pizza as her favorite fast foods. In the complete crosstabulation table

she will be counted in the following cells of the table:

Food c
TOTAL No.

Gender | Drink |[HAMBURG. FISH |PIZZA ...  of RESP.
FEMALE |COKE X | X 2

PEPSI X | X 2

SPRITE
MALE |COKE

PEPSI

SPRITE

This female respondent will "contribute" to (i.e., be counted in) the
crosstabulation table a total of 4 times. In addition, she will be counted twice in
the Female--Coke marginal frequency column if that column is requested to
represent the total number of responses; if the marginal totals are computed as
the total number of respondents, then this respondent will only be counted once.
Paired Crosstabulation of Multiple Response Variables. A unique option for
tabulating multiple response variables is to treat the variables in two or more
multiple response variables as matched pairs. Again, this method is best
illustrated with a simple example. Suppose we conducted a survey of past and
present home ownership. We asked the respondents to describe their last three
(including the present) homes that they purchased. Naturally, for some
respondents the present home is the first and only home; others have owned
more than one home in the past. For each home we asked our respondents to

write down the number of rooms in the respective house, and the number of



occupants. Here is how the data for one respondent (say case number 772) may

be entered into a data file:

Caseno.|Rooms 1 2 3 No.Occ. /12 |3
112 3314 2315

This respondent owned three homes; the first had 3 rooms, the second also had
3 rooms, and the third had 4 rooms. The family apparently also grew; there were
2 occupants in the first home, 3 in the second, and 5 in the third.

Now suppose we wanted to crosstabulate the number of rooms by the number of
occupants for all respondents. One way to do so is to prepare three different two-
way tables; one for each home. We can also treat the two factors in this study
(Number of Rooms, Number of Occupants) as multiple response variables.
However, it would obviously not make any sense to count the example
respondent 772shown above in cell 3 Rooms - 5 Occupants of the
crosstabulation table (which we would, if we simply treated the two factors as
ordinary multiple response variables). In other words, we want to ignore the
combination of occupants in the third home with the number of rooms in the first
home. Rather, we would like to count these variables in pairs, we would like to
consider the number of rooms in the first home together with the number of
occupants in the first home, the number of rooms in the second home with the
number of occupants in the second home, and so on. This is exactly what will be
accomplished if we asked for a paired crosstabulation of these multiple response
variables.

A Final Comment. When preparing complex crosstabulation tables with multiple
responses/dichotomies, it is sometimes difficult (in our experience) to "keep
track" of exactly how the cases in the file are counted. The best way to verify that
one understands the way in which the respective tables are constructed is to
crosstabulate some simple example data, and then to trace how each case is
counted. The example section of the Crosstabulation chapter in the manual
employs this method to illustrate how data are counted for tables involving

multiple response variables and multiple dichotomies.



ANOVA/MANOVA

Basic Ideas
The Purpose of Analysis of Variance
In general, the purpose of analysis of variance (ANOVA) is to test for significant

differences between means. Elementary Concepts provides a brief introduction

into the basics of statistical significance testing. If we are only comparing two

means, then ANOVA will give the same results as the ftest for independent

samples (if we are comparing two different groups of cases or observations), or

the ftest for dependent samples (if we are comparing two variables in one set of

cases or observations). If you are not familiar with those tests you may at this
point want to "brush up" on your knowledge about those tests by reading Basic

Statistics and Tables.

Why the name analysis of variance? It may seem odd to you that a procedure
that compares means is called analysis of variance. However, this name is
derived from the fact that in order to test for statistical significance between

means, we are actually comparing (i.e., analyzing) variances.

The Partioning of Sums of Squares

At the heart of ANOVA is the fact that variances can be divided up, that is,
partitioned. Remember that the variance is computed as the sum of squared
deviations from the overall mean, divided by n-7 (sample size minus one). Thus,
given a certain n, the variance is a function of the sums of (deviation) squares, or

SS for short. Partitioning of variance works as follows. Consider the following

data set:

Group 1 Group 2
Observation 1 2 6
Observation 2 3 7

Observation 3 1 5



Mean 2 6

Sums of Squares (SS) 2 2
Overall Mean 4
Total Sums of Squares 28

The means for the two groups are quite different (Z2and 6, respectively). The
sums of squares within each group are equal to 2. Adding them together, we get
4. If we now repeat these computations, ignoring group membership, that is, if we
compute the total SS based on the overall mean, we get the number 28. In other
words, computing the variance (sums of squares) based on the within-group
variability yields a much smaller estimate of variance than computing it based on
the total variability (the overall mean). The reason for this in the above example
is of course that there is a large difference between means, and it is this
difference that accounts for the difference in the SS. In fact, if we were to perform

an ANOVA on the above data, we would get the following result:

MAIN EFFECT
ss [df [MS| F | p

Effect 124.0 1/24.024.0/.008
Error| 40| 4 1.0

As you can see, in the above table the total SS (28) was partitioned into the SS
due to within-group variability (2+2=4) and variability due to differences between
means (28-(2+2)=24).

SS Error and SS Effect. The within-group variability (SS) is usually referred to as
Errorvariance. This term denotes the fact that we cannot readily explain or
account for it in the current design. However, the SS Effect we can explain.
Namely, it is due to the differences in means between the groups. Put another
way, group membership explains this variability because we know that it is due to
the differences in means.

