
Elementary Concepts in Statistics 
 

Overview of Elementary Concepts in Statistics. In this introduction, we will briefly 
discuss those elementary statistical concepts that provide the necessary foundations for 
more specialized expertise in any area of statistical data analysis. The selected topics 
illustrate the basic assumptions of most statistical methods and/or have been 
demonstrated in research to be necessary components of one's general understanding of 
the "quantitative nature" of reality (Nisbett, et al., 1987). Because of space limitations, we 
will focus mostly on the functional aspects of the concepts discussed and the presentation 
will be very short. Further information on each of those concepts can be found in 
statistical textbooks. Recommended introductory textbooks are: Kachigan (1986), and 
Runyon and Haber (1976); for a more advanced discussion of elementary theory and 
assumptions of statistics, see the classic books by Hays (1988), and Kendall and Stuart 
(1979).  

 
 

 
What are variables. Variables are things that we measure, control, or manipulate in 
research. They differ in many respects, most notably in the role they are given in our 
research and in the type of measures that can be applied to them.  
 
 
Correlational vs. experimental research. Most empirical research belongs clearly to one 
of those two general categories. In correlational research we do not (or at least try not to) 
influence any variables but only measure them and look for relations (correlations) 
between some set of variables, such as blood pressure and cholesterol level. In 
experimental research, we manipulate some variables and then measure the effects of this 
manipulation on other variables; for example, a researcher might artificially increase 
blood pressure and then record cholesterol level. Data analysis in experimental research 
also comes down to calculating "correlations" between variables, specifically, those 
manipulated and those affected by the manipulation. However, experimental data may 
potentially provide qualitatively better information: Only experimental data can 
conclusively demonstrate causal relations between variables. For example, if we found 
that whenever we change variable A then variable B changes, then we can conclude that 
"A influences B." Data from correlational research can only be "interpreted" in causal 
terms based on some theories that we have, but correlational data cannot conclusively 
prove causality.  
 
 
Dependent vs. independent variables. Independent variables are those that are 
manipulated whereas dependent variables are only measured or registered. This 
distinction appears terminologically confusing to many because, as some students say, 
"all variables depend on something." However, once you get used to this distinction, it 
becomes indispensable. The terms dependent and independent variable apply mostly to 
experimental research where some variables are manipulated, and in this sense they are 
"independent" from the initial reaction patterns, features, intentions, etc. of the subjects. 



Some other variables are expected to be "dependent" on the manipulation or experimental 
conditions. That is to say, they depend on "what the subject will do" in response. 
Somewhat contrary to the nature of this distinction, these terms are also used in studies 
where we do not literally manipulate independent variables, but only assign subjects to 
"experimental groups" based on some pre-existing properties of the subjects. For 
example, if in an experiment, males are compared with females regarding their white cell 
count (WCC), Gender could be called the independent variable and WCC the dependent 
variable.  
 
 
Measurement scales. Variables differ in "how well" they can be measured, i.e., in how 
much measurable information their measurement scale can provide. There is obviously 
some measurement error involved in every measurement, which determines the "amount 
of information" that we can obtain. Another factor that determines the amount of 
information that can be provided by a variable is its "type of measurement scale." 
Specifically variables are classified as (a) nominal, (b) ordinal, (c) interval or (d) ratio.  

a. Nominal variables allow for only qualitative classification. That is, they can be 
measured only in terms of whether the individual items belong to some 
distinctively different categories, but we cannot quantify or even rank order those 
categories. For example, all we can say is that 2 individuals are different in terms 
of variable A (e.g., they are of different race), but we cannot say which one "has 
more" of the quality represented by the variable. Typical examples of nominal 
variables are gender, race, color, city, etc.  

b. Ordinal variables allow us to rank order the items we measure in terms of which 
has less and which has more of the quality represented by the variable, but still 
they do not allow us to say "how much more." A typical example of an ordinal 
variable is the socioeconomic status of families. For example, we know that 
upper-middle is higher than middle but we cannot say that it is, for example, 18% 
higher. Also this very distinction between nominal, ordinal, and interval scales 
itself represents a good example of an ordinal variable. For example, we can say 
that nominal measurement provides less information than ordinal measurement, 
but we cannot say "how much less" or how this difference compares to the 
difference between ordinal and interval scales.  

c. Interval variables allow us not only to rank order the items that are measured, but 
also to quantify and compare the sizes of differences between them. For example, 
temperature, as measured in degrees Fahrenheit or Celsius, constitutes an interval 
scale. We can say that a temperature of 40 degrees is higher than a temperature of 
30 degrees, and that an increase from 20 to 40 degrees is twice as much as an 
increase from 30 to 40 degrees.  

d. Ratio variables are very similar to interval variables; in addition to all the 
properties of interval variables, they feature an identifiable absolute zero point, 
thus they allow for statements such as x is two times more than y. Typical 
examples of ratio scales are measures of time or space. For example, as the Kelvin 
temperature scale is a ratio scale, not only can we say that a temperature of 200 
degrees is higher than one of 100 degrees, we can correctly state that it is twice as 



high. Interval scales do not have the ratio property. Most statistical data analysis 
procedures do not distinguish between the interval and ratio properties of the 
measurement scales.  

 
 
Relations between variables. Regardless of their type, two or more variables are related if 
in a sample of observations, the values of those variables are distributed in a consistent 
manner. In other words, variables are related if their values systematically correspond to 
each other for these observations. For example, Gender and WCC would be considered to 
be related if most males had high WCC and most females low WCC, or vice versa; 
Height is related to Weight because typically tall individuals are heavier than short ones; 
IQ is related to the Number of Errors in a test, if people with higher IQ's make fewer 
errors.  
 
 
Why relations between variables are important. Generally speaking, the ultimate goal of 
every research or scientific analysis is finding relations between variables. The 
philosophy of science teaches us that there is no other way of representing "meaning" 
except in terms of relations between some quantities or qualities; either way involves 
relations between variables. Thus, the advancement of science must always involve 
finding new relations between variables. Correlational research involves measuring such 
relations in the most straightforward manner. However, experimental research is not any 
different in this respect. For example, the above mentioned experiment comparing WCC 
in males and females can be described as looking for a correlation between two variables: 
Gender and WCC. Statistics does nothing else but help us evaluate relations between 
variables. Actually, all of the hundreds of procedures that are described in this manual 
can be interpreted in terms of evaluating various kinds of inter-variable relations.  
 
 
Two basic features of every relation between variables. The two most elementary formal 
properties of every relation between variables are the relation's (a) magnitude (or "size") 
and (b) its reliability (or "truthfulness").  

a. Magnitude (or "size"). The magnitude is much easier to understand and measure 
than reliability. For example, if every male in our sample was found to have a 
higher WCC than any female in the sample, we could say that the magnitude of 
the relation between the two variables (Gender and WCC) is very high in our 
sample. In other words, we could predict one based on the other (at least among 
the members of our sample).  

b. Reliability (or "truthfulness"). The reliability of a relation is a much less intuitive 
concept, but still extremely important. It pertains to the "representativeness" of 
the result found in our specific sample for the entire population. In other words, it 
says how probable it is that a similar relation would be found if the experiment 
was replicated with other samples drawn from the same population. Remember 
that we are almost never "ultimately" interested only in what is going on in our 



sample; we are interested in the sample only to the extent it can provide 
information about the population. If our study meets some specific criteria (to be 
mentioned later), then the reliability of a relation between variables observed in 
our sample can be quantitatively estimated and represented using a standard 
measure (technically called p-value or statistical significance level, see the next 
paragraph).  

 
 
What is "statistical significance" (p-value). The statistical significance of a result is the 
probability that the observed relationship (e.g., between variables) or a difference (e.g., 
between means) in a sample occurred by pure chance ("luck of the draw"), and that in the 
population from which the sample was drawn, no such relationship or differences exist. 
Using less technical terms, one could say that the statistical significance of a result tells 
us something about the degree to which the result is "true" (in the sense of being 
"representative of the population"). More technically, the value of the p-value represents 
a decreasing index of the reliability of a result (see Brownlee, 1960). The higher the p-
value, the less we can believe that the observed relation between variables in the sample 
is a reliable indicator of the relation between the respective variables in the population. 
Specifically, the p-value represents the probability of error that is involved in accepting 
our observed result as valid, that is, as "representative of the population." For example, a 
p-value of .05 (i.e.,1/20) indicates that there is a 5% probability that the relation between 
the variables found in our sample is a "fluke." In other words, assuming that in the 
population there was no relation between those variables whatsoever, and we were 
repeating experiments like ours one after another, we could expect that approximately in 
every 20 replications of the experiment there would be one in which the relation between 
the variables in question would be equal or stronger than in ours. (Note that this is not the 
same as saying that, given that there IS a relationship between the variables, we can 
expect to replicate the results 5% of the time or 95% of the time; when there is a 
relationship between the variables in the population, the probability of replicating the 
study and finding that relationship is related to the statistical power of the design. See 
also, Power Analysis). In many areas of research, the p-value of .05 is customarily treated 
as a "border-line acceptable" error level.  
 
 
How to determine that a result is "really" significant. There is no way to avoid 
arbitrariness in the final decision as to what level of significance will be treated as really 
"significant." That is, the selection of some level of significance, up to which the results 
will be rejected as invalid, is arbitrary. In practice, the final decision usually depends on 
whether the outcome was predicted a priori or only found post hoc in the course of many 
analyses and comparisons performed on the data set, on the total amount of consistent 
supportive evidence in the entire data set, and on "traditions" existing in the particular 
area of research. Typically, in many sciences, results that yield p  .05 are considered 
borderline statistically significant but remember that this level of significance still 
involves a pretty high probability of error (5%). Results that are significant at the p  .01 
level are commonly considered statistically significant, and p  .005 or p  .001 levels 
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are often called "highly" significant. But remember that those classifications represent 
nothing else but arbitrary conventions that are only informally based on general research 
experience.  
 
 
Statistical significance and the number of analyses performed. Needless to say, the more 
analyses you perform on a data set, the more results will meet "by chance" the 
conventional significance level. For example, if you calculate correlations between ten 
variables (i.e., 45 different correlation coefficients), then you should expect to find by 
chance that about two (i.e., one in every 20) correlation coefficients are significant at the 
p  .05 level, even if the values of the variables were totally random and those variables 
do not correlate in the population. Some statistical methods that involve many 
comparisons, and thus a good chance for such errors, include some "correction" or 
adjustment for the total number of comparisons. However, many statistical methods 
(especially simple exploratory data analyses) do not offer any straightforward remedies to 
this problem. Therefore, it is up to the researcher to carefully evaluate the reliability of 
unexpected findings. Many examples in this manual offer specific advice on how to do 
this; relevant information can also be found in most research methods textbooks.  
 
 
Strength vs. reliability of a relation between variables. We said before that strength and 
reliability are two different features of relationships between variables. However, they are 
not totally independent. In general, in a sample of a particular size, the larger the 
magnitude of the relation between variables, the more reliable the relation (see the next 
paragraph).  
 
 
Why stronger relations between variables are more significant. Assuming that there is no 
relation between the respective variables in the population, the most likely outcome 
would be also finding no relation between those variables in the research sample. Thus, 
the stronger the relation found in the sample, the less likely it is that there is no 
corresponding relation in the population. As you see, the magnitude and significance of a 
relation appear to be closely related, and we could calculate the significance from the 
magnitude and vice-versa; however, this is true only if the sample size is kept constant, 
because the relation of a given strength could be either highly significant or not 
significant at all, depending on the sample size (see the next paragraph).  
 
<> 
Why significance of a relation between variables depends on the size of the sample. If 
there are very few observations, then there are also respectively few possible 
combinations of the values of the variables, and thus the probability of obtaining by 
chance a combination of those values indicative of a strong relation is relatively high. 
Consider the following illustration. If we are interested in two variables (Gender: 
male/female and WCC: high/low) and there are only four subjects in our sample (two 
males and two females), then the probability that we will find, purely by chance, a 100% 
relation between the two variables can be as high as one-eighth. Specifically, there is a 



one-in-eight chance that both males will have a high WCC and both females a low WCC, 
or vice versa. Now consider the probability of obtaining such a perfect match by chance 
if our sample consisted of 100 subjects; the probability of obtaining such an outcome by 
chance would be practically zero. Let's look at a more general example. Imagine a 
theoretical population in which the average value of WCC in males and females is 
exactly the same. Needless to say, if we start replicating a simple experiment by drawing 
pairs of samples (of males and females) of a particular size from this population and 
calculating the difference between the average WCC in each pair of samples, most of the 
experiments will yield results close to 0. However, from time to time, a pair of samples 
will be drawn where the difference between males and females will be quite different 
from 0. How often will it happen? The smaller the sample size in each experiment, the 
more likely it is that we will obtain such erroneous results, which in this case would be 
results indicative of the existence of a relation between gender and WCC obtained from a 
population in which such a relation does not exist.  
 
 
Example. "Baby boys to baby girls ratio." Consider the following example from research 
on statistical reasoning (Nisbett, et al., 1987). There are two hospitals: in the first one, 
120 babies are born every day, in the other, only 12. On average, the ratio of baby boys to 
baby girls born every day in each hospital is 50/50. However, one day, in one of those 
hospitals twice as many baby girls were born as baby boys. In which hospital was it more 
likely to happen? The answer is obvious for a statistician, but as research shows, not so 
obvious for a lay person: It is much more likely to happen in the small hospital. The 
reason for this is that technically speaking, the probability of a random deviation of a 
particular size (from the population mean), decreases with the increase in the sample size.  
 
 
Why small relations can be proven significant only in large samples. The examples in the 
previous paragraphs indicate that if a relationship between variables in question is 
"objectively" (i.e., in the population) small, then there is no way to identify such a 
relation in a study unless the research sample is correspondingly large. Even if our 
sample is in fact "perfectly representative" the effect will not be statistically significant if 
the sample is small. Analogously, if a relation in question is "objectively" very large (i.e., 
in the population), then it can be found to be highly significant even in a study based on a 
very small sample. Consider the following additional illustration. If a coin is slightly 
asymmetrical, and when tossed is somewhat more likely to produce heads than tails (e.g., 
60% vs. 40%), then ten tosses would not be sufficient to convince anyone that the coin is 
asymmetrical, even if the outcome obtained (six heads and four tails) was perfectly 
representative of the bias of the coin. However, is it so that 10 tosses is not enough to 
prove anything? No, if the effect in question were large enough, then ten tosses could be 
quite enough. For instance, imagine now that the coin is so asymmetrical that no matter 
how you toss it, the outcome will be heads. If you tossed such a coin ten times and each 
toss produced heads, most people would consider it sufficient evidence that something is 
"wrong" with the coin. In other words, it would be considered convincing evidence that 
in the theoretical population of an infinite number of tosses of this coin there would be 



more heads than tails. Thus, if a relation is large, then it can be found to be significant 
even in a small sample.  
 
 
Can "no relation" be a significant result? The smaller the relation between variables, the 
larger the sample size that is necessary to prove it significant. For example, imagine how 
many tosses would be necessary to prove that a coin is asymmetrical if its bias were only 
.000001%! Thus, the necessary minimum sample size increases as the magnitude of the 
effect to be demonstrated decreases. When the magnitude of the effect approaches 0, the 
necessary sample size to conclusively prove it approaches infinity. That is to say, if there 
is almost no relation between two variables, then the sample size must be almost equal to 
the population size, which is assumed to be infinitely large. Statistical significance 
represents the probability that a similar outcome would be obtained if we tested the entire 
population. Thus, everything that would be found after testing the entire population 
would be, by definition, significant at the highest possible level, and this also includes all 
"no relation" results.  
 
 
How to measure the magnitude (strength) of relations between variables. There are very 
many measures of the magnitude of relationships between variables which have been 
developed by statisticians; the choice of a specific measure in given circumstances 
depends on the number of variables involved, measurement scales used, nature of the 
relations, etc. Almost all of them, however, follow one general principle: they attempt to 
somehow evaluate the observed relation by comparing it to the "maximum imaginable 
relation" between those specific variables. Technically speaking, a common way to 
perform such evaluations is to look at how differentiated are the values of the variables, 
and then calculate what part of this "overall available differentiation" is accounted for by 
instances when that differentiation is "common" in the two (or more) variables in 
question. Speaking less technically, we compare "what is common in those variables" to 
"what potentially could have been common if the variables were perfectly related." Let us 
consider a simple illustration. Let us say that in our sample, the average index of WCC is 
100 in males and 102 in females. Thus, we could say that on average, the deviation of 
each individual score from the grand mean (101) contains a component due to the gender 
of the subject; the size of this component is 1. That value, in a sense, represents some 
measure of relation between Gender and WCC. However, this value is a very poor 
measure, because it does not tell us how relatively large this component is, given the 
"overall differentiation" of WCC scores. Consider two extreme possibilities:  

a. If all WCC scores of males were equal exactly to 100, and those of females equal 
to 102, then all deviations from the grand mean in our sample would be entirely 
accounted for by gender. We would say that in our sample, gender is perfectly 
correlated with WCC, that is, 100% of the observed differences between subjects 
regarding their WCC is accounted for by their gender.  

b. If WCC scores were in the range of 0-1000, the same difference (of 2) between 
the average WCC of males and females found in the study would account for such 
a small part of the overall differentiation of scores that most likely it would be 



considered negligible. For example, one more subject taken into account could 
change, or even reverse the direction of the difference. Therefore, every good 
measure of relations between variables must take into account the overall 
differentiation of individual scores in the sample and evaluate the relation in terms 
of (relatively) how much of this differentiation is accounted for by the relation in 
question.  

 
 
Common "general format" of most statistical tests. Because the ultimate goal of most 
statistical tests is to evaluate relations between variables, most statistical tests follow the 
general format that was explained in the previous paragraph. Technically speaking, they 
represent a ratio of some measure of the differentiation common in the variables in 
question to the overall differentiation of those variables. For example, they represent a 
ratio of the part of the overall differentiation of the WCC scores that can be accounted for 
by gender to the overall differentiation of the WCC scores. This ratio is usually called a 
ratio of explained variation to total variation. In statistics, the term explained variation 
does not necessarily imply that we "conceptually understand" it. It is used only to denote 
the common variation in the variables in question, that is, the part of variation in one 
variable that is "explained" by the specific values of the other variable, and vice versa.  
 