Significance testing. The basic idea of statistical significance testing is discussed

in Elementary Concepts. Elementary Concepfts also explains why very many

statistical test represent ratios of explained to unexplained variability. ANOVA is

a good example of this. Here, we base this test on a comparison of the variance



due to the between- groups variability (called Mean Square Effect, or MSefrect)
with the within- group variability (called Mean Square Error, or Mseor;, this term
was first used by Edgeworth, 1885). Under the null hypothesis (that there are no
mean differences between groups in the population), we would still expect some
minor random fluctuation in the means for the two groups when taking small
samples (as in our example). Therefore, under the null hypothesis, the variance
estimated based on within-group variability should be about the same as the
variance due to between-groups variability. We can compare those two estimates
of variance via the Ftest (see also F Distribution), which tests whether the ratio
of the two variance estimates is significantly greater than 1. In our example
above, that test is highly significant, and we would in fact conclude that the
means for the two groups are significantly different from each other.

Summary of the basic logic of ANOVA. To summarize the discussion up to this
point, the purpose of analysis of variance is to test differences in means (for
groups or variables) for statistical significance. This is accomplished by analyzing
the variance, that is, by partitioning the total variance into the component that is
due to true random error (i.e., within- group SS) and the components that are due
to differences between means. These latter variance components are then tested
for statistical significance, and, if significant, we reject the null hypothesis of no
differences between means, and accept the alternative hypothesis that the
means (in the population) are different from each other.

Dependent and independent variables. The variables that are measured (e.g., a
test score) are called dependent variables. The variables that are manipulated or
controlled (e.g., a teaching method or some other criterion used to divide
observations into groups that are compared) are called facfors or independent
variables. For more information on this important distinction, refer to Elementary
Concepts.

Multi-Factor ANOVA

In the simple example above, it may have occurred to you that we could have

simply computed a ftest for independent samples to arrive at the same




conclusion. And, indeed, we would get the identical result if we were to compare
the two groups using this test. However, ANOVA is a much more flexible and
powerful technique that can be applied to much more complex research issues.
Multiple factors. The world is complex and multivariate in nature, and instances
when a single variable completely explains a phenomenon are rare. For
example, when trying to explore how to grow a bigger tomato, we would need to
consider factors that have to do with the plants' genetic makeup, soil conditions,
lighting, temperature, etc. Thus, in a typical experiment, many factors are taken
into account. One important reason for using ANOVA methods rather than
multiple two-group studies analyzed via ftests is that the former method is more
efficient, and with fewer observations we can gain more information. Let us
expand on this statement.

Controlling for factors. Suppose that in the above two-group example we
introduce another grouping factor, for example, Gender. Imagine that in each
group we have 3 males and 3 females. We could summarize this design in a 2 by
2 table:

Experimental |Experimental
Group 1 Group 2

Males 2 6
3 7

1 5

Mean 2 6
Females 4 8
5 9

3 7

Mean 4 8

Before performing any computations, it appears that we can partition the total
variance into at least 3 sources: (1) error (within-group) variability, (2) variability
due to experimental group membership, and (3) variability due to gender. (Note
that there is an additional source -- inferaction -- that we will discuss shortly.)
What would have happened had we not included gender as a factor in the study
but rather computed a simple ftest? If you compute the SSignoring the gender

factor (use the within-group means ignoring or collapsing across gender, the



result is SS=10+10=20), you will see that the resulting within-group SS is larger
than it is when we include gender (use the within- group, within-gender means to
compute those SS; they will be equal to 2 in each group, thus the combined SS-
within is equal to 2+2+2+2=8). This difference is due to the fact that the means
for males are systematically lower than those for females, and this difference in
means adds variability if we ignore this factor. Controlling for error variance
increases the sensitivity (power) of a test. This example demonstrates another
principal of ANOVA that makes it preferable over simple two-group t test studies:
In ANOVA we can test each factor while controlling for all others; this is actually
the reason why ANOVA is more statistically powerful (i.e., we need fewer
observations to find a significant effect) than the simple ftest.

Interaction Effects

There is another advantage of ANOVA over simple #tests: ANOVA allows us to
detect /nteraction effects between variables, and, therefore, to test more complex
hypotheses about reality. Let us consider another example to illustrate this point.
(The term inferaction was first used by Fisher, 1926.)

Main effects, two-way interaction. Imagine that we have a sample of highly
achievement-oriented students and another of achievement "avoiders." We now
create two random halves in each sample, and give one half of each sample a
challenging test, the other an easy test. We measure how hard the students work

on the test. The means of this (fictitious) study are as follows:

Achievement- |/Achievement-

oriented avoiders
Challenging Test 10 5
Easy Test 5 10

How can we summarize these results? Is it appropriate to conclude that (1)
challenging tests make students work harder, (2) achievement-oriented students
work harder than achievement- avoiders? None of these statements captures the
essence of this clearly systematic pattern of means. The appropriate way to
summarize the result would be to say that challenging tests make only

achievement-oriented students work harder, while easy tests make only



achievement- avoiders work harder. In other words, the type of achievement
orientation and test difficulty /inferactin their effect on effort; specifically, this is an
example of a two-way interaction between achievement orientation and test
difficulty. Note that statements 1 and 2 above describe so-called main effects.
Higher order interactions. While the previous two-way interaction can be put into
words relatively easily, higher order interactions are increasingly difficult to
verbalize. Imagine that we had included factor Genderin the achievement study

above, and we had obtained the following pattern of means:

Females Achievement- |/Achievement-
oriented avoiders
Challenging Test 10 5
Easy Test 5 10
Males Achievement- |/Achievement-
oriented avoiders
Challenging Test 1 6
Easy Test 6 1

How could we now summarize the results of our study? Graphs of means for all
effects greatly facilitate the interpretation of complex effects. The pattern shown
in the table above (and in the graph below) represents a three-way interaction

between factors.
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Thus we may summarize this pattern by saying that for females there is a two-
way interaction between achievement-orientation type and test difficulty:
Achievement-oriented females work harder on challenging tests than on easy

tests, achievement-avoiding females work harder on easy tests than on difficult



tests. For males, this interaction is reversed. As you can see, the description of
the interaction has become much more involved.

A general way to express interactions. A general way to express all interactions
is to say that an effect is modified (qualified) by another effect. Let us try this with
the two-way interaction above. The main effect for test difficulty is modified by
achievement orientation. For the three-way interaction in the previous paragraph,
we may summarize that the two-way interaction between test difficulty and
achievement orientation is modified (qualified) by gender. If we have a four-way
interaction, we may say that the three-way interaction is modified by the fourth
variable, that is, that there are different types of interactions in the different levels
of the fourth variable. As it turns out, in many areas of research five- or higher-

way interactions are not that uncommon.

Complex Designs

Between-Groups and Repeated Measures

When we want to compare two groups, we would use the ftest for independent

samples; when we want to compare two variables given the same subjects

(observations), we would use the ftest for dependent samples. This distinction --

dependent and independent samples -- is important for ANOVA as well.
Basically, if we have repeated measurements of the same variable (under
different conditions or at different points in time) on the same subjects, then the
factor is a repeated measures factor (also called a within-subjects factor,
because to estimate its significance we compute the within-subjects SS). If we
compare different groups of subjects (e.g., males and females; three strains of

bacteria, etc.) then we refer to the factor as a between-groups factor. The



computations of significance tests are different for these different types of factors;
however, the logic of computations and interpretations is the same.
Between-within designs. In many instances, experiments call for the inclusion of
between-groups and repeated measures factors. For example, we may measure
math skills in male and female students (gender, a between-groups factor) at the
beginning and the end of the semester. The two measurements on each student
would constitute a within-subjects (repeated measures) factor. The interpretation
of main effects and interactions is not affected by whether a factor is between-
groups or repeated measures, and both factors may obviously interact with each
other (e.g., females improve over the semester while males deteriorate).
Incomplete (Nested) Designs
There are instances where we may decide to ignore interaction effects. This
happens when (1) we know that in the population the interaction effect is
negligible, or (2) when a complete 7factorial design (this term was first introduced
by Fisher, 1935a) cannot be used for economic reasons. Imagine a study where
we want to evaluate the effect of four fuel additives on gas mileage. For our test,
our company has provided us with four cars and four drivers. A complete factorial
experiment, that is, one in which each combination of driver, additive, and car
appears at least once, would require 4 x 4 x 4 = 64 individual test conditions
(groups). However, we may not have the resources (time) to run all of these
conditions; moreover, it seems unlikely that the type of driver would interact with
the fuel additive to an extent that would be of practical relevance. Given these
considerations, one could actually run a so-called Latin square design and "get
away" with only 16 individual groups (the four additives are denoted by letters A,
B, C, and D):

Car

1

2
Driver 1 /A |B
Driver2 B |C
Driver3/C D
Driver4 D A

W>OUOO w
OWwW>0O »



Latin square designs (this term was first used by Euler, 1782) are described in
most textbooks on experimental methods (e.g., Hays, 1988; Lindman, 1974;
Milliken & Johnson, 1984; Winer, 1962), and we do not want to discuss here the
details of how they are constructed. Suffice it to say that this design is incomplete
insofar as not all combinations of factor levels occur in the design. For example,
Driver 1 will only drive Car 1 with additive A, while Driver 3 will drive that car with
additive C. In a sense, the levels of the additives factor (A, B, C, and D) are
placed into the cells of the carby driver matrix like "eggs into a nest." This
mnemonic device is sometimes useful for remembering the nature of nested
designs.

Note that there are several other statistical procedures which may be used to

analyze these types of designs; see the section on Methods for Analysis of

Variance for details. In particular the methods discussed in the Variance
Components and Mixed Model ANOVA/ANCOVA chapter are very efficient for

analyzing designs with unbalanced nesting (when the nested factors have

different numbers of levels within the levels of the factors in which they are
nested), very large nested designs (e.g., with more than 200 levels overall), or

hierarchically nested designs (with or without random factors).