 
How the "level of statistical significance" is calculated. Let us assume that we have 
already calculated a measure of a relation between two variables (as explained above). 
The next question is "how significant is this relation?" For example, is 40% of the 
explained variance between the two variables enough to consider the relation significant? 
The answer is "it depends." Specifically, the significance depends mostly on the sample 
size. As explained before, in very large samples, even very small relations between 
variables will be significant, whereas in very small samples even very large relations 
cannot be considered reliable (significant). Thus, in order to determine the level of 
statistical significance, we need a function that represents the relationship between 
"magnitude" and "significance" of relations between two variables, depending on the 
sample size. The function we need would tell us exactly "how likely it is to obtain a 
relation of a given magnitude (or larger) from a sample of a given size, assuming that 
there is no such relation between those variables in the population." In other words, that 
function would give us the significance (p) level, and it would tell us the probability of 
error involved in rejecting the idea that the relation in question does not exist in the 
population. This "alternative" hypothesis (that there is no relation in the population) is 
usually called the null hypothesis. It would be ideal if the probability function was linear, 
and for example, only had different slopes for different sample sizes. Unfortunately, the 
function is more complex, and is not always exactly the same; however, in most cases we 
know its shape and can use it to determine the significance levels for our findings in 
samples of a particular size. Most of those functions are related to a general type of 
function which is called normal.  
 
 



Why the "Normal distribution" is important. The "Normal distribution" is important 
because in most cases, it well approximates the function that was introduced in the 
previous paragraph (for a detailed illustration, see Are all test statistics normally 
distributed?). The distribution of many test statistics is normal or follows some form that 
can be derived from the normal distribution. In this sense, philosophically speaking, the 
Normal distribution represents one of the empirically verified elementary "truths about 
the general nature of reality," and its status can be compared to the one of fundamental 
laws of natural sciences. The exact shape of the normal distribution (the characteristic 
"bell curve") is defined by a function which has only two parameters: mean and standard 
deviation.  
A characteristic property of the Normal distribution is that 68% of all of its observations 
fall within a range of ±1 standard deviation from the mean, and a range of ±2 standard 
deviations includes 95% of the scores. In other words, in a Normal distribution, 
observations that have a standardized value of less than -2 or more than +2 have a relative 
frequency of 5% or less. (Standardized value means that a value is expressed in terms of 
its difference from the mean, divided by the standard deviation.) If you have access to 
STATISTICA, you can explore the exact values of probability associated with different 
values in the normal distribution using the interactive Probability Calculator tool; for 
example, if you enter the Z value (i.e., standardized value) of 4, the associated probability 
computed by STATISTICA will be less than .0001, because in the normal distribution 
almost all observations (i.e., more than 99.99%) fall within the range of ±4 standard 
deviations. The animation below shows the tail area associated with other Z values.  

 
 
 
Illustration of how the normal distribution is used in statistical reasoning (induction). 
Recall the example discussed above, where pairs of samples of males and females were 
drawn from a population in which the average value of WCC in males and females was 
exactly the same. Although the most likely outcome of such experiments (one pair of 
samples per experiment) was that the difference between the average WCC in males and 
females in each pair is close to zero, from time to time, a pair of samples will be drawn 
where the difference between males and females is quite different from 0. How often 
does it happen? If the sample size is large enough, the results of such replications are 
"normally distributed" (this important principle is explained and illustrated in the next 
paragraph), and thus knowing the shape of the normal curve, we can precisely calculate 
the probability of obtaining "by chance" outcomes representing various levels of 
deviation from the hypothetical population mean of 0. If such a calculated probability is 
so low that it meets the previously accepted criterion of statistical significance, then we 
have only one choice: conclude that our result gives a better approximation of what is 
going on in the population than the "null hypothesis" (remember that the null hypothesis 
was considered only for "technical reasons" as a benchmark against which our empirical 



result was evaluated). Note that this entire reasoning is based on the assumption that the 
shape of the distribution of those "replications" (technically, the "sampling distribution") 
is normal. This assumption is discussed in the next paragraph.  
 
 
Are all test statistics normally distributed? Not all, but most of them are either based on 
the normal distribution directly or on distributions that are related to, and can be derived 
from normal, such as t, F, or Chi-square. Typically, those tests require that the variables 
analyzed are themselves normally distributed in the population, that is, they meet the so-
called "normality assumption." Many observed variables actually are normally 
distributed, which is another reason why the normal distribution represents a "general 
feature" of empirical reality. The problem may occur when one tries to use a normal 
distribution-based test to analyze data from variables that are themselves not normally 
distributed (see tests of normality in Nonparametrics or ANOVA/MANOVA). In such 
cases we have two general choices. First, we can use some alternative "nonparametric" 
test (or so-called "distribution-free test" see, Nonparametrics); but this is often 
inconvenient because such tests are typically less powerful and less flexible in terms of 
types of conclusions that they can provide. Alternatively, in many cases we can still use 
the normal distribution-based test if we only make sure that the size of our samples is 
large enough. The latter option is based on an extremely important principle which is 
largely responsible for the popularity of tests that are based on the normal function. 
Namely, as the sample size increases, the shape of the sampling distribution (i.e., 
distribution of a statistic from the sample; this term was first used by Fisher, 1928a) 
approaches normal shape, even if the distribution of the variable in question is not 
normal. This principle is illustrated in the following animation showing a series of 
sampling distributions (created with gradually increasing sample sizes of: 2, 5, 10, 15, 
and 30) using a variable that is clearly non-normal in the population, that is, the 
distribution of its values is clearly skewed.  

 
However, as the sample size (of samples used to create the sampling distribution of the 
mean) increases, the shape of the sampling distribution becomes normal. Note that for 
n=30, the shape of that distribution is "almost" perfectly normal (see the close match of 
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the fit). This principle is called the central limit theorem (this term was first used by 
Pólya, 1920; German, "Zentraler Grenzwertsatz").  
 
 
How do we know the consequences of violating the normality assumption? Although 
many of the statements made in the preceding paragraphs can be proven mathematically, 
some of them do not have theoretical proofs and can be demonstrated only empirically, 
via so-called Monte-Carlo experiments. In these experiments, large numbers of samples 
are generated by a computer following predesigned specifications and the results from 
such samples are analyzed using a variety of tests. This way we can empirically evaluate 
the type and magnitude of errors or biases to which we are exposed when certain 
theoretical assumptions of the tests we are using are not met by our data. Specifically, 
Monte-Carlo studies were used extensively with normal distribution-based tests to 
determine how sensitive they are to violations of the assumption of normal distribution of 
the analyzed variables in the population. The general conclusion from these studies is that 
the consequences of such violations are less severe than previously thought. Although 
these conclusions should not entirely discourage anyone from being concerned about the 
normality assumption, they have increased the overall popularity of the distribution-
dependent statistical tests in all areas of research.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Basic Statistics 
 

  

 
Descriptive Statistics  
"True" Mean and Confidence Interval. Probably the most often used 

descriptive statistic is the mean. The mean is a particularly informative measure 
of the "central tendency" of the variable if it is reported along with its confidence 
intervals. As mentioned earlier, usually we are interested in statistics (such as the 
mean) from our sample only to the extent to which they can infer information 
about the population. The confidence intervals for the mean give us a range of 
values around the mean where we expect the "true" (population) mean is located 
(with a given level of certainty, see also Elementary Concepts). For example, if 
the mean in your sample is 23, and the lower and upper limits of the p=.05 
confidence interval are 19 and 27 respectively, then you can conclude that there 
is a 95% probability that the population mean is greater than 19 and lower than 
27. If you set the p-level to a smaller value, then the interval would become wider 
thereby increasing the "certainty" of the estimate, and vice versa; as we all know 
from the weather forecast, the more "vague" the prediction (i.e., wider the 
confidence interval), the more likely it will materialize. Note that the width of the 
confidence interval depends on the sample size and on the variation of data 
values. The larger the sample size, the more reliable its mean. The larger the 
variation, the less reliable the mean (see also Elementary Concepts). The 
calculation of confidence intervals is based on the assumption that the variable is 
normally distributed in the population. The estimate may not be valid if this 
assumption is not met, unless the sample size is large, say n=100 or more.  

Shape of the Distribution, Normality. An important aspect of the "description" 

of a variable is the shape of its distribution, which tells you the frequency of 
values from different ranges of the variable. Typically, a researcher is interested 
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in how well the distribution can be approximated by the normal distribution (see 
the animation below for an example of this distribution) (see also Elementary 
Concepts). Simple descriptive statistics can provide some information relevant to 
this issue. For example, if the skewness (which measures the deviation of the 
distribution from symmetry) is clearly different from 0, then that distribution is 
asymmetrical, while normal distributions are perfectly symmetrical. If the kurtosis 
(which measures "peakedness" of the distribution) is clearly different from 0, then 
the distribution is either flatter or more peaked than normal; the kurtosis of the 
normal distribution is 0.  

 
More precise information can be obtained by performing one of the tests of 
normality to determine the probability that the sample came from a normally 
distributed population of observations (e.g., the so-called Kolmogorov-Smirnov 
test, or the Shapiro-Wilks' W test. However, none of these tests can entirely 
substitute for a visual examination of the data using a histogram (i.e., a graph 
that shows the frequency distribution of a variable).  

 
The graph allows you to evaluate the normality of the empirical distribution 
because it also shows the normal curve superimposed over the histogram. It also 
allows you to examine various aspects of the distribution qualitatively. For 
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e
th
d

xample, the distribution could be bimodal (have 2 peaks). This might suggest 
at the sample is not homogeneous but possibly its elements came from two 
ifferent populations, each more or less normally distributed. In such cases, in 

 the variable in question, you should look for a 
ly identify the two sub-samples. 

order to understand the nature of
way to quantitative
 
 
 

 
Correlations  

Purpose (What is Correlation?) Correlation is a measure of the relation 

between two or more variables. The measurement scales used should be at least 
interval scales, but other correlation coefficients are available to handle other 
ypes of data. Correlation coefficients cat n range from -1.00 to +1.00. The value of 
-1.00 represents a perfect negative correlation while a value of +1.00 represents 

 perfect a positive correlation. A value of 0.00 represents a lack of correlation.  

 
The most widely-used type of correlation coefficient is Pearson r, also called 
linear or product- moment correlation.  

Simple Linear Correlation (Pearson r). Pearson correlation (hereafter called 

correlation), assumes that the two variables are measured on at least interval 
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scales (see Elementary Concepts), and it determines the extent to which values 
of the two variables are "proportional" to each other. The value of correlation (i.e., 
correlation coefficient) does not depend on the specific measurement units used; 
for example, the correlation between height and weight will be identical 
regardless of whether inches and pounds, or centimeters and kilograms are used 
as measurement units. Proportional means linearly related; that is, the correlation 
is high if it can be "summarized" by a straight line (sloped upwards or 
downwards).  

 
This line is called the regression line or least squares line, because it is 
determined such that the sum of the squared distances of all the data points
the line is the lowest possible. Note that the concept of squared distanc
have important functional consequences on how the value of the correla

 from 
es will 
tion 

ee).  

the 

ent 

coefficient reacts to various specific arrangements of data (as we will later s

How to Interpret the Values of Correlations. As mentioned before, 

correlation coefficient (r) represents the linear relationship between two variables. 
If the correlation coefficient is squared, then the resulting value (r2, the coeffici
of determination) will represent the proportion of common variation in the two 
variables (i.e., the "strength" or "magnitude" of the relationship). In order to 
evaluate the correlation between variables, it is important to know this 
"magnitude" or "strength" as well as the significance of the correlation.  

http://www.statsoft.com/textbook/esc.html
http://www.statsoft.com/textbook/esc.html


Significance of Correlations. The significance level calculated for each 

correlation is a primary source of information about the reliability of the 
correlation. As explained before (see Elementary Concepts), the significance
correlation coefficient of a particular magnitude will change depending on the 
size of the sample from which it was computed. The test of significance is based 
on the assumption that the distribution of the residual values (i.e., the deviations 
from the regression line) for the dependent variable y follows the normal 
distribution, and that the variability of the residual values is the same for all 
values of the independent variable x. However, Monte Carlo studies sugge
meeting those assumpt

 of a 

st that 
ions closely is not absolutely crucial if your sample size is 

0 
o  

, 

se 

 

nfluence on the 
slope of the regression line and consequently on the value of the correlation 
coefficient. A single outlier is capable of considerably changing the slope of the 
regression line and, consequently, the value of the correlation, as demonstrated 
in the following example. Note, that as shown on that illustration, just one outlier 
can be entirely responsible for a high value of the correlation that otherwise 
(without the outlier) would be close to zero. Needless to say, one should never 
base important conclusions on the value of the correlation coefficient alone (i.e., 
examining the respective scatterplot is always recommended).  

not very small and when the departure from normality is not very large. It is 
impossible to formulate precise recommendations based on those Monte- Carlo 
results, but many researchers follow a rule of thumb that if your sample size is 5

r more then serious biases are unlikely, and if your sample size is over 100 then
you should not be concerned at all with the normality assumptions. There are
however, much more common and serious threats to the validity of information 
that a correlation coefficient can provide; they are briefly discussed in the 
following paragraphs.  

Outliers. Outliers are atypical (by definition), infrequent observations. Becau

of the way in which the regression line is determined (especially the fact that it is
based on minimizing not the sum of simple distances but the sum of squares of 
distances of data points from the line), outliers have a profound i
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Note that if the sample size is relatively small, then including or excluding specific 
data points that are not as clearly "outliers" as the one shown in the previous 
example may have a profound influence on the regression line (and the 
correlation coefficient). This is illustrated in the following example where we call 
the points being excluded "outliers;" one may argue, however, that they are not 
outliers but rather extreme values.  

 
Typically, we believe that outliers represent a random error that we would like to 
be able to control. Unfortunately, there is no widely accepted method to remove 
outliers automatically (however, see the next paragraph), thus what we are left 
with is to identify any outliers by examining a scatterplot of each important 
correlation. Needless to say, outliers may not only artificially increase the value of 



a correlation coefficient, but they can also decrease the value of a "legitimate" 
correlation.  
See also Confidence Ellipse.  

Quantitative Approach to Outliers. Some researchers use quantitative 

methods to exclude outliers. For example, they exclude observations that are 
outside the range of ±2 standard deviations (or even ±1.5 sd's) around the group 
or design cell mean. In some areas of research, such "cleaning" of the data is 
absolutely necessary. For example, in cognitive psychology research on reaction 
times, even if almost all scores in an experiment are in the range of 300-700 
milliseconds, just a few "distracted reactions" of 10-15 seconds will completely 
change the overall picture. Unfortunately, defining an outlier is subjective (as it 
should be), and the decisions concerning how to identify them must be made on 
an individual basis (taking into account specific experimental paradigms and/or 
"accepted practice" and general research experience in the respective area). It 
should also be noted that in some rare cases, the relative frequency of outliers 
across a number of groups or cells of a design can be subjected to analysis and 
provide interpretable results. For example, outliers could be indicative of the 
occurrence of a phenomenon that is qualitatively different than the typical pattern 
observed or expected in the sample, thus the relative frequency of outliers could 
provide evidence of a relative frequency of departure from the process or 
phenomenon that is typical for the majority of cases in a group. See also 
Confidence Ellipse.  

Correlations in Non-homogeneous Groups. A lack of homogeneity in the 

sample from which a correlation was calculated can be another factor that biases 
the value of the correlation. Imagine a case where a correlation coefficient is 
calculated from data points which came from two different experimental groups 
but this fact is ignored when the correlation is calculated. Let us assume that the 
experimental manipulation in one of the groups increased the values of both 
correlated variables and thus the data from each group form a distinctive "cloud" 
in the scatterplot (as shown in the graph below).  



 
In such cases, a high correlation may result that is entirely due to the 
arrangement of the two groups, but which does not represent the "true" relation 
between the two variables, which may practically be equal to 0 (as could be seen 
if we looked at each group separately, see the following graph).  

 
If you suspect the influence of such a phenomenon on your correlations and 
know how to identify such "subsets" of data, try to run the correlations separately 
in each subset of observations. If you do not know how to identify the 
hypothetical subsets, try to examine the data with some exploratory multivariate 
techniques (e.g., Cluster Analysis).  

Nonlinear Relations between Variables. Another potential source of 

problems with the linear (Pearson r) correlation is the shape of the relatio
mentioned before, Pearson r mea

n. As 
sures a relation between two variables only to 

the extent to which it is linear; deviations from linearity will increase the total sum 
of squared distances from the regression line even if they represent a "true" and 
very close relationship between two variables. The possibility of such non-linear 



relationships is another reason why examining scatterplots is a necessary step in
evaluating every correlation. For example, the following graph demonstrates a
extremely strong correlation between the two variables which is not well 
described by the linear function.  

 
n 

 
Measuring Nonlinear Relations. What do you do if a correlation is strong 

clearly nonlinear (as concluded from examining scatterplots)? Unfortunately, 
there is no simple answer to this question, because there is no easy-to-use 
equivale

but 

nt of Pearson r that is capable of handling nonlinear relations. If the 
curve is monotonous (continuously decreasing or increasing) you could try to 
tran
rec  
cases  
end of the range. Another option available if the relation is monotonous is to try a 

sform one or both of the variables to remove the curvilinearity and then 
alculate the correlation. For example, a typical transformation used in such

is the logarithmic function which will "squeeze" together the values at one

nonparametric correlation (e.g., Spearman R, see Nonparametrics and 
Distribution Fitting) which is sensitive only to the ordinal arrangement of value
thus, by definition, it ignores monotonous curvilinearity. However, nonparametric
correlations are generally less sensitive and sometimes this method will not 
produce any gains. Unfortunately, the two most precise methods are not easy to 
use and require a good deal of "experimentation" with the data. Therefore you 
could:  

A. Try to identify the specific function that best describes the curve. After a functio
has been found, you can test its "goodness-of-fit" to your data.  

s, 
 

n 
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B. Alternatively, you could experiment with dividing one of the variables into
number of segments (e.g., 4 or 5) of an equal width, treat this new variable 

 a 
as a 

grouping variable and run an analysis of variance on the data.  

Exploratory Examination of Correlation Matrices. A common first step of m
ata analyses that involve more than a very few variables is to run a correlation matrix of

all variables and then examine it for expected (and unexpected) significant relations. 
When this is done, you need to be aware of the general nature of statistical significance
(see 

any 
d  

 
Elementary Concepts); specifically, if you run many tests (in this case, many 

correlations), then significant results will be found "surprisingly often" due to pure 
chance. For example, by definition, a coefficient significant at the .05 level will occur b
chance once in every 20 coefficients. There is no "automatic" way to weed out the "true" 
correlations. Thus, you should treat all results that were not predicted or planned wit
particular caution and look for their consistency with other results; ultimately, thoug
most conclusive (although costly) control for such a randomness factor is to replicate the
study. This issue is general and it pertains to all analyses that involve "multiple 
comparisons and statistical significance." This problem is also briefly discussed in the 
context of 

y 

h 
h, the 

 

post-hoc comparisons of means and the Breakdowns option.  