Analysis of Covariance (ANCOVA)

General Idea

The Basic Ideas section discussed briefly the idea of "controlling" for factors and
how the inclusion of additional factors can reduce the error SS and increase the
statistical power (sensitivity) of our design. This idea can be extended to
continuous variables, and when such continuous variables are included as

factors in the design they are called covariates.
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Fixed Covariates

Suppose that we want to compare the math skills of students who were randomly
assigned to one of two alternative textbooks. Imagine that we also have data
about the general intelligence (IQ) for each student in the study. We would
suspect that general intelligence is related to math skills, and we can use this
information to make our test more sensitive. Specifically, imagine that in each
one of the two groups we can compute the correlation coefficient (see Basic

Statistics and Tables) between IQ and math skills. Remember that once we have

computed the correlation coefficient we can estimate the amount of variance in
math skills that is accounted for by IQ, and the amount of (residual) variance that

we cannot explain with 1Q (refer also to Elementary Concepts and Basic

Staftistics and Tables). We may use this residual variance in the ANOVA as an

estimate of the true error SS affer controlling for 1Q. If the correlation between 1Q
and math skills is substantial, then a large reduction in the error SS may be
achieved.

Effect of a covariate on the Ftest. In the Ftest (see also F Distribution), to
evaluate the statistical significance of between-groups differences, we compute
the ratio of the between- groups variance (MSemec:) Over the error variance
(MSerror). If MSerorbecomes smaller, due to the explanatory power of 1Q, then the
overall Fvalue will become larger.

Multiple covariates. The logic described above for the case of a single covariate
(IQ) can easily be extended to the case of multiple covariates. For example, in
addition to 1Q, we might include measures of motivation, spatial reasoning, etc.,
and instead of a simple correlation, compute the multiple correlation coefficient

(see Multiple Regression).

When the Fvalue gets smaller. In some studies with covariates it happens that
the Fvalue actually becomes smaller (less significant) after including covariates
in the design. This is usually an indication that the covariates are not only
correlated with the dependent variable (e.g., math skills), but also with the

between-groups factors (e.g., the two different textbooks). For example, imagine



that we measured 1Q at the end of the semester, after the students in the
different experimental groups had used the respective textbook for almost one
year. It is possible that, even though students were initially randomly assigned to
one of the two textbooks, the different books were so different that bofh math
skills and 1Q improved differentially in the two groups. In that case, the covariate
will not only partition variance away from the error variance, but also from the
variance due to the between- groups factor. Put another way, after controlling for
the differences in 1Q that were produced by the two textbooks, the math skills are
not that different. Put in yet a third way, by "eliminating" the effects of 1Q, we
have inadvertently eliminated the true effect of the textbooks on students' math
skills.

Adjusted means. When the latter case happens, that is, when the covariate is
affected by the between-groups factor, then it is appropriate to compute so-called
adjusted means. These are the means that one would get after removing all
differences that can be accounted for by the covariate.

Interactions between covariates and factors. Just as we can test for interactions
between factors, we can also test for the interactions between covariates and
between-groups factors. Specifically, imagine that one of the textbooks is
particularly suited for intelligent students, while the other actually bores those
students but challenges the less intelligent ones. As a result, we may find a
positive correlation in the first group (the more intelligent, the better the
performance), but a zero or slightly negative correlation in the second group (the
more intelligent the student, the less likely he or she is to acquire math skills from
the particular textbook). In some older statistics textbooks this condition is
discussed as a case where the assumptions for analysis of covariance are

violated (see Assumptions and Effects of Violating Assumptions). However,

because ANOVA/MANOVA uses a very general approach to analysis of
covariance, you can specifically estimate the statistical significance of

interactions between factors and covariates.

Changing Covariates



While fixed covariates are commonly discussed in textbooks on ANOVA,
changing covariates are discussed less frequently. In general, when we have
repeated measures, we are interested in testing the differences in repeated
measurements on the same subjects. Thus we are actually interested in
evaluating the significance of changes. If we have a covariate that is also
measured at each point when the dependent variable is measured, then we can
compute the correlation between the changes in the covariate and the changes
in the dependent variable. For example, we could study math anxiety and math
skills at the beginning and at the end of the semester. It would be interesting to
see whether any changes in math anxiety over the semester correlate with

changes in math sKills.

Multivariate Designs: MANOVA/MANCOVA

Between-Groups Designs

All examples discussed so far have involved only one dependent variable. Even
though the computations become increasingly complex, the /ogic and nature of
the computations do not change when there is more than one dependent variable
at a time. For example, we may conduct a study where we try two different
textbooks, and we are interested in the students' improvements in math and
physics. In that case, we have two dependent variables, and our hypothesis is
that both together are affected by the difference in textbooks. We could now
perform a multivariate analysis of variance (MANOVA) to test this hypothesis.
Instead of a univariate Fvalue, we would obtain a multivariate Fvalue (Wilks'
lambda) based on a comparison of the error variance/covariance matrix and the
effect variance/covariance matrix. The "covariance" here is included because the
two measures are probably correlated and we must take this correlation into

account when performing the significance test. Obviously, if we were to take the



same measure twice, then we would really not learn anything new. If we take a
correlated measure, we gain some new information, but the new variable will also
contain redundant information that is expressed in the covariance between the
variables.

Interpreting results. If the overall multivariate test is significant, we conclude that
the respective effect (e.g., textbook) is significant. However, our next question
would of course be whether only math skills improved, only physics skills
improved, or both. In fact, after obtaining a significant multivariate test for a
particular main effect or interaction, customarily one would examine the
univariate Ftests (see also F Distribution) for each variable to interpret the
respective effect. In other words, one would identify the specific dependent
variables that contributed to the significant overall effect.

Repeated Measures Designs

If we were to measure math and physics skills at the beginning of the semester
and the end of the semester, we would have a multivariate repeated measure.
Again, the logic of significance testing in such designs is simply an extension of
the univariate case. Note that MANOVA methods are also commonly used to test
the significance of univariate repeated measures factors with more than two
levels; this application will be discussed later in this section.

Sum Scores versus MANOVA

Even experienced users of ANOVA and MANOVA techniques are often puzzled
by the differences in results that sometimes occur when performing a MANOVA
on, for example, three variables as compared to a univariate ANOVA on the sum
of the three variables. The logic underlying the summing of variables is that each
variable contains some "true" value of the variable in question, as well as some
random measurement error. Therefore, by summing up variables, the
measurement error will sum to approximately 0 across all measurements, and
the sum score will become more and more reliable (increasingly equal to the sum
of true scores). In fact, under these circumstances, ANOVA on sums is

appropriate and represents a very sensitive (powerful) method. However, if the



dependent variable is truly multi- dimensional in nature, then summing is
inappropriate. For example, suppose that my dependent measure consists of
four indicators of success /n society, and each indicator represents a completely
independent way in which a person could "make it" in life (e.g., successful
professional, successful entrepreneur, successful homemaker, etc.). Now,
summing up the scores on those variables would be like adding apples to
oranges, and the resulting sum score will not be a reliable indicator of a single
underlying dimension. Thus, one should treat such data as multivariate indicators
of success in a MANOVA.

Contrast Analysis and Post hoc Tests

Why Compare Individual Sets of Means?

Usually, experimental hypotheses are stated in terms that are more specific than
simply main effects or interactions. We may have the specific hypothesis that a
particular textbook will improve math skills in males, but not in females, while
another book would be about equally effective for both genders, but less effective
overall for males. Now generally, we are predicting an interaction here: the
effectiveness of the book is modified (qualified) by the student's gender.
However, we have a particular prediction concerning the nature of the interaction:
we expect a significant difference between genders for one book, but not the
other. This type of specific prediction is usually tested via contrast analysis.
Contrast Analysis

Briefly, contrast analysis allows us to test the statistical significance of predicted
specific differences in particular parts of our complex design. It is a major and

indispensable component of the analysis of every complex ANOVA design.



Post hoc Comparisons

Sometimes we find effects in our experiment that were not expected. Even
though in most cases a creative experimenter will be able to explain almost any
pattern of means, it would not be appropriate to analyze and evaluate that
pattern as if one had predicted it all along. The problem here is one of
capitalizing on chance when performing multiple tests post hoc, that is, without a
priori hypotheses. To illustrate this point, let us consider the following
"experiment." Imagine we were to write down a number between 1 and 10 on
100 pieces of paper. We then put all of those pieces into a hat and draw 20
samples (of pieces of paper) of 5 observations each, and compute the means
(from the numbers written on the pieces of paper) for each group. How likely do
you think it is that we will find two sample means that are significantly different
from each other? It is very likely! Selecting the extreme means obtained from 20
samples is very different from taking only 2 samples from the hat in the first
place, which is what the test via the contrast analysis implies. Without going into
further detail, there are several so-called post hoc tests that are explicitly based
on the first scenario (taking the extremes from 20 samples), that is, they are
based on the assumption that we have chosen for our comparison the most
extreme (different) means out of A total means in the design. Those tests apply
"corrections" that are designed to offset the advantage of post hoc selection of

the most extreme comparisons.

Assumptions and Effects of Violating Assumptions

Deviation from Normal Distribution



Assumptions. It is assumed that the dependent variable is measured on at least

an interval scale level (see Elementary Concepts). Moreover, the dependent

variable should be normally distributed within groups.
Effects of violations. Overall, the Ftest (see also F Distribution) is remarkably
robust to deviations from normality (see Lindman, 1974, for a summary). If the

kurtosis (see Basic Statistics and Tables) is greater than 0, then the Ftends to

be too small and we cannot reject the null hypothesis even though it is incorrect.
The opposite is the case when the kurtosis is less than 0. The skewness of the
distribution usually does not have a sizable effect on the F statistic. If the n per
cell is fairly large, then deviations from normality do not matter much at all
because of the central limit theorem, according to which the sampling distribution
of the mean approximates the normal distribution, regardless of the distribution of
the variable in the population. A detailed discussion of the robustness of the F
statistic can be found in Box and Anderson (1955), or Lindman (1974).
Homogeneity of Variances

Assumptions. It is assumed that the variances in the different groups of the
design are identical; this assumption is called the homogeneity of variances
assumption. Remember that at the beginning of this section we computed the
error variance (SS error) by adding up the sums of squares within each group. If
the variances in the two groups are different from each other, then adding the
two together is not appropriate, and will not yield an estimate of the common
within-group variance (since no common variance exists).