Casewise vs. Pairwise Deletion of Missing Data. The default way of 

deleting missing data while calculating a correlation matrix is to exclude all cases 

 easily 

ch 

 
re is 

g 

ution 
on 

that have missing data in at least one of the selected variables; that is, by 
casewise deletion of missing data. Only this way will you get a "true" correlation 
matrix, where all correlations are obtained from the same set of observations. 
However, if missing data are randomly distributed across cases, you could
end up with no "valid" cases in the data set, because each of them will have at 
least one missing data in some variable. The most common solution used in su
instances is to use so-called pairwise deletion of missing data in correlation 
matrices, where a correlation between each pair of variables is calculated from
all cases that have valid data on those two variables. In many instances the
nothing wrong with that method, especially when the total percentage of missin
data is low, say 10%, and they are relatively randomly distributed between cases 
and variables. However, it may sometimes lead to serious problems.  
For example, a systematic bias may result from a "hidden" systematic distrib
of missing data, causing different correlation coefficients in the same correlati
matrix to be based on different subsets of subjects. In addition to the possibly 
biased conclusions that you could derive from such "pairwise calculated" 



correlation matrices, real problems may occur when you subject such ma
another analysis (e.g., 

trices to 
multiple regression, factor analysis, or cluster analysis) 

 

 of the matrix for possible systematic "patterns."  

that expects a "true correlation matrix," with a certain level of consistency and
"transitivity" between different coefficients. Thus, if you are using the pairwise 
method of deleting the missing data, be sure to examine the distribution of 
missing data across the cells

How to Identify Biases Caused by the Bias due to Pairwise Deletion of 
Missing Data. If the pairwis

s

rd 

 B is much lower than the mean (or standard 
dev
correla
those  
thu
distribu

 decrease 

, 

e deletion of missing data does not introduce any 

ystematic bias to the correlation matrix, then all those pairwise descriptive 
statistics for one variable should be very similar. However, if they differ, then 
there are good reasons to suspect a bias. For example, if the mean (or standa
deviation) of the values of variable A that were taken into account in calculating 
its correlation with variable

iation) of those values of variable A that were used in calculating its 
tion with variable C, then we would have good reason to suspect that 

two correlations (A-B and A-C) are based on different subsets of data, and
s, that there is a bias in the correlation matrix caused by a non-random 

tion of missing data.  

Pairwise Deletion of Missing Data vs. Mean Substitution. Another 

common method to avoid loosing data due to casewise deletion is the so-called 
mean substitution of missing data (replacing all missing data in a variable by the 
mean of that variable). Mean substitution offers some advantages and some 
disadvantages as compared to pairwise deletion. Its main advantage is that it 
produces "internally consistent" sets of results ("true" correlation matrices). The 
main disadvantages are:  

A. Mean substitution artificially decreases the variation of scores, and this
in individual variables is proportional to the number of missing data (i.e., the 
more missing data, the more "perfectly average scores" will be artificially added 
to the data set).  

B. Because it substitutes missing data with artificially created "average" data points
mean substitution may considerably change the values of correlations.  



Spurious Correlations. Although you cannot prove causal relations based on 
correlation coefficients (see Elementary Concepts), you can still identify so-called 
spurious correlations; that is, correlations that are due mostly to the influences of "
variables. For example, there is a correlation between the total amount of losses in 
and the number of firemen that were putting out the fire; however, what this correlation 

oes not indicate is that if you call fewer firemen then you would lower the losses. T
is a third variable (the initial size of the fire) that influences both the amount of losses and

other" 
a fire 

d here 
 

 

ow to Determine Whether Two Correlation Coefficients are Significant. 
 test is available that will evaluate the significance of differences between two 
orrelation coefficients in two samples. The outcome of this test depends not only 

 the two coefficients but also on the size
ficients themselves. Consistent with the 

ect 

ly 
ant. For 

the number of firemen. If you "control" for this variable (e.g., consider only fires of a 
fixed size), then the correlation will either disappear or perhaps even change its sign. The 
main problem with spurious correlations is that we typically do not know what the 
"hidden" agent is. However, in cases when we know where to look, we can use partial 
correlations that control for (partial out) the influence of specified variables.  

Are correlation coefficients "additive?" No, they are not. For example, an 

average of correlation coefficients in a number of samples does not represent an 
"average correlation" in all those samples. Because the value of the correlation 
coefficient is not a linear function of the magnitude of the relation between the 
variables, correlation coefficients cannot simply be averaged. In cases when you 
need to average correlations, they first have to be converted into additive 
measures. For example, before averaging, you can square them to obtain 
coefficients of determination which are additive (as explained before in this 
section), or convert them into so-called Fisher z values, which are also additive. 

H
A
c
on the size of the raw difference between
of the samples and on the size of the coef

 

previously discussed principle, the larger the sample size, the smaller the eff
that can be proven significant in that sample. In general, due to the fact that the 
reliability of the correlation coefficient increases with its absolute value, relative
small differences between large correlation coefficients can be signific
example, a difference of .10 between two correlations may not be significant if 
the two coefficients are .15 and .25, although in the same sample, the same 
difference of .10 can be highly significant if the two coefficients are .80 and .90. 



 
 
 

 

Purpose, Assumptions. The t-test is the most commonly used method to 

tients 

all (e.g., 

t-test for independent samples  

evaluate the differences in means between two groups. For example, the t-test 
can be used to test for a difference in test scores between a group of pa
who were given a drug and a control group who received a placebo. 
Theoretically, the t-test can be used even if the sample sizes are very sm
as small as 10; some researchers claim that even smaller n's are possible), as 
long as the variables are normally distributed within each group and the variation 
of scores in the two groups is not reliably different (see also Elementary 
Concepts). As mentioned before, the normality assumption can be evaluated by 
looking at the distribution of the data (via histograms) or by performing a 
normality test. The equality of variances assumption can be verified with the F 

t Levene's test. If these conditions are not test, or you can use the more robus
met, then you can evaluate the differences in means between two groups using 
one of the nonparametric alternatives to the t- test (see Nonparametrics and 
Distribution Fitting).  
The p-level reported with a t-test represents the probability of error involved 
accepting our research hypothesis about the existence of a difference. 
Technically speaking, this is the probability of error associated with rejecting th
hypothesis of 

in 

e 
no difference between the two categories of observations 

(corresponding to the groups) in the population when, in fact, the hypothesis is 
ome researchers suggest that if the difference is in the predicted direction, 
n conside y one half (one "tail") of the probability distribution and thus 

 the stan -level reported with a t-test (a "two-tailed" probability) by 
two. Others, however, suggest that you should always report the standard, two-
tailed
See also, Student's t Distribution

true. S
you ca
divide

r onl
dard p

 t-test probability.  
.  



A
o

rrangement of Data. In order to perform the t-test for independent samples, 

ne independent (grouping) variable (e.g., Gender: male/female) and at least one 
nt 

the independent variable. The following data 
set can be analyzed with a t-test comparing the average WCC score in males 

dependent variable (e.g., a test score) are required. The means of the depende
variable will be compared between selected groups based on the specified 
values (e.g., male and female) of 

and females. 
  GENDER WCC 

case 1 
case 2 
case 3 
case 4 
ase 5 

male 
male 
male 

female 
female 

111 
110 
109 
102 
104 c

  mean WCC in males = 110 
mean WCC in females = 103 

 
 

t-test graphs. In the t-test analysis, comparisons of means and measures of 

variation in the two groups can be visualized in box and whisker plots (for an 
example, see the graph below).  

 
These graphs help you to quickly evaluate and "intuitively visualize" the strength
of the relation between the grouping and the dependent variable.  

More Complex Group Comparisons. It often happens in research practice 

that you need to compare more than two groups (e.g., drug 1, drug 2, and 
placebo), or compare groups created by more than one independent variable 

 

http://www.statsoft.com/textbook/stanman.html


while controlling for the separate influence of each of them (e.g., Gender, type of 
Drug, and size of Dose). In these cases, you need to analyze the data using 
Analysis of Variance, which can be considered to be a generalization of the t-
test. In fact, for two group comparisons, ANOVA will give results identical to a t-
test (t**2 [df] = F[1,df]). However, when the design is more complex, ANOVA 
offers numerous advantages that t-tests cannot provide (even if you run a series

f t- tests comparing various cells of the design).  
 

o
 
 
 

 
t-test for dependent samples  

Within-group Variation. As explained in Elementary Concepts, the size of a 

relation between two variables, such as the one measured by a difference in 
means between two groups, depends to a large extent on the differentiation of 
values within the group. Depending on how differentiated the values are in ea
group, a given "raw difference" in group means will indicate either a stronger 
weaker relationship between the independent (grouping) and dependent variable. 
For example, if the mean WCC (White Cell Count) was 102 in males and 104 in 
females, then this difference of "only" 2 points would be extremely important if all 
values for males fell within a range of 101 to 103, and all scores for females fell 
within a range of 103 to 105; for example, we would be able to predict WCC 
pretty well based on gender. However, if the same difference of 2 was obtained 
from very differentiated scores (e.g., if their range was 0-200), then we
consider the difference entirely negligible. That is to say, reduction of the within
group variation increases the sensitivity of our test.  

Purpose. The t-test for dependent samples helps us to take advantage of one 

specific type of design in which an important source of within-group variation (or 
so-called, error

ch 
or 

 would 
-

) can be easily identified and excluded from the analysis. 
Specifically, if two groups of observations (that are to be compared) are based on 
the same sample of subjects who were tested twice (e.g., before and after a 
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treatment), then a considerable part of the within-group variation in both g
of scores can be attributed to the initial individual differences between subjects. 
Note that, in a sense, this fact is not much different than in cases when the two 
groups are entirely independent (see 

roups 

ent samplest-test for independ ), where 
e to the error variance; but in the case of 

entify 
, if 

is 
g 

, 
 

. This is precisely what is 
be g done in t for dependent samples, and, as compared to the t-test for 
independent samples, it always produces "better" results (i.e., it is always more 

ive).  

mptions  theore  assumptions of the t-test for independent 

individual differences also contribut
independent samples, we cannot do anything about it because we cannot id
(or "subtract") the variation due to individual differences in subjects. However
the same sample was tested twice, then we can easily identify (or "subtract") th
variation. Specifically, instead of treating each group separately, and analyzin
raw scores, we can look only at the differences between the two measures (e.g.
"pre-test" and "post test") in each subject. By subtracting the first score from the
second for each subject and then analyzing only those "pure (paired) 
differences," we will exclude the entire part of the variation in our data set that 
results from unequal base levels of individual subjects

in  the t-tes

sensit

Assu . The tical

samples also apply to the dependent samples test; that is, the paired differences 
sh u  If these assumptions are clearly not met, then one 

f the nonparametric alternative tests should be used.  
o ld be normally distributed.

o
See also, Student's t Distribution.  

Arrangement of Data. Technically, we can apply the t-test for dependent 

samples to any two variables in our data set. However, applying this test will 
make very little sense if the values of the two variables in the data set are no
logically and methodologically comparable. For example, if you compare the 
average WCC in a sample of patients before and after a treatment, but using a 

ifferent counting method or different units in the second measurement, then a
highly significant t-test value could be obtained due to an artifact; that is, to t

t 

d  
he 



change of units of measurement. Following, is an example of a data set that ca
be analyzed using the t-test for dependent samples.  

  WCC 
before 

WCC
after

n 

case 1 
case 2 
case 3 

111.9 113

case 4 
case

...

109 
143 
101 

110
144
102

 5 
 

80 80.9
... ...

  average change between WCC
 "before" and "after" = 1

 
The average difference between the two conditions is relatively small (d=1) as 
compared to the differentiation (range) of the raw scores (from 80 to 143, in t
first sample). However, the t-test for dependent samples analysis is performed 
only on the paired differences , "ignoring" the raw scores and their potential 
differentiation. Thus, the size of this particular difference of 1 will be compared 
not to the differentiation of raw scores but to the differentiation of the individual 
difference scores, which is relatively small: 0.2 (from 0.9 to 1.1). Compared to 
that variability, the difference of 1 is e

he 

xtremely large and can yield a highly 
ignificant t value.  

tests. t-tests for dependent samples can be calculated for long 

in the form of matrices produced with casewise

s

Matrices of t-
lists of variables, and reviewed  or 
pairwise deletion of missing data, much like the correlation matrices. Thus, the 

trices; 

letion of missing data in t-tests and  

related 

s
a nce with repeated measures should be used. The repeated 

ation of the t-test for dependent 

precautions discussed in the context of correlations also apply to t-test ma
see:  

a. the issue of artifacts caused by the pairwise de
b. the issue of "randomly" significant test values.  

More Complex Group Comparisons. If there are more than two "cor

amples" (e.g., before treatment, after treatment 1, and after treatment 2), then 
nalysis of varia

measures ANOVA can be considered a generaliz



samp
analys

les a  offer eatures that increase the overall sensitivity of the 
is. For example, it can simultaneously control not only for the base level of 

the dependent variable, but it can control for other factors and/or include in the 
esign more than one interrelated dependent variable (MANOVA; for additional 

nd it s various f

d
details refer to ANOVA/MANOVA).  
 
 
 

 
Breakdown: Descriptive Statistics by Groups  

Purpo e breakdown sis calculates descriptive statistics and 

ach of a number of groups defined by 
i pe riables.  

Arrangement of Data. data set (spreadsheet), the 

WCC (White Cell Count) can be broken down by 2 

se. Th s analy

correlatio
one or m

ns for de
ore group

pendent va
ng (inde

In the fol

riables in e
ndent) va

lowing example 

dependent variable 
independent variables: Gender (values: males and females), and Height (values: 
tall and short).  

  GENDER HEIGHT WCC 
case 1 
case 2 
case 3 
case 4 
case 5 

male 
male 
male 

female 
female 

short 
tall 
tall 
tall 

short 

101 
110 
92 

112 
95 

... ... ... ... 

 
The resulting breakdowns might look as follows (we are assuming that Gender 
was specified as the first independent variable, and Height as the second).  

Entire sample 
Mean=100 

SD=13 
N=120 

Males Females 
Mean=99 
SD=13 
N=60 

Mean=101 
SD=13 
N=60 

Tall/males 
Mean=98 

Short/males 
Mean=100 

Tall/females 
Mean=101 

Short/females
Mean=101



SD=13 
N=30 

SD=13 
N=30 

SD=13 
N=30 

SD=13 
N=30 

 
The composition of the "intermediate" level cells of the "breakdown tree" depends 
on the order in which independent variables are arranged. For example, in the 
above example, you see the means for "all males" and "all females" but you do 
not see the means for "all tall subjects" and "all short subjects" which would have 
been produced had you specified independent variable Height as the first 
grouping variable rather than the second.  

Statistical Tests in Breakdowns. Breakdowns are typically used as an 

exploratory data analysis technique; the typi
help answer is very simple: Are the groups created by the independent variables 
different re  variable? If you are interested in differences 
concerning the means, then the appropriate test is the breakdowns one-way 
ANOVA (F test). If you are interested in variation differences, then you should 
test for homogeneity of variances.  

Other Related Data Analysis Techniques. Although for exploratory data 

analysis, breakdowns can use more than one independent variable, the statistical 
procedures in breakdowns assume the existence of a single grouping factor 
(even if, in fact, the breakdown results from a combination of a number of 

cal question that this technique can 

garding the dependent

grouping variables). Thus, those statistics do not reveal or even take into accou
any possible 

nt 
interactions between grouping variables in the design. For example, 

there could be differences between the influence of one independent variable on 
the dependent variable at different levels of another independent variable (e.g., 

hey are males; 

ut the 

significant F test from the ANOVA, one wants to know which of the means 

tall people could have lower WCC than short ones, but only if t
see the "tree" data above). You can explore such effects by examining 
breakdowns "visually," using different orders of independent variables, b
magnitude or significance of such effects cannot be estimated by the breakdown 
statistics.  

Post-Hoc Comparisons of Means. Usually, after obtaining a statistically 



contributed to the effect (i.e., which groups are particularly different from each 
other). One could of course perform a series of simple t-tests to compare all 
possible pairs of means. However, such a procedure would capitalize on chance. 
This means that the reported probability levels would actually overestimate the 
statistical significance of mean differences. Without going into too much d
suppose you took 20 samples of 10 random numbers each, and computed
means. Then, take the group (sample) with the highest mean and compare it wit
that of the lowest mean. The t-test for independent samples will test whether or 
not those two means are significantly different from each other, provided they 
were the only two samp

etail, 
 20 

h 

les taken. Post-hoc comparison techniques on the other 
hand specifically take into account the fact that more than two samples were 
taken.  

Breakdowns vs. Discriminant Function Analysis. Breakdowns can be 

considered as a first step toward another type of analysis that explores 
differences between groups: Discriminant function analysis. Similar to 
breakdowns, discriminant function analysis explores the differences between 
groups created by values (group codes) of an independent (grouping) va
However, unlike breakdowns, discriminant function analysis simultaneously 
analyzes more than one dependent variable and it identifies "patterns" of values 
of those dependent variables. Technically, it determines a linear combination of 
the dependent variables that best predicts the group membership. For e
discriminant function analysis can be used to analyze differences between three 
groups of persons who have chosen different professions (e.g., lawyers, 
physicians, and engineers) in terms of various aspects of their scholastic 
performance in high

riable. 

xample, 

 school. One could claim that such analysis could "explain" 

is that 

f 

the choice of a profession in terms of specific talents shown in high school; thus 
discriminant function analysis can be considered to be an "exploratory extension" 
of simple breakdowns.  

Breakdowns vs. Frequency Tables. Another related type of analys

cannot be directly performed with breakdowns is comparisons of frequencies o

http://www.statsoft.com/textbook/stdiscan.html


cases (n's) between groups. Specifically, often the n's in individual cells are not
equal because the assignment of subjects to those groups typically results no
from an experimenter's

 
t 

 manipulation, but from subjects' pre-existing dispositions. 
If, in spite of the random selection of the entire sample, the n's are unequal, then 
it may suggest that the independent variables are related. For example, 
crosstabulating levels of independent variables Age and Education most likely 
would not create groups of equal n, because education is distributed differently in 
different age groups. If you are interested in such comparisons, you can explore 
specific frequencies in the breakdowns tables, trying different orders of 
independent variables. However, in order to subject such differences to statistical 
tests, you should use crosstabulations and frequency tables, Log-Linear 

 

Graphical breakdowns. Graphs can often identify effects (both expected and 

 data 

r plots). 
The graph below shows a categorized histogram which enables you to quickly 
evaluate and visualize the shape of the data for each group (group1-female, 
group2-female, etc.).  

Analysis, or Correspondence Analysis (for more advanced analyses on multi-way
frequency tables). 

unexpected) in the data more quickly and sometimes "better" than any other
analysis method. Categorized graphs allow you to plot the means, distributions, 
correlations, etc. across the groups of a given table (e.g., categorized 
histograms, categorized probability plots, categorized box and whiske

 
The categorized scatterplot (in the graph below) shows the differences between 
patterns of correlations between dependent variables across the groups.  



 
Additionally, if the software has a brushing facility which supports animated 
brushing, you can select (i.e., highlight) in a matrix scatterplot all data points
belong to a certain category in order to examine how those s

 that 
pecific observations 

 relations betwee  data set.  contribute to n other variables in the same

 
 
 
 

 
Frequency tables  

http://www.statsoft.com/textbook/esc.html


Purpose. Frequency or one-way tables represent the simplest method for 

analyzing categorical (nominal) data (refer to Elementary Concepts). They 
often used as one of the exploratory procedures to review how different 
categories of values are distributed in the sample. For example, in a survey of 
spectator interest in different sports, we could sum

are 

marize the respondents' 
terest in watching football in a frequency table as follows:  

TATISTICA 
BASIC 

FOOTBALL: "Watching football" 
in
S

STATS 

Category Count Count Percent Percent 
Cumulatv Cumulatv

ALWAYS : Always interested 
USUALLY : Usually interested 
SOMETIMS: Sometimes interested 
NEVER : Never interested 
Missing 

39
16
26
19

0

39
55
81

100
100

39.00000
16.00000
26.00000
19.00000
0.00000

39.0000
55.0000
81.0000

100.0000
100.0000

 
The table above shows the number, proportion, and cumulative proportion of 
respondents who characterized their interest in watching football as either (1)
Always interested, (2) Usually interested, (3) Sometimes interested, or (4) Ne
interested.  

Applications. In practically every research project, a first "look" at the data 

usually includes frequ

 
ver 

ency tables. For example, in survey research, frequency 

unds, 

ulate the number of patients displaying 
specific symptoms; in industrial research one may tabulate the frequency of 

nt s le ing to catastrophic failure of products during stress tests 
rts a  actually responsible for the complete malfunction of 
und  extreme temperatures?). Customarily, if a data set includes 

any categorical data, then one of the first steps in the data analysis is to compute 
a frequency table for those categorical variables. 

tables can show the number of males and females who participated in the 
survey, the number of respondents from particular ethnic and racial backgro
and so on. Responses on some labeled attitude measurement scales (e.g., 
interest in watching football) can also be nicely summarized via the frequency 
table. In medical research, one may tab

differe
(e.g., 
televis

 cause
which pa
ion sets 

ad
re
er



 
 
 

 
ti nner tables  

osstabulation is a combination of two 

r more) frequenc ed such that each cell in the resulting table 
presents a unique combination of specific values of crosstabulated variables. 

Crosstabula on and stub-and-ba
Purpose and Arrangement of Table. Cr

(o y tables arrang
re
Thus, crosstabulation allows us to examine frequencies of observations that 
belong to specific categories on more than one variable. By examining these 
frequencies, we can identify relations between crosstabulated variables. Only 
categorical (nominal) variables or variables with a relatively small number of 
different meaningful values should be crosstabulated. Note that in the cases 
where we do want to include a continuous variable in a crosstabulation (e.g., 
income), we can first recode it into a particular number of distinct ranges (e.g., 

ales are 

low, medium, high).  

2x2 Table. The simplest form of crosstabulation is the 2 by 2 table where two 

variables are "crossed," and each variable has only two distinct values. For 
example, suppose we conduct a simple study in which males and fem
asked to choose one of two different brands of soda pop (brand A and brand B); 
the data file can be arranged like this:  

  GENDER SODA 
case 1 
case 2 
case 3 
case 4 
case 5 

... 

MALE 
FEMALE 
FEMALE 
FEMALE 

MALE 
... 

A 
B 
B 
A 
B 
... 

 
The resulting crosstabulation could look as follows.  

  SODA: A SODA: B   
GENDER: MALE 20 (40%) 30 (60%) 50 (50%) 
GENDER: FEMALE 30 (60%) 20 (40%) 50 (50%) 
  50 (50%) 50 (50%) 100 (100%)



 
Each cell represents a unique combination of values of the two crosstabulate
variables (row variable Gender and column variable Soda), and the numbers in
each cell tell us how many observations fall into each combination of value
general, this table shows us that more females than males chose the soda pop 
brand A, and that more males than females chose soda B. Thus, gender an
preference for a particular brand of soda may be related (later we will see ho
this relationship can be measured).  

Marginal Frequencies. The values in the margins of the table are simply one-

way (frequency) tables 

d 
 

s. In 

d 
w 

for all values in the table. They are important in that they 

uld 

fferent propo tudy. Thus, the 
ces between the distri equencies in individual rows (or 
s) and in the r rm s about the relationship 

bulated ables.  

Tota centa The example in the previous 

strates th order to eval relationships between 
iables, w d to compare the proportions of marginal and 
or row fre cies. Such comparisons are easiest to perform 
es are ted as es.  

For analytic purposes, the 

idual rows or columns of a table can be represented as column graphs. 

p
i

help us to evaluate the arrangement of frequencies in individual columns or rows. 
For example, the frequencies of 40% and 60% of males and females 
(respectively) who chose soda A (see the first column of the above table), wo
not indicate any relationship between Gender and Soda if the marginal 
frequencies for Gender were also 40% and 60%; in that case they would simply 
reflect the di
differen

rtions of males and females in the s
butions of fr

column espective margins info s u
between the crossta

Column, Row, and 
 vari

l Per ges. 
paragraph demon
crosstabulated var

at in 
e nee

uate 

individual column 
when the frequenci

quen
presen  percentag

Graphical Representations of Crosstabulations. 
indiv
However, often it is useful to visualize the entire table in a single graph. A two-
way table can be visualized in a 3-dimensional histogram; alternatively, a 
categorized histogram can be produced, where one variable is re resented by 
ndividual histograms which are drawn at each level (category) of the other 



variable in the crosstabulation. The advantage of the 3D histogram is that 
produces an integrated picture of the entire table; the advantage of the 
categorized graph is that it allows us to precisely evaluate specific frequencies in 
each cell of the table.  

Stub-and-Banner Tables. Stub-and-Banner tables, or Banners for short, are a 

ay to display several two-way tables in a compressed form. This type of ta
most easily explained with an example

it 

w ble is 
. Let us return to the survey of sports 

spectators example. (Note that, in order simplify matters, only the response 
categories Always and Usually were tabulated in the table below.)  
STATISTICA 
BASIC 
STATS 

Stub-and-Banner Table: 
Row Percent 

Factor FOOTBALL
ALWAYS 

FOOTBALL
USUALLY

Row
Total

BASEBALL: ALWAYS 
ASEBALL: USUALLY 

92.31 7.69 66.67
B 61.54 38.46 33.33
BASEBALL: Tota 82.05 17.95 100.00l  
TE N

S: LY 
12.50
12.50

66.67
33.33

N IS: ALWAYS 
TENNI USUAL

87.50
87.50

TENNIS: Total 87.50 12.50 100.00
BOXIN
BOXIN

G: ALWA
G: USUAL

YS 
LY

22.22
0.00

52.94
47.06 

77.78
100.00

BO G : Tot 88 11.76 100.00XIN al .24

 
 

Inte retin l e, we see the two-way tables 

of ex e s te st in Baseball, Tennis, and 
 t  entr rep en rcen es o ows, so that the percentages 

acro  colum ill ad p 00 cent. r e ple, the number in the upper 
ft hand corner of the Scrollsheet (92.31) shows that 92.31 percent of all 

e 
lso 

 

rp g the Banner Tab e. In the table abov

pr s ed interest in Football by expressed in re
Boxing. The able ies res t pe tag f r

ss ns w d u to 1  per  Fo xam
le
respondents who said they are always interested in watching football also said 
that they were always interested in watching baseball. Further down we can se
that the percent of those always interested in watching football who were a
always interested in watching tennis was 87.50 percent; for boxing this number is



77.78 percent. The percentages in the last column (Row Total) are always 
relative to the total number of cases.  

Multi-way Tables with Control Variables. When only two variables are 

ral 
rosstabulating values of variables can be generalized to more than just 

two variables. For example, to return to the "soda" example presented earlier 
(see above), a third variable could be added to the data set. This variable might 
contain information about the state in which the study was conducted (either 
Nebraska or New York).  

  GENDER SODA STATE

crosstabulated, we call the resulting table a two-way table. However, the gene
idea of c

case 1 
case 2 

MALE 
FEMALE 

A 
B 

NEBRASKA
NEW YORK

K
...

case 3 
case 4 
case 5 

... 

FEMALE 
FEMALE 

MALE 
... 

B 
A 
B 
... 

NEBRASKA
NEBRASKA
NEW YOR

 
he crosstabulation of these variables would result in a 3-way table:  

  STATE: NEW YORK STATE: NEBRASKA 
T

  SODA: A SODA: B   SODA: A SODA: B   
G:MALE 20 30 50  5 45 50
G:FEMALE 30 20 50 45  5 50

  50 50 100 50 50 100

 
Theoretically, an unlimited number of variables can be crosstabulated in a single 

nalysis

multi-way table. However, research practice shows that it is usually difficult to 
examine and "understand" tables that involve more than 4 variables. It is 
recommended to analyze relationships between the factors in such tables using 
modeling techniques such as Log-Linear A  or Correspondence Analysis.  

Graphical Representations of Multi-way Tables. You can produce "double 

categorized" histograms, 3D histograms,  



 
or line-plots that will summarize the frequencies for up to 3 factors in a single 
graph.  

 
Batches (cascades) of graphs can be used to summarize higher-way tables (as
shown in the graph below).  

 

 
 
 
 
 



Statistics in Crosstabulation Tables  

  

General Introduction. Crosstabulations generally allow us to identify relationships 
between the crosstabulated variables. The following table illustrates an example 
of a very strong relationship between two variables: variable Age (Adult vs. Child) 
and variable Cookie preference (A vs. B).  

  COOKIE: A COOKIE: B   
AGE: ADULT 50  0 50
AGE: CHILD  0 50 50

  50 50 100

 
All adults chose cookie A, while all children chose cookie B. In this case there
little doubt about the reliability of the finding, because it is hardly conceivable that 
one would obtain such a pattern of frequencies by chance alone; that is, without
the existence of a "true" difference between the cookie preferences of adults and 
children. However, in real-life, relations between variables are typically much 
weaker, and thus the question arises as to how to measure those relations
and how to evaluate their reliability (statistical significance). The following review 
includes the most common meas

 is 

 

hips, 

ures of relationships between two categorical 
variables; that is, measures for two-way tables. The techniques used to analyze 
simultaneous relations between more than two variables in higher order 
crosstabulations are discussed in the context of the Log-Linear Analysis module 
and the Correspondence Analysis.  
Pearson Chi-square. The Pearson Chi-square is the most common test for 
significance of the relationship between categorical variables. This measure is 
based on the fact that we can compute the expected frequencies in a two-way 
table (i.e., frequencies that we would expect if there was no relationship between 
the variables). For example, suppose we ask 20 males and 20 females to choose 
between two brands of soda pop (brands A and B). If there is no relationship 
between preference and gender, then we would expect about an equal number 



of choices of brand A and brand B for each sex. The Chi-square test becomes 
increasingly significant as the numbers deviate further from this expected patter
that is, the more this pattern of choices for males and females differs.  
The value of the 

n; 

Chi-square and its significance level depends on the overall 
umber of observations and the number of cells in the table. Consistent with 

principles discussed in 
n the 

Elementary Concepts, relatively small deviations of th
relative frequencies across cells from the expected pattern will prove significant if 
the number of observations is large.  

e 

The only assumption underlying the use of the Chi-square (other than ran
selection of the sample) is that the expected frequencies are not very small. The 
reason for this is that, actually, the Chi-square inherently tests the underlying 
probabilities in each cell; and when the expected cell frequencies fall, for 
example, below 

dom 

5, those probabilities cannot be estimated with sufficient 
precision. For further discussion of this issue refer to Everitt (1977), Hays (1988), 
or Kendall and Stuart (1979).  
Maximum-Likelihood Chi-square. The Maximum-Likelihood Chi-square te
same hypothesis as the Pearson Chi- square statistic; however, its computation 

sts the 

is based on Maximum-Likelihood theory. In practice, the M-L Chi-square is 
usually very close in magnitude to the Pearson Chi- square statistic. For more 
details about this statistic refer to Bishop, Fienberg, and Holland (1975), or 
Fienberg, S. E. (1977); the Log-Linear Analysis chapter of the manual also 
discusses this statistic in greater detail.  
Yates Correction. The approximation of the Chi-square statistic in small 2 x 2 
tables can be improved by reducing the absolute value of differences between 
expected and observed frequencies by 0.5 before squaring (Yates' correction). 
This correction, which makes the estimation more conservative, is usually 
applied when the table contains only small observed frequencies, so that some 
expected frequencies become less than 10 (for further discussion of this 
correction, see Conover, 1974; Everitt, 1977; Hays, 1988; Kendall & Stuart, 
1979; and Mantel, 1974).  



Fisher Exact Test. This test is only available for 2x2 tables; it is based
following rationale: Given the marginal frequencies in the table, and assum
that in the population the two factors in the table are not related, how likely is it to
obtain cell frequencies as uneven or worse than the ones that were observed? 
For small n, this probability can be computed exactly by counting all possible 
tables that can be constructed based on the marginal frequencies. Thus, the 
Fisher exact test computes the exact probability under the null hyp thesi

btaining the current distribution of frequencies across cells, or one that is more 
uneven.  
McNemar Chi-square. This test is applicable in situations where the frequencies 
in the 2 x 2 table represent dependent samples. For examp

 on the 
ing 

 

o s of 
o

le, in a before-after 

 
design study, we may count the number of students who fail a test of minimal 
math skills at the beginning of the semester and at the end of the semester. Two
Chi-square values are reported: A/D and B/C. The Chi-square A/D tests the 
hypothesis that the frequencies in cells A and D (upper left, lower right) are 
identical. The Chi-square B/C tests the hypothesis that the frequencies in cells 
and C (upper right, lower left) are identical.  
Coefficient Phi. The Phi-square is a measure of correlation between two 
categorical variables in a 2 x 2 table. Its value can range from 0 (no relation 
between factors; Chi-square=0.0) to 1 (perfect relation between the t

B 

wo factors in 

 x 

stimate the correlation between the two.  
ntingency is a Chi-square

the table). For more details concerning this statistic see Castellan and Siegel 
(1988, p. 232).  
Tetrachoric Correlation. This statistic is also only computed for (applicable to) 2
2 tables. If the 2 x 2 table can be thought of as the result of two continuous 
variables that were (artificially) forced into two categories each, then the 
tetrachoric correlation coefficient will e
Coefficient of Contingency. The coefficient of co  based 

n, 
re 

1 

measure of the relation between two categorical variables (proposed by Pearso
the originator of the Chi-square test). Its advantage over the ordinary Chi-squa
is that it is more easily interpreted, since its range is always limited to 0 through 



(  is 

res 

i

where 0 means complete independence). The disadvantage of this statistic
that its specific upper limit is "limited" by the size of the table; C can reach the 
limit of 1 only if the number of categories is unlimited (see Siegel, 1956, p. 201).  
Interpretation of Contingency Measures. An important disadvantage of measu
of contingency (reviewed above) is that they do not lend themselves to clear 
nterpretations in terms of probability or "proportion of variance," as is the case, 
for example, of the Pearson r (see Correlations). There is no commonly accepted 
measure of relation between categories that has such a clear interpretation.  

they 
Statistics Based on Ranks. In many cases the categories used in the 
crosstabulation contain meaningful rank-ordering information; that is, 
measure some characteristic on an <>ordinal scale (see Elementary Concepts). 
Suppose we asked a sample of respondents to indicate their interest in watching 

ifferent sports on a 4-point scale with the explicit labels (1) always, (2) usually, 
(3) sometimes, and (4) never interested. Obviously, we can assume that the 
esponse sometimes interested is indicative of less interest than always 

interested, and so on. Thus, we could rank the respondents with regard to their 
expressed interest in, for example, watching football. When categorical variables 
an be interpreted in this manner, there are several additional indices that can be 

computed to express the relationship between variables.  
Spearman R. Spearman R can be thought of as the regular Pearson product-
moment correlation

d

r

c

 coefficient (Pearson r); that is, in terms of the proportion of 
As 

ration 
variability accounted for, except that Spearman R is computed from ranks. 
mentioned above, Spearman R assumes that the variables under conside
were measured on at least an ordinal (rank order) scale; that is, the individual
observations (cases) can be ranked into two ordered series. Detailed discussions
of the Spearman R statistic, its power and efficiency can be found in Gibbons 
(1985), Hays (1981), McNemar (1969), Siegel (1956), Siegel and Castellan 
(1988), Kendal

 
 

l (1948), Olds (1949), or Hotelling and Pabst (1936).  
Kendall tau. Kendall tau is equivalent to the Spearman R statistic with regard to 
the underlying assumptions. It is also comparable in terms of its statistical power. 



However, Spearman R and Kendall tau are usually not identical in magnitude 
because their underlying logic, as well as their computational formulas are ve
different. Siegel and Castellan (1988) express the relationship o

ry 
f the two 

measures in terms of the inequality:  
-1 <  an R < = 1  
Mo  i fferent interpretations: 
Wh  
correlation coefficient as computed from ranks, Kendall tau rather represents a 

bility 
o variables. Kendall (1948, 

llan (1988) discuss Kendall tau in 
 computed, usually called taub and 

 
ccur, it is 

hen 
f the underlying assumptions, 

Gamma R or Kendall tau; in terms of its interpretation 
om utat , it is ore similar to Kendall tau than Spearman R. In short, 
m  als  pro bili specifically, it is computed as the difference 

between the probability that the rank ordering of the two variables agree minus 
e probability that they disagree, divided by 1 minus the probability of ties. Thus, 

nd 

 = 3 * Kendall tau - 2 * Spearm
re mportantly, Kendall tau and Spearman R imply di
ile Spearman R can be thought of as the regular Pearson product-moment 

probability. Specifically, it is the difference between the probability that the 
observed data are in the same order for the two variables versus the proba
that the observed data are in different orders for the tw
1975), Everitt (1977), and Siegel and Caste
greater detail. Two different variants of tau are
tauc. These measures differ only with regard as to how tied ranks are handled. In
most cases these values will be fairly similar, and when discrepancies o
probably always safest to interpret the lowest value.  
Sommer's d: d(X|Y), d(Y|X). Sommer's d is an asymmetric measure of 
association related to tb (see Siegel & Castellan, 1988, p. 303-310).  
Gamma. The Gamma statistic is preferable to Spearman R or Kendall tau w
the data contain many tied observations. In terms o

 is equivalent to Spearman 
and c
Gam

p
a is

ion
o a

 m
ba ty; 

th
Gamma is basically equivalent to Kendall tau, except that ties are explicitly taken 
into account. Detailed discussions of the Gamma statistic can be found in 
Goodman and Kruskal (1954, 1959, 1963, 1972), Siegel (1956), and Siegel a
Castellan (1988).  