Effects of violations. Lindman (1974, p. 33) shows that the F statistic is quite
robust against violations of this assumption (Aheferogeneity of variances; see also
Box, 1954a, 1954b; Hsu, 1938).

Special case: correlated means and variances. However, one instance when the
F statistic is very misleading is when the means are correlated with variances
across cells of the design. A scatterplot of variances or standard deviations
against the means will detect such correlations. The reason why this is a

"dangerous" violation is the following: Imagine that you have 8 cells in the design,



7 with about equal means but one with a much higher mean. The F statistic may
suggest to you a statistically significant effect. However, suppose that there also
is @ much larger variance in the cell with the highest mean, that is, the means
and the variances are correlated across cells (the higher the mean the larger the
variance). In that case, the high mean in the one cell is actually quite unreliable,
as is indicated by the large variance. However, because the overall F statistic is
based on a pooled within-cell variance estimate, the high mean is identified as
significantly different from the others, when in fact it is not at all significantly
different if one based the test on the within-cell variance in that cell alone.

This pattern -- a high mean and a large variance in one cell -- frequently occurs
when there are outliers present in the data. One or two extreme cases in a cell
with only 10 cases can greatly bias the mean, and will dramatically increase the
variance.

Homogeneity of Variances and Covariances

Assumptions. In multivariate designs, with multiple dependent measures, the
homogeneity of variances assumption described earlier also applies. However,
since there are multiple dependent variables, it is also required that their
intercorrelations (covariances) are homogeneous across the cells of the design.
There are various specific tests of this assumption.

Effects of violations. The multivariate equivalent of the Ftest is Wilks' lambda.
Not much is known about the robustness of Wilks' /ambda to violations of this
assumption. However, because the interpretation of MANOVA results usually
rests on the interpretation of significant univariate effects (after the overall test is
significant), the above discussion concerning univariate ANOVA basically
applies, and important significant univariate effects should be carefully
scrutinized.

Special case: ANCOVA. A special serious violation of the homogeneity of
variances/covariances assumption may occur when covariates are involved in
the design. Specifically, if the correlations of the covariates with the dependent

measure(s) are very different in different cells of the design, gross



misinterpretations of results may occur. Remember that in ANCOVA, we in
essence perform a regression analysis within each cell to partition out the
variance component due to the covariates. The homogeneity of
variances/covariances assumption implies that we perform this regression
analysis subject to the constraint that all regression equations (slopes) across the
cells of the design are the same. If this is not the case, serious biases may occur.
There are specific tests of this assumption, and it is advisable to look at those
tests to ensure that the regression equations in different cells are approximately
the same.

Sphericity and Compound Symmetry

Reasons for Using the Multivariate Approach to Repeated Measures ANOVA. In
repeated measures ANOVA containing repeated measures factors with more
than two levels, additional special assumptions enter the picture: The compound
symmetry assumption and the assumption of sphericity. Because these
assumptions rarely hold (see below), the MANOVA approach to repeated
measures ANOVA has gained popularity in recent years (both tests are
automatically computed in ANOVA/MANOVA). The compound symmetry
assumption requires that the variances (pooled within-group) and covariances
(across subjects) of the different repeated measures are homogeneous
(identical). This is a sufficient condition for the univariate Ftest for repeated
measures to be valid (i.e., for the reported F values to actually follow the ~
distribution). However, it is not a necessary condition. The sphericity assumption
is a necessary and sufficient condition for the Ftest to be valid; it states that the
within-subject "model" consists of independent (orthogonal) components. The
nature of these assumptions, and the effects of violations are usually not well-
described in ANOVA textbooks; in the following paragraphs we will try to clarify
this matter and explain what it means when the results of the univariate approach
differ from the multivariate approach to repeated measures ANOVA.

The necessity of independent hypotheses. One general way of looking at

ANOVA is to consider it a mode! fitfing procedure. In a sense we bring to our



data a set of a priorihypotheses; we then partition the variance (test main
effects, interactions) to test those hypotheses. Computationally, this approach
translates into generating a set of contrasts (comparisons between means in the
design) that specify the main effect and interaction hypotheses. However, if these
contrasts are not independent of each other, then the partitioning of variances
runs afoul. For example, if two contrasts A and B are identical to each other and
we partition out their components from the total variance, then we take the same
thing out twice. Intuitively, specifying the two (nofindependent) hypotheses "the
mean in Cell 1 is higher than the mean in Cell 2" and"the mean in Cell 1 is
higher than the mean in Cell 2" is silly and simply makes no sense. Thus,
hypotheses must be independent of each other, or orthogonal (the term
orthogonality was first used by Yates, 1933).

Independent hypotheses in repeated measures. The general algorithm
implemented will attempt to generate, for each effect, a set of independent
(orthogonal) contrasts. In repeated measures ANOVA, these contrasts specify a
set of hypotheses about differences between the levels of the repeated
measures factor. However, if these differences are correlated across subjects,
then the resulting contrasts are no longer independent. For example, in a study
where we measured learning at three times during the experimental session, it
may happen that the changes from time 1 to time 2 are negatively correlated with
the changes from time 2 to time 3: subjects who learn most of the material
between time 1 and time 2 improve less from time 2 to time 3. In fact, in most
instances where a repeated measures ANOVA is used, one would probably
suspect that the changes across levels are correlated across subjects. However,
when this happens, the compound symmetry and sphericity assumptions have
been violated, and independent contrasts cannot be computed.