Uncertainty Coefficients. These are indices of stochastic dependence; th
concept of stochastic dependence is derived from the information theory 
approach to the analysis of frequency tables and the user should refer to the 
appropriate references (see Kullback, 1959; Ku & Ku

e 

llback, 1968; Ku, Varner, & 
Ku b 1 lso 344-348). S(Y,X) 

m ep S(X|Y) and S(Y|X) refer to asymmetrical 

ultiple Responses/Dichotomies. Multiple response variables or multiple 

Multiple Response Variables

ll ack, 197 ; see a Bishop, Fienberg, & Holland, 1975, p. 
refers
depen

 to sym
dence.  

etrical d endence, 

M
dichotomies often arise when summarizing survey data. The nature of such 
variables or factors in a table is best illustrated with examples.  

•   
Multiple Dichotomies •  

Multip• Crosstabulation of se otomiesle Respon s/Dich   
sstabulation Multi esp  Variables• Paired Cro  of ple R onse   
mment• A Final Co   

ariable
ked a sample of consum  to th ee favorite soft drinks. The 

pecific item on the questionnaire may look like this:  
rite down your three favorite soft drinks: 

d 
e 

Multiple Response V s. As part of a larger market survey, suppose you 
as ers name eir thr
s
W
1:__________    2:__________    3:__________ 
Thus, the questionnaires returned to you will contain somewhere between 0 and 3 
answers to this item. Also, a wide variety of soft drinks will most likely be named. Your 
goal is to summarize the responses to this item; that is, to produce a table that 
summarizes the percent of respondents who mentioned a respective soft drink.  
The next question is how to enter the responses into a data file. Suppose 50 
different soft drinks were mentioned among all of the questionnaires. You coul
of course set up 50 variables - one for each soft drink - and then enter a 1 for th
respective respondent and variable (soft drink), if he or she mentioned the 
respective soft drink (and a 0 if not); for example:  

  COKE PEPSI SPRITE . . . . 
case 1 
case 2 

0 
1 

1 
1 

0 
0   case 3 

... 
0 
... 

0 
... 

1 
... 



 
This method of coding the responses would be very tedious and "wasteful." Note 

5
 this method of coding just those three variables 

would be satisfactory; to tabulate soft drink preferences, we could then treat the 
va ble s a ultiple dichotomy; see below.)  
g ltip esp e variables. Alternatively, we could set up three 

ariables, and a coding scheme for the 50 soft drinks. Then we could enter the 

that each respondent can only give a maximum of three responses; yet we use 
0 variables to code those responses. (However, if we are only interested in 

these three soft drinks, then

three 
Codin

ria
mu

s a
le r

m
ons

v
respective codes (or alpha labels) into the three variables, in the same way that 
respondents wrote them down in the questionnaire.  

  Resp. 1 Resp. 2 Resp. 3 
case 1 
ase 2 

 . . . 

COKE 
SPRITE 
PERRIER 
 . . . 

PEPSI 
SNAPPLE 
GATORADE
 . . . 

JOLT 
DR. PEPPER 
MOUNTA  DEW
 . . . 

c
case 3  IN

 
To produce a table of the number of respondents by soft drink we would now 
treat Resp.1 to Resp3 as a multiple response variable. That table could look like 
this:  
N=500 

 Count Prcnt. of Prcnt. of
 Category Responses Cases

COKE: Coca Cola 
PEPSI: Pepsi Cola 
MOUNTAIN: Mountain Dew 
PEPPER: Doctor Pepper 
 . . .  : . . . .  

44
43
81
74

..

5.23
5.11
9.62
8.79

...

8.80
8.60

16.20
14.80

...
  842 100.00 168.40

 
 
Interpreting the multiple response frequency table. The total number of 
respondents was n=500. Note that the counts in the first column of the table do 
not add up to 500, but rather to 842. That is the total number of responses; since 
e  responses (write down three names of soft 
drinks), the total number of responses is naturally greater than the number of 

ach respondent could make up to 3



re
shown above, the first case (Coke, Pepsi, Jolt) "contributes" three times to the 
requency table, once to the category Coke, once to the category Pepsi, and 
once to the category Jolt. The second and third column

spondents. For example, referring back to the sample listing of the data file 

f
s in the table above report 

the percentages relative to the number of responses (second column) as well as 
e y he first row and last column 

 means th .8% of all respondents mentioned Coke either as 
eir firs , or third soft drink preference.  
ultiple tomies. Suppose in the above example we were only interested in 

Sprite. As pointed out earlier, one way to code the data in that 

respond nts (third column). Thus, the entr  8.80 in t
in the tab
th
M
Coke, Pepsi

le abo
t, secon
 Dicho

, and 

ve
d

at 8

case would be as follows:  
  COKE PEPSI SPRITE . . . . 

case 1 
case 2 
case 3 

. . . 

  
1 
  

. . . 

1 
1 
  

. . . 

  
  
1 

. . . 
  

 
In other words, one variable was created for each soft drink, then a value of 
was entered into the respective variable whenever the respective drink was 
mentioned by the respective respondent. Note that each variable represen
dichotomy; that is, only "1"s and "not 1"s are allowed (we could have entered 1's 
and 0's, but to save typing we can also simply leave the 0's blank or missing). 
When tabulating these variables, we would like to obtain a summary tab
similar to the one shown earlier for multiple response variables; that is, we wou
like to compute the number and percent of respondents (and responses) for each 
soft drink. In a sense, we "compact" the three variables Coke, Pepsi, and Sp
into a single variable (Soft Drink) consisting of multiple dichotomies.  
Crosstabulation of Multiple Responses/Dichotom

1 

ts a 

le very 
ld 

rite 

ies. All of these types of 
ulation tables. For example, we could 

sta late  dicho  Soft Drink (coded as described in the 
revious paragraph) with a multiple response variable Favorite Fast Foods (with 

variables can then be used in crosstab
cros bu  a multiple tomy for
p
many categories such as Hamburgers, Pizza, etc.), by the simple categorical 



variable Gender. As in the frequency table, the percentages and marginal totals 
in that table can be computed from the total number of respondents as well as 
the total number of responses. For example, consider the following hypothetical 
respondent:  

Gender Coke Pepsi Sprite Food1 Food2
FEMALE 1 1   FISH PIZZA

 
This female respondent mentioned Coke and Pepsi as her favorite d
Fish and Pizza as her favorite fast foods. In the complete crosstabulation table
she will be counted in the following cells of the table:  

  Food . . . 

rinks, and 
 

Gender Drink HAMBURG. FISH PIZZA . . . 

  
TOTAL No.

of  RESP. 
FEMALE 
  
  
MALE 
  
  

COKE 
PEPSI 
SPRITE 
COKE 
PEPSI 
SPRITE 

  
  
  
  
  
  

X 
X 
  
  
  
  

X 
X 
  
  
  
  

 
 
 
 
 
  

2 
2 
  
  
  
  

 
This female respondent will "contribute" to (i.e., be counted in) the 

e.  

 

y of past and 
resent home ownership. We asked the respondents to describe their last three 

(including the present) hom rally, for some 
s the present home is the first and only home; others have owned 

more than one home in the past. For each home we asked our respondents to 
mber of rooms in the respective house, and the number of 

crosstabulation table a total of 4 times. In addition, she will be counted twice in 
the Female--Coke marginal frequency column if that column is requested to 
represent the total number of responses; if the marginal totals are computed as 
the total number of respondents, then this respondent will only be counted onc
Paired Crosstabulation of Multiple Response Variables. A unique option for 
tabulating multiple response variables is to treat the variables in two or more
multiple response variables as matched pairs. Again, this method is best 
illustrated with a simple example. Suppose we conducted a surve
p

es that they purchased. Natu
respondent

write down the nu



occupants. Here is how the data for one respondent (say case number 112) may 
be entered into a data file:  
Case no. Rooms  1   2   3  No. Occ.  1  2  3 
 112    3   3   4     2  3  5 

 
This respondent owned three homes; the first had 3 rooms, the second also had 
3 rooms, and the third had 4 rooms. The family apparently also grew; there were 
2 occupants in the first home, 3 in the second, and 5 in the third.  
Now suppose we wanted to crosstabulate the number of rooms by the number of 
occupants for all respondents. One way to do so is to prepare three different two-

would, if we simply treated the two factors as 
to ignore the 
ooms in the first 

a se 
 

crosstabulation tables with multiple 
ichotomie  it is s etimes difficult (in our experience) to "keep 

 of exactly how t  case in the file are counted. The best way to verify that 
he w y in w ch the respective tables are constructed is to 

 simple example data, and then to trace how each case is 
ounted. The example section of the Crosstabulation chapter in the manual 

way tables; one for each home. We can also treat the two factors in this study 
(Number of Rooms, Number of Occupants) as multiple response variables. 
However, it would obviously not make any sense to count the example 
respondent 112 shown above in cell 3 Rooms - 5 Occupants of the 
crosstabulation table (which we 
ordinary multiple response variables). In other words, we want 
combination of occupants in the third home with the number of r
home. Rather, we would like to count these variables in pairs; we would like to 
consider the number of rooms in the first home together with the number of 
occupants in the first home, the number of rooms in the second home with the 
number of occupants in the second home, and so on. This is exactly what will be 

ccomplished if we asked for a paired crosstabulation of these multiple respon
variables. 
A Final Comment. 
responses/d

When preparing complex 
s, om

track"
one understands t

he
a

s 
hi

crosstabulate some
c
employs this method to illustrate how data are counted for tables involving 
multiple response variables and multiple dichotomies.  



 

ANOVA/MANOVA 
 

  
 

Basic Ideas  

The Purpose of Analysis of Variance  

In general, the purpose of analysis of variance (ANOVA) is to test for significant 
differences between means. Elementary Concepts provides a brief introduction 
into the basics of stati ignificance testing. If we are only comparing two 

e ive the same results as the t test for independent 
stical s

means, th n ANOVA will g
samples (if we are comparing two different groups of cases or observations), or 

t test for dependent samplesthe  (if we are comparing two variables in one set of 
cases or observations). If you are not familiar with those tests you may at this 
point want to "brush up" on your knowledge about those tests by reading Basic 
Statistics and Tables.  
Why the name analysis of variance? It may seem odd to you that a procedure 

res means is called analysis of variance. However, this name is 
derived from the fact that in order to test for statistical significance between 
means, we are actually comparing (i.e., analyzing) variances.  
  

that compa

The Partioning of Sums of Squares  

At the heart of ANOVA is the fact that variances can be divided up, that is, 
partitioned. Remember that the variance is computed as the sum of squared 
deviations from the overall mean, divided by n-1 (sample size minus one). Thus, 
given a certain n, the variance is a function of the sums of (deviation) squares, or 
SS for short. Partitioning of variance works as follows. Consider the following 
data set:  

  Group 1 Group 2

Observation 1 
Observation 2 
Observation 3 

2 
3 
1 

6 
7 
5 



Mean 
Sums of Squares (SS) 

2 
2 

6 
2 

Overall Mean 
Total Sums of Squares 

 4 
28 

 
The means for the two groups are quite different (2 and 6, respectively). The
sums of squares within each group are equal to 2. Adding them togeth

 
er, we get 

e 
her 

 

 

4. If we now repeat these computations, ignoring group membership, that is, if w
compute the total SS based on the overall mean, we get the number 28. In ot
words, computing the variance (sums of squares) based on the within-group 
variability yields a much smaller estimate of variance than computing it based on
the total variability (the overall mean). The reason for this in the above example 
is of course that there is a large difference between means, and it is this 
difference that accounts for the difference in the SS. In fact, if we were to perform
an ANOVA on the above data, we would get the following result:  

MAIN EFFECT   
SS  df  MS F p 

Effect 
Error 

24.0 
4.0 

1 
4 

24.0 
1.0 

24.0 
  

.008 
  

 
As you can see, in the above table the total SS (28) was partitioned into the SS
due to within-group variability (2+2=4) and variability due to differences between 

eans (28-

 

m (2+2)=24).  
SS) is usually referred to as 

in. 

 to 

 

SS Error and SS Effect. The within-group variability (
Error variance. This term denotes the fact that we cannot readily explain or 
account for it in the current design. However, the SS Effect we can expla
Namely, it is due to the differences in means between the groups. Put another 
way, group membership explains this variability because we know that it is due
the differences in means.  
Significance testing. The basic idea of statistical significance testing is discussed
in Elementary Concepts. Elementary Concepts also explains why very m
statistical test represent ratios of explained to unexplained variability. ANOVA is 

any 

a good example of this. Here, we base this test on a comparison of the variance 



due to the between- groups variability (called Mean Square Effect, or MSeffect) 
with the within- group variability (called Mean Square Error, or Mserror; this term 
was first used by Edgeworth, 1885). Under the null hypothesis (that there ar
mean differences between groups in the population), we would still expect some 

inor random fluctuation in the means for the two groups when taking small
samples (as in our example

e no 

m  
). Therefore, under the null hypothesis, the variance 

he 
tes 

estimated based on within-group variability should be about the same as t
variance due to between-groups variability. We can compare those two estima
of variance via the F test (see also F Distribution), which tests whether the ratio 
of the two variance estimates is significantly greater than 1. In our example 
ab e, ant, and we would in fact conclude that the 

s for th wo group re significantly different from each other.  
ummary of the basic logic of ANOVA. To summarize the discussion up to this 

point, the purpose of analysis of variance is to test differences in means (for 
or va bles) for s tistical significance. This is accomplished by analyzing 

e variance at is, by p titioning the total variance into the component that is 
due to true random error (i.e., within- group SS) and the components that are due 

 differences between means. These latter variance components are then tested 
 

 a 
 

t 

ov that test is highly signific
mean
S

e t s a

groups 
th

ria
, th

ta
ar

to
for statistical significance, and, if significant, we reject the null hypothesis of no
differences between means, and accept the alternative hypothesis that the 
means (in the population) are different from each other.  
Dependent and independent variables. The variables that are measured (e.g.,
test score) are called dependent variables. The variables that are manipulated or
controlled (e.g., a teaching method or some other criterion used to divide 
observations into groups that are compared) are called factors or independen
variables. For more information on this important distinction, refer to Elementary 
Concepts.  

Multi-Factor ANOVA  

In the simple example above, it may have occurred to you that we could have 
simply computed a t test for independent samples to arrive at the same 



conclusion. And, indeed, we would get the identical result if we were to compare
the two groups using this test. However, ANOVA is a much more flexible and 
powerful technique that can be applied to much more complex research issues.  
Multiple factors. The world is complex and multivariate in nature, and insta
when a single variable completely explains a phenomenon are 

 

nces 
rare. For 

to explore how to grow a bigger tomato, we would need to 

e former method is more 

is design in a 2 by 
2 table:  

Experimen
 

imen
p 2 

example, when trying 
consider factors that have to do with the plants' genetic makeup, soil conditions, 
lighting, temperature, etc. Thus, in a typical experiment, many factors are taken 
into account. One important reason for using ANOVA methods rather than 
multiple two-group studies analyzed via t tests is that th
efficient, and with fewer observations we can gain more information. Let us 
expand on this statement.  
Controlling for factors. Suppose that in the above two-group example we 
introduce another grouping factor, for example, Gender. Imagine that in each 
group we have 3 males and 3 females. We could summarize th

  Group 1
tal Exper tal

Grou
Males 

3 
1 

6 
7 
5 

  
  

2 

Mean 2 6 
Females 
  
  

4 
5 
3 

8 
9 
7 

Mean 4 8 

 
Before performing any computations, it appears that we can partition the 
variance into at least 3 sources: (1) error (within-group) variability, (2) variabili
due to experimental group membership, and (3) variability due to gender. (Note 
that there is an additional source -- interaction -- that we will discuss shortly.)
What would have happened had we not included gender as a factor in the study

total 
ty 

 
 

 
but rather computed a simple t test? If you compute the SS ignoring the gender 
factor (use the within-group means ignoring or collapsing across gender; the



result is SS=10+10=20), you will see that the resulting within-group SS is larger 
than it is when we include gender (use the within- group, within-gender means to 

e those o 2 in each group, thus the combined SS-
to 2 2+2=8). is difference is due to the fact that the means 

for m yste tically lower than those for females, and this difference in 
eans adds variability if we i is factor. Controlling for error variance 

ensi ity (power) of a test. This example demonstrates another 
rincipal of ANOVA that makes it preferable over simple two-group t test studies: 

ts  

There is another advantage of ANOVA over simple t-tests: ANOVA allows us to 
detect interaction effects between variables, and, therefore, to test more complex 
hypotheses about reality. Let us consider another example to illustrate this point. 
(The term interaction was first used by Fisher, 1926.)  
Main effects, two-way interaction. Imagine that we have a sample of highly 
achievement-oriented students and another of achievement "avoiders." We now 
create two random halves in each sample, and give one half of each sample a 
challenging test, the other an easy test. We measure how hard the students work 

comput  SS; they will be equal t
within is equal 

ales are s
+2+
ma

Th

m gnore th
increases the s tiv
p
In ANOVA we can test each factor while controlling for all others; this is actually 
the reason why ANOVA is more statistically powerful (i.e., we need fewer 
observations to find a significant effect) than the simple t test.  

Interaction Effec

on the test. The means of this (fictitious) study are as follows:  

  Achievement- 
oriented 

Achievement-
avoiders 

Challenging Test 
Easy Test 

10 
5 

5 
10 

 
How can we summarize these results? Is it appropriate to conclude that (1) 

 

achievement-oriented students work harder, while easy tests make only 

challenging tests make students work harder, (2) achievement-oriented students
work harder than achievement- avoiders? None of these statements captures the 
essence of this clearly systematic pattern of means. The appropriate way to 
summarize the result would be to say that challenging tests make only 



achievement- avoiders work harder. In other words, the type of achievemen
orientation and test difficulty interact in their effect on effort; specifically, this is an
example of a two-way interaction between achievement orientation and test 
difficulty. Note that statements 1 and 2 above describe so-called main effects.  
Higher order interactions. While the previous two-way interaction can be put into
words relatively easily, higher order 

t 
 

 
tionsinterac  are increasingly difficult to 

erbalize. Imagine that we had included factor Gender in the achievement study 
bove, and we had obtained the following pattern of means:  
emales Achievement- 

oriented 
Achievement-

avoiders 

v
a
F
  
Challenging Test 

Easy Test 
10 
5 

5 
10 

Males 
  

Achievement- 
oriented 

Achievement-
avoiders 

Challenging Test 
Easy Test 

1 
6 

6 
1 

 
How could we now summarize the results of our study? Graphs of means for all 
effects greatly facilitate the interpretation of complex effects. The pattern sho
in the table above (and in the graph below) represents a three-way interaction 
between factors.  

wn 

 
Thus we may summarize this pattern by saying that for females there is a two-
way interaction between achievement-orientation type and test difficulty: 
Achievement-oriented females work harder on challenging tests than on easy 
tests, achievement-avoiding females work harder on easy tests than on difficult 



tests. For males, this interaction is reversed. As you can see, the description of 
the interaction has become much more involved.  
A general way to express interactions. A general way to express all interactions 
is to say that an effect is modified (qualified) by another effect. Let us try this with 

 main effect for test difficulty is modified by 
ph, 

 

the two-way interaction above. The
achievement orientation. For the three-way interaction in the previous paragra
we may summarize that the two-way interaction between test difficulty and
achievement orientation is modified (qualified) by gender. If we have a four-way 
interaction, we may say that the three-way interaction is modified by the fourth 
variable, that is, that there are different types of interactions in the different levels 
of the fourth variable. As it turns out, in many areas of research five- or higher- 
way interactions are not that uncommon.  
 
 
 

 

Between-Groups and Repeated Measures  

ompare two groups, we would use the t test for independent 

Complex Designs  

  

  

When we want to c
samples; when we want to compare two variables given the same subjects 

t test for dependent samples(observations), we would use the . This distinction -- 

bacteria, etc.) then we refer to the factor as a between-groups factor. The 

dependent and independent samples -- is important for ANOVA as well. 
Basically, if we have repeated measurements of the same variable (under 
different conditions or at different points in time) on the same subjects, then the 
factor is a repeated measures factor (also called a within-subjects factor, 
because to estimate its significance we compute the within-subjects SS). If we 
compare different groups of subjects (e.g., males and females; three strains of 



computations of significance tests are different for these different types of fac
however, the logic of computations and interpretations is the same.  
Between-within designs. In many instances, experiments call for the inclusion
between-g

tors; 

 of 
roups and repeated measures factors. For example, we may measure 

he 
dent 

retation 

math skills in male and female students (gender, a between-groups factor) at t
beginning and the end of the semester. The two measurements on each stu
would constitute a within-subjects (repeated measures) factor. The interp
of main effects and interactions is not affected by whether a factor is between-
groups or repeated measures, and both factors may obviously interact with
other (e.g., females improve over the semester while males deteriorate).  

Incomplete (Nested) Designs  

There are instances where we may decide to ignore interaction 

 each 

effects. This 
appens when (1) we know that in the population the interaction effect is 
egligible, or (2) when a complete factorial design (this term was first introduced 
y Fisher, 1935a) cannot be used for economic reasons. Imagine a study where 

 on gas mileage. For our test, 
r drivers. A complete factorial 

is, one in which each combination of driver, additive, and car 

ct with 
se 

 Latin square design and "get 
ay" with only 16 individual groups (the four additives are denoted by letters A, 

h
n
b
we want to evaluate the effect of four fuel additives
our company has provided us with four cars and fou
experiment, that 
appears at least once, would require 4 x 4 x 4 = 64 individual test conditions 
(groups). However, we may not have the resources (time) to run all of these 
conditions; moreover, it seems unlikely that the type of driver would intera
the fuel additive to an extent that would be of practical relevance. Given the
considerations, one could actually run a so-called
aw
B, C, and D):  

Car   
 1   2   3   4 

Driver 1 
Driver 2 
Driver 3 
Driver 4 

A 
B 
C 
D 

B 
C 
D 
A 

C 
D 
A 
B 

D 
A 
B 
C 



 

ere the 
d te 

with 
n a sense, the levels of the additives factor (A, B, C, and D) are 

 the section on Methods for Analysis of 

Latin square designs (this term was first used by Euler, 1782) are described in 
most textbooks on experimental methods (e.g., Hays, 1988; Lindman, 1974; 
Milliken & Johnson, 1984; Winer, 1962), and we do not want to discuss h

etails of how they are constructed. Suffice it to say that this design is incomple
insofar as not all combinations of factor levels occur in the design. For example, 
Driver 1 will only drive Car 1 with additive A, while Driver 3 will drive that car 
additive C. I
placed into the cells of the car by driver matrix like "eggs into a nest." This 
mnemonic device is sometimes useful for remembering the nature of nested 
designs.  
Note that there are several other statistical procedures which may be used to 
analyze these types of designs; see
Variance for details. In particular the methods discussed in the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter are very efficient for 
analyzing designs with unbalanced nesting (when the nested factors have 
different numbers of levels within the levels of the factors in which they are 
nested), very large nested designs (e.g., with more than 200 levels overall), or 
hierarchically nested designs (with or without random factors).  
 
 
 

 
Analysis of Covariance (ANCOVA)  

General Idea  

The Basic Ideas section discussed briefly the idea of "controlling" for factors and 
how the inclusion of additional factors can reduce the error SS and increase th
statistical power (sensitivity) of our design. This idea can be extended to 
continuous variables, and when such continuous variables are included as 
factors in the design they are called covariates.  

e 

  

http://www.statsoft.com/textbook/stmulreg.html
http://www.statsoft.com/textbook/stmulreg.html
http://www.statsoft.com/textbook/stmulreg.html
http://www.statsoft.com/textbook/stmulreg.html
http://www.statsoft.com/textbook/stmulreg.html


Fixed Covariates  

Suppose that we want to compare the math skills of students who were rando
assigned to one of two alternative textbooks. Imagine that we also have data 
about th

mly 

e general intelligence (IQ) for each student in the study. We would 
suspect that general intelligence is related to math skills, and we can use this 
information to make our test more sensitive. Specifically, imagine that in each 
one of the two groups we can compute the correlation coefficient (see Basic 
Statistics and Tables) between IQ and math skills. Remember that once we have 

at 
computed the correlation coefficient we can estimate the amount of variance in 
math skills that is accounted for by IQ, and the amount of (residual) variance th
we cannot explain with IQ (refer also to Elementary Concepts and Basic 
Statistics and Tables). We may use this residual variance in the ANOVA as an
estimate of the true error SS after controlling for IQ. If the correlation betwee
and math skills is substantial, then a large reduction in the error SS may
achieved.  
Effect of a covariate on the F test. In the F test (see also 

 
n IQ 

 be 

F Distribution), to 
evaluate the statistical significance of between-groups differences, we com
the ratio of the between- groups variance (MS

pute 

 the 

ovariate 
ltiple covariates. For example, in 

clude measures of motivation, spatial reasoning, etc., 
cient 

effect) over the error variance 
(MSerror). If MSerror becomes smaller, due to the explanatory power of IQ, then
overall F value will become larger.  
Multiple covariates. The logic described above for the case of a single c
(IQ) can easily be extended to the case of mu
addition to IQ, we might in
and instead of a simple correlation, compute the multiple correlation coeffi
(see Multiple Regression).  
When the F value gets smaller. In some studies with covariates it happens th
the F value actually becomes smaller (less significant) after including cov
in the design. This is usually an indication that the covariates are not only 
correlated with the dependent variable (e.g., math skills), but also with the 
between-groups factors (e.g., the two different textbooks). For example, imagine

at 
ariates 

 



that we measured IQ at the end of the semester, after the students in the 
different experimental groups had used the respective textbook for almost one 
year. It is possible that, even though students were initially randomly assign
one of the two textbooks

ed to 
, the different books were so different that both math 

kills and IQ improved differentially in the two groups. In that case, the covariate 
ill not only partition variance away from the error variance, but also from the 
ariance due to the between- groups factor. Put another way, after controlling for 

 of IQ, we 
ve inadvertently eliminated the true effect of the textbooks on students' math 

d 

ns

s
w
v
the differences in IQ that were produced by the two textbooks, the math skills are 
not that different. Put in yet a third way, by "eliminating" the effects
ha
skills.  
Adjusted means. When the latter case happens, that is, when the covariate is 
affected by the between-groups factor, then it is appropriate to compute so-calle
adjusted means. These are the means that one would get after removing all 
differences that can be accounted for by the covariate.  
Interactions between covariates and factors. Just as we can test for interactio  

p

rom 

d

between factors, we can also test for the interactions between covariates and 
between-groups factors. Specifically, imagine that one of the textbooks is 
particularly suited for intelligent students, while the other actually bores those 
students but challenges the less intelligent ones. As a result, we may find a 

ositive correlation in the first group (the more intelligent, the better the 
performance), but a zero or slightly negative correlation in the second group (the 
more intelligent the student, the less likely he or she is to acquire math skills f
the particular textbook). In some older statistics textbooks this condition is 

iscussed as a case where the assumptions for analysis of covariance are 
violated (see Assumptions and Effects of Violating Assumptions). However, 
because ANOVA/MANOVA uses a very general approach to analysis of 
covariance, you can specifically estimate the statistical significance of 
interactions between factors and covariates.  

Changing Covariates  



While fixed covariates are commonly discussed in textbooks on ANOVA, 
changing covariates are discussed less frequently. In general, when we h
repeated measures, we are interested in testing the differences in repeated 
measurements on the same subjects. Thus we are actually interested in 
evaluating the significance of changes. If we have a covari

ave 

ate that is also 
ependent variable is measured, then we can measured at each point when the d

compute the correlation between the changes in the covariate and the changes 
in the dependent variable. For example, we could study math anxiety and math 
skills at the beginning and at the end of the semester. It would be interesting to 
see whether any changes in math anxiety over the semester correlate with 
changes in math skills.  
 
 
 

 

account when performing the significance test. Obviously, if we were to take the 

Multivariate Designs: MANOVA/MANCOVA  
  

Between-Groups Designs  

All examples discussed so far have involved only one dependent variable. Even 
though the computations become increasingly complex, the logic and nature of 
the computations do not change when there is more than one dependent variable 
at a time. For example, we may conduct a study where we try two different 
textbooks, and we are interested in the students' improvements in math and 
physics. In that case, we have two dependent variables, and our hypothesis is 
that both together are affected by the difference in textbooks. We could now 
perform a multivariate analysis of variance (MANOVA) to test this hypothesis. 
Instead of a univariate F value, we would obtain a multivariate F value (Wilks' 
lambda) based on a comparison of the error variance/covariance matrix and the 
effect variance/covariance matrix. The "covariance" here is included because the 
two measures are probably correlated and we must take this correlation into 



same measure twice, then we would really not learn anything new. If we take a 
correlated measure, we gain some new information, but the new variable will also 
ontain redundant information that is expressed in the covariance between the 
ariables.  
terpreting results. If the overall multivariate test is significant, we conclude that 

 our next question 
d, only physics skills 

improved, or both. In fact, after obtaining a significant multivariate test for a 
particular main effect or interaction, customarily one would examine the 

nivariate F tests (see also F Distribution

c
v
In
the respective effect (e.g., textbook) is significant. However,
would of course be whether only math skills improve

u ) for each variable to interpret the 
tify the specific dependent 

r 

n of 
d to test 

rs of ANOVA and MANOVA techniques are often puzzled 

m 
ach 

e" value of the variable in question, as well as some 

e sum 
 

respective effect. In other words, one would iden
variables that contributed to the significant overall effect.  

Repeated Measures Designs  

If we were to measure math and physics skills at the beginning of the semeste
and the end of the semester, we would have a multivariate repeated measure. 
Again, the logic of significance testing in such designs is simply an extensio
the univariate case. Note that MANOVA methods are also commonly use
the significance of univariate repeated measures factors with more than two 
levels; this application will be discussed later in this section.  

Sum Scores versus MANOVA  

Even experienced use
by the differences in results that sometimes occur when performing a MANOVA 
on, for example, three variables as compared to a univariate ANOVA on the su
of the three variables. The logic underlying the summing of variables is that e
variable contains some "tru
random measurement error. Therefore, by summing up variables, the 
measurement error will sum to approximately 0 across all measurements, and 
the sum score will become more and more reliable (increasingly equal to th
of true scores). In fact, under these circumstances, ANOVA on sums is
appropriate and represents a very sensitive (powerful) method. However, if the 



d  is 

tely 

ators 

ependent variable is truly multi- dimensional in nature, then summing
inappropriate. For example, suppose that my dependent measure consists of 
four indicators of success in society, and each indicator represents a comple
independent way in which a person could "make it" in life (e.g., successful 
professional, successful entrepreneur, successful homemaker, etc.). Now, 
summing up the scores on those variables would be like adding apples to 
oranges, and the resulting sum score will not be a reliable indicator of a single 
underlying dimension. Thus, one should treat such data as multivariate indic
of success in a MANOVA.  
 
 
 

 

hy Compare Individual Sets of Means?  

Usually, experimental hypotheses are stated in terms that are more specific than 

Contrast Analysis and Post hoc Tests  

  

 

W

simply main effects or interactions. We may have the specific hypothesis that a 
particular textbook will improve math skills in males, but not in females, while 
another book would be about equally effective for both genders, but less effective 

verall for males. Now generally, we are predicting an interaction here: the 
alified) by the student's gender. 

: 

ia contrast analysis.  

 

o
effectiveness of the book is modified (qu
However, we have a particular prediction concerning the nature of the interaction
we expect a significant difference between genders for one book, but not the 
other. This type of specific prediction is usually tested v

Contrast Analysis  

Briefly, contrast analysis allows us to test the statistical significance of predicted
specific differences in particular parts of our complex design. It is a major and 
indispensable component of the analysis of every complex ANOVA design.  



Post hoc Comparisons  

Sometimes we find effects in our experiment that were not expected. Even 
though in most cases a creative experimenter will be able to explain almost
pattern of means, it would not be appropriate to analyze and evaluate that 
pattern as if one had predicted it all along. The problem here is one of 
capitalizing on chance when performing multiple tests post hoc, that is, without 
priori hypotheses. To illustrate this point, let us consider the following 

 any 

a 

to write down a number between 1 and 10 on 

 
 

0 

s. Without going into 
d 

have chosen for our comparison the most 

"  

"experiment." Imagine we were 
100 pieces of paper. We then put all of those pieces into a hat and draw 20 
samples (of pieces of paper) of 5 observations each, and compute the means
(from the numbers written on the pieces of paper) for each group. How likely do
you think it is that we will find two sample means that are significantly different 
from each other? It is very likely! Selecting the extreme means obtained from 2
samples is very different from taking only 2 samples from the hat in the first 
place, which is what the test via the contrast analysis implie
further detail, there are several so-called post hoc tests that are explicitly base
on the first scenario (taking the extremes from 20 samples), that is, they are 
based on the assumption that we 
extreme (different) means out of k total means in the design. Those tests apply 
corrections" that are designed to offset the advantage of post hoc selection of

the most extreme comparisons.  
 
 
 

 
Assumptions and Effects of Violating Assumptions  

  

 

Deviation from Normal Distribution  



Assumptions. It is assumed that the dependent variable is measured on at le
an 

ast 
interval scale level (see Elementary Concepts). Moreover, the dependent 

variable should be normally distributed within groups.  
Effects of violations. Overall, the F test (see also F Distribution) is remarkably 
robust to deviations from normality (see Lindman, 1974, for a summary). If the 
kurtosis (see Basic Statistics and Tables) is greater than 0, then the F tends to 

is even though it is incorrect. be too small and we cannot reject the null hypothes
The opposite is the case when the kurtosis is less than 0. The skewness of the
distribution usually does not have a sizable effect on the F statistic. If the n per 
cell is fairly large, then deviations from normality do not matter much at al
because of the central limit theorem, according to which the sampling distribution
of the mean approximates the normal distribution, re
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gardless of the distribution of 

s 
ed the 

 (SS error) by adding up the sums of squares within each group. If 
he 

c is quite 
 also 

tance when the 
s 

the variable in the population. A detailed discussion of the robustness of the F 
statistic can be found in Box and Anderson (1955), or Lindman (1974).  

Homogeneity of Variances  

Assumptions. It is assumed that the variances in the different groups of the 
design are identical; this assumption is called the homogeneity of variance
assumption. Remember that at the beginning of this section we comput
error variance
the variances in the two groups are different from each other, then adding t
two together is not appropriate, and will not yield an estimate of the common 
within-group variance (since no common variance exists).  
Effects of violations. Lindman (1974, p. 33) shows that the F statisti
robust against violations of this assumption (heterogeneity of variances; see
Box, 1954a, 1954b; Hsu, 1938).  
Special case: correlated means and variances. However, one ins
F statistic is very misleading is when the means are correlated with variance
across cells of the design. A scatterplot of variances or standard deviations 
against the means will detect such correlations. The reason why this is a 
"dangerous" violation is the following: Imagine that you have 8 cells in the design, 



7 with about equal means but one with a much higher mean. The F statistic may 
suggest to you a statistically significant effect. However, suppose that there also 

 highest mean, that is, the means 

, 

b ed as 
 

.  
ccurs 

ase the 

s
. 

 of this 
lly 

 is 

is a much larger variance in the cell with the
and the variances are correlated across cells (the higher the mean the larger the 
variance). In that case, the high mean in the one cell is actually quite unreliable
as is indicated by the large variance. However, because the overall F statistic is 

ased on a pooled within-cell variance estimate, the high mean is identifi
significantly different from the others, when in fact it is not at all significantly
different if one based the test on the within-cell variance in that cell alone
This pattern -- a high mean and a large variance in one cell -- frequently o
when there are outliers present in the data. One or two extreme cases in a cell 
with only 10 cases can greatly bias the mean, and will dramatically incre
variance.  

Homogeneity of Variances and Covariances  

Assumptions. In multivariate designs, with multiple dependent measures, the 
homogeneity of variances assumption described earlier also applies. However, 
ince there are multiple dependent variables, it is also required that their 

intercorrelations (covariances) are homogeneous across the cells of the design
There are various specific tests of this assumption.  
Effects of violations. The multivariate equivalent of the F test is Wilks' lambda. 
Not much is known about the robustness of Wilks' lambda to violations
assumption. However, because the interpretation of MANOVA results usua
rests on the interpretation of significant univariate effects (after the overall test
significant), the above discussion concerning univariate ANOVA basically 
applies, and important significant univariate effects should be carefully 
scrutinized.  
Special case: ANCOVA. A special serious violation of the homogeneity of 
variances/covariances assumption may occur when covariates are involved in 
the design. Specifically, if the correlations of the covariates with the dependent 
measure(s) are very different in different cells of the design, gross 



misinterpretations of results may occur. Remember that in ANCOVA, we in 
essence perform a regression analysis within each cell to partition out the 
variance component due to the covariates. The homogeneity of 
variances/covariances assumption implies that we perform this regressio

nalysis subject to the constraint that all regres
n 

a sion equations (slopes) across the 
ay occur. 

e 

 

neous 

cells of the design are the same. If this is not the case, serious biases m
There are specific tests of this assumption, and it is advisable to look at thos
tests to ensure that the regression equations in different cells are approximately 
the same.  