Effects of violations and remedies. When the compound symmetry or sphericity
assumptions have been violated, the univariate ANOVA table will give erroneous
results. Before multivariate procedures were well understood, various

approximations were introduced to compensate for the violations (e.g.,



Greenhouse & Geisser, 1959; Huynh & Feldt, 1970), and these techniques are
still widely used.

MANOVA approach to repeated measures. To summarize, the problem of
compound symmetry and sphericity pertains to the fact that multiple contrasts
involved in testing repeated measures effects (with more than two levels) are not
independent of each other. However, they do not need to be independent of each
other if we use multivariate criteria to simultaneously test the statistical
significance of the two or more repeated measures contrasts. This "insight" is the
reason why MANOVA methods are increasingly applied to test the significance of
univariate repeated measures factors with more than two levels. We
wholeheartedly endorse this approach because it simply bypasses the
assumption of compound symmetry and sphericity altogether.

Cases when the MANOVA approach cannot be used. There are instances
(designs) when the MANOVA approach cannot be applied; specifically, when
there are few subjects in the design and many levels on the repeated measures
factor, there may not be enough degrees of freedom to perform the multivariate
analysis. For example, if we have 12 subjects and p = 4 repeated measures
factors, each at k= 3levels, then the four-way interaction would "consume" (k-7)p
=¥ = 16 degrees of freedom. However, we have only 12 subjects, so in this
instance the multivariate test cannot be performed.

Differences in univariate and multivariate results. Anyone whose research
involves extensive repeated measures designs has seen cases when the
univariate approach to repeated measures ANOVA gives clearly different results
from the multivariate approach. To repeat the point, this means that the
differences between the levels of the respective repeated measures factors are
in some way correlated across subjects. Sometimes, this insight by itself is of

considerable interest.

Methods for Analysis of Variance



Several chapters in this textbook discuss methods for performing analysis of
variance. Although many of the available statistics overlap in the different
chapters, each is best suited for particular applications.

General ANCOVA/MANCOVA: This chapter includes discussions of full factorial

designs, repeated measures designs, mutivariate design (MANOVA), designs

with balanced nesting (designs can be unbalanced, i.e., have unequal n), for

evaluating planned and post-hoc comparisons, etc.

General Linear Models: This extremely comprehensive chapter discusses a

complete implementation of the general linear model, and describes the sigma-

restricted as well as the overparameterized approach. This chapter includes

information on incomplete designs, complex analysis of covariance designs,
nested designs (balanced or unbalanced), mixed model ANOVA designs (with
random effects), and huge balanced ANOVA designs (efficiently). It also contains

descriptions of six types of Sums of Squares.

General Regression Models: This chapter discusses the between subject

designs and multivariate designs which are appropriate for stepwise regression

as well as discussing how to perform stepwise and best-subset model building
(for continuous as well as categorical predictors).

Mixed ANCOVA and Variance Components: This chapter includes discussions of

experiments with random effects (mixed model ANOVA), estimating variance

components for random effects, or large main effect designs (e.g., with factors
with over 100 levels) with or without random effects, or large designs with many
factors, when you do not need to estimate all interactions.

Experimental Design (DOE): This chapter includes discussions of standard

experimental designs for industrial/manufacturing applications, including 2**(k-p)

and 3**(k-p) designs, central composite and non-factorial designs, designs for

mixtures, D and A optimal designs, and designs for arbitrarily constrained

experimental regions.

Repeatability and Reproducibility Analysis (in the Process Analysis chapter): This

section in the Process Analysis chapter includes a discussion of specialized




designs for evaluating the reliability and precision of measurement systems;

these designs usually include two or three random factors, and specialized

statistics can be computed for evaluating the quality of a measurement system
(typically in industrial/manufacturing applications).

Breakdown Tables (in the Basic Stafistics chapter): This chapter includes

discussions of experiments with only one factor (and many levels), or with

multiple factors, when a complete ANOVA table is not required.



Association Rules

Association Rules Introductory Overview

The goal of the techniques described in this section is to detect relationships or
associations between specific values of categorical variables in large data sets.
This is a common task in many data mining projects as well as in the data mining
subcategory text mining. These powerful exploratory techniques have a wide
range of applications in many areas of business practice and also research -
from the analysis of consumer preferences or human resource management, to
the history of language. These techniques enable analysts and researchers to
uncover hidden patterns in large data sets, such as "customers who order
product A often also order product Bor C' or "employees who said positive
things about initiative Xalso frequently complain about issue Ybut are happy
with issue Z" The implementation of the so-called a-priori algorithm (see Agrawal
and Swami, 1993; Agrawal and Srikant, 1994; Han and Lakshmanan, 2001; see
also Witten and Frank, 2000) allows you to process rapidly huge data sets for
such associations, based on predefined "threshold" values for detection.