Sphericity and Compound Symmetry  

Reasons for Using the Multivariate Approach to Repeated Measures ANOVA. In
repeated measures ANOVA containing repeated measures factors with more 
than two levels, additional special assumptions enter the picture: The compound 
symmetry assumption and the assumption of sphericity. Because these 
assumptions rarely hold (see below), the MANOVA approach to repeated 
measures ANOVA has gained popularity in recent years (both tests are 
automatically computed in ANOVA/MANOVA). The compound symmetry 
assumption requires that the variances (pooled within-group) and covariances 
(across subjects) of the different repeated measures are homoge
(identical). This is a sufficient condition for the univariate F test for repeated 
measures to be valid (i.e., for the reported F values to actually follow the F 
distribution). However, it is not a necessary condition. The sphericity as
is a necessary and sufficient condition for the F test to be valid; it states
within-subject "model" consists of independent (orthogonal) components. The 
nature of these as

sumption 
 that the 

sumptions, and the effects of violations are usually not well-
rify 

ch 

o our 

described in ANOVA textbooks; in the following paragraphs we will try to cla
this matter and explain what it means when the results of the univariate approa
differ from the multivariate approach to repeated measures ANOVA.  
The necessity of independent hypotheses. One general way of looking at 
ANOVA is to consider it a model fitting procedure. In a sense we bring t



data a set of a priori hypotheses; we then partition the variance (test main 
effects, interactions) to test those hypotheses. Computationally, this approach 
translates into generating a set of contrasts (comparisons between m
design) that specify the main effect and interaction hypotheses. Howeve
contrasts are not independent of each other, then the partitionin

eans in the 
r, if these 

g of variances 
 and 

e 

 general algorithm

runs afoul. For example, if two contrasts A and B are identical to each other
we partition out their components from the total variance, then we take the sam
thing out twice. Intuitively, specifying the two (not independent) hypotheses "the 
mean in Cell 1 is higher than the mean in Cell 2" and "the mean in Cell 1 is 
higher than the mean in Cell 2" is silly and simply makes no sense. Thus, 
hypotheses must be independent of each other, or orthogonal (the term 
orthogonality was first used by Yates, 1933).  
Independent hypotheses in repeated measures. The  

cify a 

jects, 

 
anges from time 1 to time 2 are negatively correlated with 

e changes from time 2 to time 3: subjects who learn most of the material 
 to time 3. In fact, in most 

approximations were introduced to compensate for the violations (e.g., 

implemented will attempt to generate, for each effect, a set of independent 
(orthogonal) contrasts. In repeated measures ANOVA, these contrasts spe
set of hypotheses about differences between the levels of the repeated 
measures factor. However, if these differences are correlated across sub
then the resulting contrasts are no longer independent. For example, in a study 
where we measured learning at three times during the experimental session, it
may happen that the ch
th
between time 1 and time 2 improve less from time 2
instances where a repeated measures ANOVA is used, one would probably 
suspect that the changes across levels are correlated across subjects. However, 
when this happens, the compound symmetry and sphericity assumptions have 
been violated, and independent contrasts cannot be computed.  
Effects of violations and remedies. When the compound symmetry or sphericity 
assumptions have been violated, the univariate ANOVA table will give erroneous 
results. Before multivariate procedures were well understood, various 



Greenhouse & Geisser, 1959; Huynh & Feldt, 1970), and these techniques a
still widely used.  
MANOVA approach to repeated measures. To summarize, the problem of 
compound symmetry and sphericity pertains to the fact that multiple contrasts
involved in testing repeated measures effects (with more than two levels) are no
independent of each other. However, they do not need to be independent of each 
other if we use multivariate criteria to simultane

re 
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ously test the statistical 
" is the 

f 

imply bypasses the 

orm the multivariate 

 

 and multivariate results. Anyone whose research 

ults 

are 

significance of the two or more repeated measures contrasts. This "insight
reason why MANOVA methods are increasingly applied to test the significance o
univariate repeated measures factors with more than two levels. We 
wholeheartedly endorse this approach because it s
assumption of compound symmetry and sphericity altogether.  
Cases when the MANOVA approach cannot be used. There are instances 
(designs) when the MANOVA approach cannot be applied; specifically, when 
there are few subjects in the design and many levels on the repeated measures 
factor, there may not be enough degrees of freedom to perf
analysis. For example, if we have 12 subjects and p = 4 repeated measures 
factors, each at k = 3 levels, then the four-way interaction would "consume" (k-1)p

= 24 = 16 degrees of freedom. However, we have only 12 subjects, so in this 
instance the multivariate test cannot be performed.  
Differences in univariate
involves extensive repeated measures designs has seen cases when the 
univariate approach to repeated measures ANOVA gives clearly different res
from the multivariate approach. To repeat the point, this means that the 
differences between the levels of the respective repeated measures factors 
in some way correlated across subjects. Sometimes, this insight by itself is of 
considerable interest.  
 

Methods for Analysis of Variance  



S
v

everal chapters in this textbook discuss methods for performing analysis of 
ariance. Although many of the available statistics overlap in the different 

chapters, each is best suited for particular applications.  
eneral ANCOVA/MANCOVAG : This chapter includes discussions of full factorial 
esigns, repeated measures designsd , mutivariate design (MANOVA), designs 

with balanced nesting (designs can be unbalanced, i.e., have unequal n), for 
valuating planned and post-hoc comparisonse , etc.  
eneral Linear ModelsG : This extremely comprehensive chapter discusses a 

complete implementation of the general linear model, and describes the sigma-
restricted as well as the overparameterized approach. This chapter includes 

, complex analysis of covariance designs, 
nested designs (balanced or unbalanced), mixed model ANOVA designs (with 

ndom effects), and huge balanced ANOVA designs (efficiently). It also contains 
descriptions of six types of Sums of Squares

information on incomplete designs

ra
.  

eneral Regression ModelsG : This chapter discusses the between subject 
esigns and multivariated  designs which are appropriate for stepwise regression 

as well as discussing how to perform stepwise and best-subset model building 
or continuous as well as categorical predictors).  
ixed ANCOVA and Variance Components

(f
M : This chapter includes discussions of 
experiments with random effects (mixed model ANOVA), estimating variance 
components for random effects, or large main effect designs (e.g., with factors 

) with or without random effects, or large designs with many 
factors, when you do not need to estimate all interactions
with over 100 levels

.  
xperimental Design (DOE)E : This chapter includes discussions of standard 

experimental designs for ind cations, including 2**(k-p)ustrial/manufacturing appli  
d 3**(k-p)an  designs, central composite and non-factorial designs, designs for 

mixtures, D and A optimal designs, and designs for arbitrarily constrained 
experimental regions.  
Repeatability and Reproducibility Analysis (in the Process Analysis chapter): Thi
section in the 

s 
Process Analysis chapter includes a discussion of specialized 



designs for evaluating the reliability and precision of measurement systems; 
these designs usually include two or three random factors, and specialized 
statistics can be computed for evaluating the quality of a measurement system 
(typically in industrial/manufacturing applications).  
Breakdown Tables (in the Basic Statistics chapter): This chapter includes 
discussions of experiments with only one factor (and many levels), or with 
multiple factors, when a complete ANOVA table is not required.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Association Rules 
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Association Rules Introductory Overview  
The goal of the techniques described in this section is to detect relationships or
associations between specific values of categorical variables in large data se
This is a common task in many data mining projects as well as in the data mining 
subcategory text mining. These powerful exploratory techniques have a wide 
range of applications in many areas of business practice and also research - 
from the analysis of consumer preferences or human resource management, to 
the history of language. These techniques enable analysts and researchers t
uncover hidden patterns in large data sets, such as "customers who order 
product A often also order product B or C" or "employees who said positive 
things about initiative X also frequently complain about issue Y but are happy 
with issue Z." The implementation of the so-called a-priori algorithm (see Agrawal 
and Swami, 1993; Agrawal and Srikant, 1994; Han and Lakshmanan, 2001; se
also Witten and Frank, 2000) allows you to process rapidly huge data sets for 
such associations, based on predefined "threshold" values for detection.  
How association rules work. The usefulness of this technique to address unique 

ata mining problems is best illustrated in a simple example. Suppose you ar
collecting data at the check-out cash registers at a large book store. Each 
customer transaction is logged in a database, and consists of the titles of the 
books purchased by the respective customer, perhaps a

o 

e 

d e 

dditional magazine titles 

d
reds 

o g 
 

to find 
associations between the items that were purchased, i.e., to derive association 

and other gift items that were purchased, and so on. Hence, each record in the 
atabase will represent one customer (transaction), and may consist of a single 

book purchased by that customer, or it may consist of many (perhaps hund
f) different items that were purchased, arranged in an arbitrary order dependin

on the order in which the different items (books, magazines, and so on) came
down the conveyor belt at the cash register. The purpose of the analysis is 



rules that identify the items and co-occurrences of different items that appear 
with the greatest (co-)frequencies. For example, you want to learn which books 
are likely to be purchased by a customer who you know already purchase
about to purchase) a particular book. This type of information could then quickl
be used to suggest to the customer those additional titles. You may already be 
"familiar" with the results of these types of analyses, if you are a cus

d (or is 
y 

tomer of 
arious on-line (Web-based) retail businesses; many times when making a 
urchase on-line, the vendor will suggest similar items (to the ones purchased by 

 such as "customers who 

v
p
you) at the time of "check-out", based on some rules
buy book title A are also likely to purchase book title B," and so on.  
Unique data analysis requirements. Crosstabulation tables, and in particular 

ultiple Response tablesM  can be used to analyze data of this kind. However, in 
ge 

may 
e 

 is 

hase of that book (yes/no) 

 
 would miss them completely. The a-priori algorithm implemented in 

cases when the number of different items (categories) in the data is very lar
(and not known ahead of time), and when the "factorial degree" of important 
association rules is not known ahead of time, then these tabulation facilities 
be too cumbersome to use, or simply not applicable: Consider once more th
simple "bookstore-example" discussed earlier. First, the number of book titles
practically unlimited. In other words, if we would make a table where each book 
title would represent one dimension, and the purc
would be the classes or categories for each dimension, then the complete 
crosstabulation table would be huge and sparse (consisting mostly of empty 
cells). Alternatively, we could construct all possible two-way tables from all items 
available in the store; this would allow us to detect two-way associations 
(association rules) between items. However, the number of tables that would 
have to be constructed would again be huge, most of the two-way tables would 
be sparse, and worse, if there were any three-way association rules "hiding" in
the data, we
Association Rules will not only automatically detect the relationships ("cross-
tabulation tables") that are important (i.e., cross-tabulation tables that are not 



sparse, not containing mostly zero's), but also determine the factorial degree of 
he tables that contain the important association rules.  
o summarize, Association Rules will allow you to find rules of the kind If X th

(likely) Y where X a

t
T en 

nd Y can be single values, items, words, etc., or conjunctions 

to 

ty of 

nsion. Hence, this technique is 

of values, items, words, etc. (e.g., if (Car=Porsche and Gender=Male and 
Age<20) then (Risk=High and Insurance=High)). The program can be used 
analyze simple categorical variables, dichotomous variables, and/or multiple 
response variables. The algorithm will determine association rules without 
requiring the user to specify the number of distinct categories present in the data, 
or any prior knowledge regarding the maximum factorial degree or complexi
the important associations. In a sense, the algorithm will construct cross-
tabulation tables without the need to specify the number of dimensions for the 
tables, or the number of categories for each dime
particularly well suited for data and text mining of huge databases.  
 
 

Computational Procedures and Terminology  
Categorical or class variables. Categorical variables are single variables that 
contains codes or text values to denote distinct classes; for example, a variable 
Gender would have the categories Male and Female.  
Multiple response variables. Multiple response variables usually consist 
multiple variables (i.e., a list of variables) that can contain, for each obse
codes or text values describing a single "dimension" or tra

of 
rvations, 

nsaction. A good 

in 

ple, 

example of a multiple response variable would be if a vendor recorded the 
purchases made by a customer in a single record, where each record could 
contain one or more items purchased, in arbitrary order. This is a typical format 
which customer transaction data would be kept.  
Multiple dichotomies. In this data format, each variable would represent one item 
or category, and the dichotomous data in each variable would indicate whether or 
not the respective item or category applies to the respective case. For exam



suppose a vendor created a data spreadsheet where each column represented 
one of the products available for purchase. Each transaction (row of the data 

n (Risk=High 
e 

I

v
transaction will also 

e computed. The probability that a transaction contains a particular code or text 
alue is called Support; the Support value is also computed in consecutive 

y (relative frequency of co-

f
 

t
p asses 

m 
 that 

de or text value Y -- is called 
the Confidence Value. In general (in later passes through the data) the 

spreadsheet) would record whether or not the respective customer did or did not 
purchase that product, i.e., whether or not the respective transaction involved 
each item.  
Association Rules: If Body then Head. The A-priori algorithm attempts to derive 
from the data association rules of the form: If "Body" then "Head", where Body 
and Head stand for simple codes or text values (items), or the conjunction of 
codes and text values (items; e.g., if (Car=Porsche and Age<20) the
and Insurance=High); here the logical conjunction before the then would be th
Body, and the logical conjunction following the then would be the Head of the 
association rule).  
nitial Pass Through the Data: The Support Value. First the program will scan all 

variables to determine the unique codes or text values (items) found in the 
ariables selected for the analysis. In this initial pass, the relative frequencies 

with which the individual codes or text values occur in each 
b
v
passes through the data, as the joint probabilit
occurrence) of pairs, triplets, etc. of codes or text values (items), i.e., separately 
or the Body and Head of each association rule.  

Second Pass Through the Data: The Confidence Value; Correlation Value. After
he initial pass through the data, all items with a support value less than some 
redefined minimum support value will be "remembered" for subsequent p

through the data: Specifically, the conditional probabilities will be computed for all 
pairs of codes or text values that have support values greater than the minimu
support value. This conditional probability - that an observation (transaction)
contains a code or text value X also contains a co



confidence value denotes the conditional pro
association rule, given the Body of the assoc
In addition, the support value will be comput
values, and a Correlation value based on the
value for a pair of codes or text values {X, Y

 
es 

efined minimum 
onfidence value, (2) have a support value that is greater than some user-
efined minimum support value, and (3) have a correlation value that is greater 
an some minimum correlation value will be retained.  
ubsequent Passes Through The Data: Maximum Item Size in Body, Head. The 

 scanned computing support, 
ations 

T
 

v
use no further associations can be found that 

, the 
 

bability of the Head of the 
iation rule.  

ed for each pair of codes or text 
 support values. The correlation 

} is computed as the support value 
for that pair, divided by the square root of the product of the support values for X
and Y. After the second pass through the data those pairs of codes or text valu
that (1) have a confidence value that is greater than some user-d
c
d
th
S
data in subsequent steps, the data will be further
confidence, and correlation values for pairs of codes or text values (associ
between single codes or text values), triplets of codes or text values, and so on. 

o reiterate, in general, at each association rules will be derived of the general 
form if "Body" then "Head", where Body and Head stand for simple codes or text
alues (items), or the conjunction of codes and text values (items).  

Unless the process stops beca
satisfy the minimum support, confidence, and correlation conditions, the process 
could continue to build very complex association rules (e.g., if X1 and X2 .. and 
X20 then Y1 and Y2 ... and Y20). To avoid excessive complexity, additionally
user can specify the maximum number of codes or text values (items) in the
Body and Head of the association rules; this value is referred to as the maximum 
item set size in the Body and Head of an association rule.  
 
 

Tabular Representation of Associations  

Association rules are generated of the general form if Body then Head, where 
Body and Head stand for single codes or text values (items) or conjunctions of 



codes or text values (items; e.g., if 
(Car=Porsche and Age<20) then 

and Insurance=High). The major statistics computed for the 
rules are Support (relative frequency of the Body or Head of the rule), 
(conditional probability of the Head given the Body of the rule), and 
(support for Body and Head, divided by the square root of the pro
rt for the Body and the support for the Head). These statistic
 in a spreadsheet, as shown below.  

This results spreadsheet shows an example of how associ

(Risk=High 
association 
Confidence 
Correlation duct 
of the suppo s can be 
summarized

ation rules can be 
pplied to text mining tasks. This analysis was performed on the paragraphs 

 
of, 

.  

a
(dialog spoken by the characters in the play) in the first scene of Shakespeare's
"All's Well That Ends Well," after removing a few very frequent words like is, 
etc. The values for support, confidence, and correlation are expressed in percent
 
 
 
 

Graphical Representation of Associations  

As a result of applying Association Rules data mining techniques to lar
datasets rules of the form if "Body" then "Head" will be derived, where Body and
Head stand for simple codes or text values (items), or the conjunction of codes 
and text values (items; e.g., if (Car=Porsche and Age<20) then (Risk=High and 
Insurance=High)). These rules can be reviewed in textual format or tables, or in 

ge 
 

graphical format (see below).  
Association Rules Networks, 2D. For example, consider the data that describe a 
(fictitious) survey of 100 patrons of sports bars and their preferences for watching 
various sports on television. This would be an example of simple categorical 



variables, where each variable represents one sport. For each sport, 
each respondent indicated how frequently s/he watched the 
respective type of sport on television. The association rules derived 
from these data could be summarized as follows:  
In this graph, the support values for the Body and Head portions of 
each association rule are indicated by the sizes and colors of each. 
The thickness of each line indicates the confidence value (conditional 
probability of Head given Body) for the respective association rule; 
the sizes and colors of the circles in the center, above the Implies 
label, indicate the joint support (for the co-occurences) of the 

ion 
 

ple 

cted in 

, i.e., 

he results that can be summarized in 2D Association Rules networks can be 
latively simple, or complex, as illustrated in the network shown to the left.  

his is an example of how association rules can be applied to text mining tasks. 
raphs (dialog spoken by the characters 

 
s 

f the research.  

respective Body and Head components of the respective associat
rules. Hence, in this graphical summary, the strongest support value was found
for Swimming=Sometimes, which was associated Gymnastic=Sometimes, 
Baseball = Sometimes, and Basketball=Sometimes. Incidentally. Unlike sim
frequency and crosstabulation tables, the absolute frequencies with which 
individual codes or text values (items) occur in the data are often not refle
the association rules; instead, only those codes or text values (items) are 
retained that show sufficient values for support, confidence, and correlation
that co-occur with other codes or text values (items) with sufficient relative (co-
)frequency.  
 
T
re
T
This analysis was performed on the parag
in the play) in the first scene of Shakespeare's "All's Well That Ends Well," after
removing a few very frequent words like is, of, etc. Of course, the specific word
and phrases removed during the data preparation phase of text (or data) mining 
projects will depend on the purpose o



Association Rules Networks, 3D. Association rules can be 
graphically summarized in 2D Association Networks, as well a
3D Association Networks. Shown below are some (very clear
results from an analysis. Respondents in a survey were a
to list their (up to) 3 favorite fast-foods. The association rules 
derived from those data are summarized in a 3D Association 
Network display.  
 