How association rules work. The usefulness of this technique to address unique
data mining problems is best illustrated in a simple example. Suppose you are
collecting data at the check-out cash registers at a large book store. Each
customer transaction is logged in a database, and consists of the titles of the
books purchased by the respective customer, perhaps additional magazine titles
and other gift items that were purchased, and so on. Hence, each record in the
database will represent one customer (transaction), and may consist of a single
book purchased by that customer, or it may consist of many (perhaps hundreds
of) different items that were purchased, arranged in an arbitrary order depending
on the order in which the different items (books, magazines, and so on) came
down the conveyor belt at the cash register. The purpose of the analysis is to find

associations between the items that were purchased, i.e., to derive association



rules that identify the items and co-occurrences of different items that appear
with the greatest (co-)frequencies. For example, you want to learn which books
are likely to be purchased by a customer who you know already purchased (or is
about to purchase) a particular book. This type of information could then quickly
be used to suggest to the customer those additional titles. You may already be
"familiar" with the results of these types of analyses, if you are a customer of
various on-line (Web-based) retail businesses; many times when making a
purchase on-line, the vendor will suggest similar items (to the ones purchased by
you) at the time of "check-out", based on some rules such as "customers who
buy book title A are also likely to purchase book title B," and so on.

Unique data analysis requirements. Crosstabulation tables, and in particular

Multiple Response tables can be used to analyze data of this kind. However, in

cases when the number of different items (categories) in the data is very large
(and not known ahead of time), and when the "factorial degree" of important
association rules is not known ahead of time, then these tabulation facilities may
be too cumbersome to use, or simply not applicable: Consider once more the
simple "bookstore-example" discussed earlier. First, the number of book titles is
practically unlimited. In other words, if we would make a table where each book
titlte would represent one dimension, and the purchase of that book (yes/no)
would be the classes or categories for each dimension, then the complete
crosstabulation table would be huge and sparse (consisting mostly of empty
cells). Alternatively, we could construct all possible two-way tables from all items
available in the store; this would allow us to detect two-way associations
(association rules) between items. However, the number of tables that would
have to be constructed would again be huge, most of the two-way tables would
be sparse, and worse, if there were any three-way association rules "hiding" in
the data, we would miss them completely. The a-priori algorithm implemented in
Association Rules will not only automatically detect the relationships ("cross-

tabulation tables") that are important (i.e., cross-tabulation tables that are not



sparse, not containing mostly zero's), but also determine the factorial degree of
the tables that contain the important association rules.

To summarize, Association Rules will allow you to find rules of the kind /X then
(likely) Y where Xand Y can be single values, items, words, etc., or conjunctions
of values, items, words, etc. (e.g., /f (Car=Porsche and Gender=Male and
Age<20) then (Risk=High and Insurance=High)). The program can be used to
analyze simple categorical variables, dichotomous variables, and/or multiple
response variables. The algorithm will determine association rules without
requiring the user to specify the number of distinct categories present in the data,
or any prior knowledge regarding the maximum factorial degree or complexity of
the important associations. In a sense, the algorithm will construct cross-
tabulation tables without the need to specify the number of dimensions for the
tables, or the number of categories for each dimension. Hence, this technique is

particularly well suited for data and text mining of huge databases.

Computational Procedures and Terminology

Categorical or class variables. Categorical variables are single variables that
contains codes or text values to denote distinct classes; for example, a variable
Genderwould have the categories Male and Female.

Multiple response variables. Multiple response variables usually consist of
multiple variables (i.e., a list of variables) that can contain, for each observations,
codes or text values describing a single "dimension" or transaction. A good
example of a multiple response variable would be if a vendor recorded the
purchases made by a customer in a single record, where each record could
contain one or more items purchased, in arbitrary order. This is a typical format in
which customer transaction data would be kept.

Multiple dichotomies. In this data format, each variable would represent one item
or category, and the dichotomous data in each variable would indicate whether or

not the respective item or category applies to the respective case. For example,



suppose a vendor created a data spreadsheet where each column represented
one of the products available for purchase. Each transaction (row of the data
spreadsheet) would record whether or not the respective customer did or did not
purchase that product, i.e., whether or not the respective transaction involved
each item.

Association Rules: If Body then Head. The A-priori algorithm attempts to derive
from the data association rules of the form: /f "Body” then "Head", where Body
and Head stand for simple codes or text values (items), or the conjunction of
codes and text values (items; e.qg., /f (Car=Porsche and Age<Z20) then (Risk=High
and Insurance=Hjgh), here the logical conjunction before the then would be the
Body, and the logical conjunction following the then would be the Head of the
association rule).

Initial Pass Through the Data: The Support Value. First the program will scan all
variables to determine the unique codes or text values (items) found in the
variables selected for the analysis. In this initial pass, the relative frequencies
with which the individual codes or text values occur in each transaction will also
be computed. The probability that a transaction contains a particular code or text
value is called Support, the Supportvalue is also computed in consecutive
passes through the data, as the joint probability (relative frequency of co-
occurrence) of pairs, triplets, etc. of codes or text values (items), i.e., separately
for the Body and Head of each association rule.

Second Pass Through the Data: The Confidence Value; Correlation Value. After
the initial pass through the data, all items with a support value less than some
predefined minimum support value will be "remembered" for subsequent passes
through the data: Specifically, the conditional probabilities will be computed for all
pairs of codes or text values that have support values greater than the minimum
support value. This conditional probability - that an obser