 
 
As in the 2D Association Network, the support va

s 
) 

sked 

lues for the Body and Head 
ortions of each association rule are indicated by the sizes and colors of each 
ircle in the 2D. The thickness of each line indicates the confidence value (joint 
robability) for the respective association rule; the sizes and colors of the 
floating" circles plotted against the (vertical) z-axis indicate the joint support (for 
e co-occurences) of the respective Body and Head components of the 
ssociation rules. The plot position of each circle along the vertical z - axis 
dicates the respective confidence value. Hence, this particular graphical 

ummary clearly shows two simple rules: Respondents who name Pizza as a 
referred fast food also mention Hamburger, and vice versa.  

terpreting and Comparing Results  

hen comparing the results of applying association rules to those from simple 
equency or cross-tabulation tables, you may notice that in some cases very 
igh-frequency codes or text values (items) are not part of any association rule. 
his can sometimes be perplexing.  
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To illustrate how this pattern of findings can occur, consider this example: 
Suppose you analyzed data from a survey of insurance rates for different makes 

erica. Simple tabulation would very likely show that many 

 

 Insurance=High). If you only reviewed a 
s e 

 

of automobiles in Am
people drive automobiles manufactured by Ford, GM, and Chrysler; however, 
none of these makes may be associated with particular patterns in insurance
rates, i.e., none of these brands may be involved in high-confidence, high-
correlation association rules linking them to particular categories of insurance 
rates. However, when applying association rules methods, automobile makes 
which occur in the sample with relatively low frequency (e.g., Porsche) may be 
found to be associated with high insurance rates (allowing you to infer, for 
example, a rule that if Car=Porsche then
imple cross-tabulation table (make of car by insurance rate) this high-confidenc

association rule may well have gone unnoticed.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Canonical Analysis 
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General Purpose  
There are several measures of correlation to express the relationship between
two or more variables. For example, the standard Pearson product moment 
correlation coefficient (r) measures the extent to which two variables are relate
there are various nonparametric measures of relationships that are based on the
similarity of ranks in two variables; Multiple Regression allows one to assess the 
relationship between a dependent variable and a set of independent variables; 
Multiple Correspondence Analysis is useful for exploring the relationships 
between a set of categorical variables.  
Canonical Correlation is an additional procedure for assessing the relationship 
between variables. Specifically, this analysis allows us to investigate the 
relationship between two sets of variables. For example, an educational 
researcher may want to compute the (simultaneous) relationship between thre
measures of scholastic ability with five measures of success in school. A
ociologist may want to investigate the relationship between two predictors

social mobility based on interviews, with actual subsequent social mobility as 
measured by four different indicators. A medical researcher may want to study 
the relationship of various risk factors to the development of a group of 
symptoms. In all of these cases, the researcher is interested in the relationship 
between two sets of va

e 
 

s  of 

riables, and Canonical Correlation would be the 
appropriate method of analysis.  
In the following topics we will briefly introduce the major concepts and statistics in 
canonical correlation analysis. We will assume that you are familiar with the 
correlation coefficient as described in Basic Statistics, and the basic ideas of 
multiple regression as described in the overview section of Multiple Regression.  
 
 



Computational Methods and Results  

Some of the computational issues involved in canonical correlation and the major 

d 
tion between the respective canonical variates. Note that the 
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results that are commonly reported will now be reviewed.  
Eigenvalues. When extracting the canonical roots, you will compute the 
eigenvalues. These can be interpreted as the proportion of variance accounte
for by the correla
proportion here is computed relative to the variance of the canonical variates, 
that is, of the weighted sum scores of the two sets of variables; the eigenvalues
do not tell how much variability is explained in either set of variables. You will
compute as many eigenvalues as there are canonical roots, that is, as many as 
the minimum number of variables in either of the two sets.  
Successive eigenvalues will be of smaller and smaller size. First, compute the 
weights that maximize the correlation of the tw
has been extracted, you will find the weights that produce the second largest 
correlation between sum scores, subject to the constraint that the next set of sum
scores does not correlate with the previous one, and so on.  
Canonical correlations. If the square root of the eigenvalues is taken, then the 
resulting numbers can be interpreted as correlation coefficients. Becaus
correlations pertain to the canonical variates, they are called canonical 
correlations. Like the eigenvalues, the correlations between successively 
extracted canonical variates are smaller and smaller. Therefore, as an overa
index of the canonical correlation between two sets of variables, it is customa
to report the largest correlation, that is, the one for the first 
other canonical variates can also be correlated in a meaningful and interpre
manner (see below).  
Significance of Roots. The significance test of the canonical correlations is 
straightforward in principle. Simply stated, the different canonical correlatio
tested, one by one, beginning with the largest one. Only those roots that are 
statistically significant are then retained for subsequent interpretation. Actu
the nature of the significance test is somewhat different. First, evaluate the 



significance of all roots combined, then of the roots remaining after removing the
first root, the second root, etc.  

 

the 

umber of significant canonical roots, 

e 

Some authors have criticized this sequential testing procedure for the 
significance of canonical roots (e.g., Harris, 1976). However, this procedure was 
"rehabilitated" in a subsequent Monte Carlo study by Mendoza, Markos, and 
Gonter (1978).  
In short, the results of that study showed that this testing procedure will detect 
strong canonical correlations most of the time, even with samples of relatively 
small size (e.g., n = 50). Weaker canonical correlations (e.g., R = .3) require 
larger sample sizes (n > 200) to be detected at least 50% of the time. Note that 
canonical correlations of small magnitude are often of little practical value, as 
they account for very little actual variability in the data. This issue, as well as 
sample size issue, will be discussed shortly.  
Canonical weights. After determining the n
the question arises as to how to interpret each (significant) root. Remember that 
each root actually represents two weighted sums, one for each set of variables. 
One way to interpret the "meaning" of each canonical root would be to look at the 
weights for each set. These weights are called the canonical weights .  
In general, the larger the weight (i.e., the absolute value of the weight), th
greater is the respective variable's unique positive or negative contribution to the 
sum. To facilitate comparisons between weights, the canonical weights are 
usually reported for the standardized variables, that is, for the z transformed 
variables with a mean of 0 and a standard deviation of 1.  
If you are familiar with multiple regression, you may interpret the canonical 
weights in the same manner as you would interpret the beta weights in a m
regression equation. In a sense, they represent the partial correlations of the 
variables with the respective canonical root. If you are familiar with 

ultiple 

factor 
analysis, you may interpret the canonical weights in the same manner as you 
would interpret the factor score coefficients. To summarize, the canonical 
weights allow the user to understand the "make-up" of each canonical root, that 



is, it lets the user see how each variable in each set uniquely contributes to
respective weighted sum (canonical variate).  
Canonical Scores. Canonical weights can also be used to compute actual val
of the canonical var

 the 

ues 
iates; that is, you can simply use the weights to compute the 

e 
ave 
 

respective sums. Again, remember that the canonical weights are customarily 
reported for the standardized (z transformed) variables.  
Factor structure. Another way of interpreting the canonical roots is to look at the 
simple correlations between the canonical variates (or factors) and the variables 
in each set. These correlations are also called canonical factor loadings. Th
logic here is that variables that are highly correlated with a canonical variate h
more in common with it. Therefore, you should weigh them more heavily when
deriving a meaningful interpretation of the respective canonical variate. This 
method of interpreting canonical variates is identical to the manner in which 
factors are interpreted in factor analysis.  
Factor structure versus canonical weights. Sometimes, the canonical weights for 
a variable are nearly zero, but the respective loading for the variable is ve

he opposite pattern of r
ry high. 

T esults may also occur. At first, such a finding may seem 
e 
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ith your 
sly, these items are very redundant. When the program 

ums (canonical variates) in each set so 
" to include one of the items to 

to 
it 

eless, if you then 

contradictory; however, remember that the canonical weights pertain to th
unique contribution of each variable, while the canonical factor loadings 
represent simple overall correlations. For example, suppose you included in your
satisfaction survey two items which measured basically the same thing, namely
(1) "Are you satisfied with your supervisors?" and (2) "Are you satisfied w
bosses?" Obviou
computes the weights for the weighted s
that they correlate maximally, it only "needs
capture the essence of what they measure. Once a large weight is assigned 
the first item, the contribution of the second item is redundant; consequently, 
will receive a zero or negligibly small canonical weight. Neverth
look at the simple correlations between the respective sum score with the two 
items (i.e., the factor loadings), those may be substantial for both. To reiterate, 



the canonical weights pertain to the unique contributions of the respective 
variables with a particular weighted sum or canonical variate; the canonical fa
loadings pertain to the overall correlation of the respective variables with the
canonical variate.  

ctor 
 

 
from 

the 
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the 
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ay, you can compute in this manner the average proportion of variance 
 by each root.  

e canonical correlations can be squared to compute the 
. 

ive 
 is, 

Variance extracted. As discussed earlier, the canonical correlation coefficient 
refers to the correlation between the weighted sums of the two sets of variables. 
It tells nothing about how much variability (variance) each canonical root explains
in the variables. However, you can infer the proportion of variance extracted 
each set of variables by a particular root by looking at the canonical factor 
loadings. Remember that those loadings represent correlations between 
canonical variates and the variables in the respective set. If you square 
correlations, the resulting numbers reflect the proportion of variance accounted 
for in each variable. For each root, you can take the average of those proportions 
across variables to get an indication of how much variability is explained, on 
average, by the respective canonical variate in that set of variables. Put anothe
w
extracted
Redundancy. Th
proportion of variance shared by the sum scores (canonical variates) in each set
If you multiply this proportion by the proportion of variance extracted, you arr
at a measure of redundancy, that is, of how redundant one set of variables
given the other set of variables. In equation form, you may express the 
redundancy as:  
Redundancyleft = [ (loadingsleft2)/p]*Rc2 
Redundancyright = [ (loadingsright2)/q]*Rc2  
In these equations, p denotes the number of variables in the first (left) set of 
variables, and q denotes the number of variables in the second (right) set of 
variables; Rc2 is the respective squared canonical correlation.  
Note that you can compute the redundancy of the first (left) set of variables given 
the second (right) set, and the redundancy of the second (right) set of variables, 



given the first (left) set. Because successively extracted canonical roots ar
uncorrelated, you could sum up the redundancies across all (or only the first 
significant) roots to arrive at a single index of redundancy (as proposed by 
Stewart and Love, 1968).  
Practical significance. The measure of redundancy is also useful for assessing
the practical significance of canonical roots. With large sample

e 

 
 sizes (see below), 

t 

tain a realistic appraisal of 
how much actual variance (in the variables) is accounted for by a canonical root, 
it is important to always keep in mind the redundancy measure, that is, how 
much of the actual variability in one set of variables is explained by the other.  
 
 

Assumptions  

The following discussion provides only a list of the most important assumptions 
of canonical correlation analysis, and the major threats to the reliability and 
validity of results. Distributions. The tests of significance of the canonical 

sumption that the distributions of the variables in 
ittle 
ion. 

 

relatively small samples (e.g., n = 50) will detect them most of the time. However, 

canonical correlations of magnitude R = .30 may become statistically significan
(see above). If you square this coefficient (R-square = .09) and use it in the 
redundancy formula shown above, it becomes clear that such canonical roots 
account for only very little variability in the variables. Of course, the final 
assessment of what does and does not constitute a finding of practical 
significance is subjective by nature. However, to main

correlations is based on the as
the population (from which the sample was drawn) are multivariate normal. L
is known about the effects of violations of the multivariate normality assumpt
However, with a sufficiently large sample size (see below) the results from 
canonical correlation analysis are usually quite robust.  
Sample sizes. Stevens (1986) provides a very thorough discussion of the sample 
sizes that should be used in order to obtain reliable results. As mentioned earlier,
if there are strong canonical correlations in the data (e.g., R > .7), then even 



in order to arrive at reliable estimates of the canonical factor loadings (for 
interpretation), Stevens recommends that there should be at least 20 times as 

ical 
lo 

tudy, to include 40 to 60 times as many cases as variables.  
utliers. Outliers can greatly affect the magnitudes of correlation coefficients. 

orrelation analysis is based on (computed from) correlation 
e, 

many cases as variables in the analysis, if one wants to interpret the most 
significant canonical root only. To arrive at reliable estimates for two canon
roots, Barcikowski and Stevens (1975) recommend, based on a Monte Car
s
O
Since canonical c
coefficients, they can also seriously affect the canonical correlations. Of cours
the larger the sample size, the smaller is the impact of one or two outliers. 
However, it is a good idea to examine various scatterplots to detect possible 
outliers (as shown in the example animation below).  

 
See also Confidence Ellipse.  
Matrix Ill-Conditioning. One assumption is that the variables in the two sets 
should not be completely redundant. For example, if you included the same 
variable twice in one of the sets, then it is not clear how to assign different 
weights to each of them. Computationally, such complete redundancies will 
"upset" the canonical correlation analysis. When there are perfect correlations in 
the correlation matrix, or if any of the multiple correlations between one variable 
and the others is perfect (R = 1.0), then the correlation matrix cannot be inverted, 



and the computations for the canonical analysis cannot be performed. Suc
correlation matrices are said to be ill-conditioned.  
Once again, this assumption appears trivial on the surface; however, it ofte

h 

n is 

ionnaire items, and satisfaction in various other domains with an 
 may want to answer is how 

p the responses to the 

in 

to work satisfaction. In fact, we 
ould potentially have lost important information by simply adding up items. For 
xample, suppose there were two items, one measuring satisfaction with one's 

ring satisfaction with one's financial 

D

 

"almost" violated when the analysis includes very many highly redundant 
measures, as is often the case when analyzing questionnaire responses.  
 
 

General Ideas  

Suppose you conduct a study in which you measure satisfaction at work with 
three quest
additional seven items. The general question that you
satisfaction at work relates to the satisfaction in those other domains.  

Sum Scores  

A first approach that you might take is simply to add u
work satisfaction items, and to correlate that sum with the responses to all other 
satisfaction items. If the correlation between the two sums is statistically 
significant, we could conclude that work satisfaction is related to satisfaction 
other domains.  
In a way this is a rather "crude" conclusion. We still know nothing about the 
particular domains of satisfaction that are related 
c
e
relationship with the spouse, the other measu
situation. Adding the two together is, obviously, like adding "apples to oranges." 

oing so implies that a person who is dissatisfied with her finances but happy 
with her spouse is comparable overall to a person who is satisfied financially but 
not happy in the relationship with her spouse. Most likely, people's psychological
make-up is not that simple...  



The problem then with simply correlating two sums is that one might lose 
important information in the process, and, in the worst case, actually "destroy" 
important relationships between variables by adding "apples to oranges."  
Using a weighted sum. It seems reasonable to correlate some kind of a weighted
sum instead, so that the "structure" of the variables in the two sets is reflected in 
the weights. For example, if satisfaction with one's spouse is only marginally 
related to work satisfaction, but financial satisfaction is strongly related to work 
satisfaction, then we could assign a smaller weight to the first item and a
weight to the s

 

 greater 
econd item. We can express this general idea in the following 

 
s. We have now formulated the general "model equation" 

 the 

anonical Roots/Variates  

 the terminology of canonical correlation analysis, the weighted sums define a 
al root or variate. You can think of those canonical variates (weighted 

ums) as describing some underlying "latent" variables. For example, if for a set 
f diverse satisfaction items we were to obtain a weighted sum marked by large 
eights for all items having to do with work, we could conclude that the 

respective canonical variate measures satisfaction with work.  

umber of Roots  

equation:  
a1*y1 + a2*y2 + ... + ap*yp = b1*x1 + b2*x2 + ... + bq*xq  
If we have two sets of variables, the first one containing p variables and the 
second one containing q variables, then we would like to correlate the weighted 
sums on each side of the equation with each other. 
Determining the weight
for canonical correlation. The only problem that remains is how to determine
weights for the two sets of variables. It seems to make little sense to assign 
weights so that the two weighted sums do not correlate with each other. A 
reasonable approach to take is to impose the condition that the two weighted 
sums shall correlate maximally with each other.  
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So far we have pretended as if there is only one set of weights (weighted sum) 
that can be extracted from th owever, suppose that we 
had among our work satisfaction items particular questions regarding satisfaction 

tion with one's social relationships 
ble that the pay satisfaction 

 
eally 

 
ne root, 

 
 will 

bility.  

e two sets of variables. H

with pay, and questions pertaining to satisfac
with other employees. It is possi items correlate with 
satisfaction with one's finances, and that the social relationship satisfaction items
correlate with the reported satisfaction with one's spouse. If so, we should r
derive two weighted sums to reflect this "complexity" in the structure of 
satisfaction.  
In fact, the computations involved in canonical correlation analysis will lead to 
more than one set of weighted sums. To be precise, the number of roots 
extracted will be equal to the minimum number of variables in either set. For 
example, if we have three work satisfaction items and seven general satisfaction 
items, then three canonical roots will be extracted.  

Extraction of Roots  

As mentioned before, you can extract roots so that the resulting correlation
between the canonical variates is maximal. When extracting more than o
each successive root will explain a unique additional proportion of variability in
the two sets of variables. Therefore, successively extracted canonical roots
be uncorrelated with each other, and account for less and less varia
 
 
 
 
 
 
 

 
 
 
 
 

 



 

CHAID Analysis 
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iques will construct trees, where each (non-

CHAID and Exhaustive CHAID  

is 

General CHAID Introductory Overview  
The acronym CHAID stands for Chi-squared Automatic Interaction Detector.
one of the oldest tree classification methods originally proposed by Kass (19
according to Ripley, 1996, the CHAID algorithm is a descendent of THAID 
developed by Morgan and Messenger, 1973). CHAID will "build" non-binary trees 
(i.e., trees where more than two branches can attach to a single root or node), 
based on a relatively simple algorithm that is particularly well suited for the 
analysis of larger datasets. Also, because the CHAID algorithm will often 
effectively yield many multi-way frequency tables (e.g., when classifying a 
categorical response variable with many categories, based on categorical 
predictors with many classes), it has been particularly popular in marketing 
research, in the context of market segmentation studies.  
Both CHAID and C&RT techn
terminal) node identifies a split condition, to yield optimum prediction (of 
continuous dependent or response variables) or classification (for categorical 
dependent or response variables). Hence, both types of algorithms can be 
applied to analyze regression-type problems or classification-type.  
 
 

Basic Tree-Building Algorithm: 
The acronym CHAID stands for Chi-squared Automatic Interaction Detector. Th
name derives from the basic algorithm that is used to construct (non-binary) 
trees, which for classification problems (when the dependent variable is 
categorical in nature) relies on the Chi-square test to determine the best next 
split at each step; for regression-type problems (continuous dependent v
the program will actually compute F-tests. Specifically, the algorithm proceeds 

ariable) 
as 

follows:  



Preparing predictors. The first step is to create categorical predictors out of any
continuous predictors by dividing the respective continuous distributions into
number of categories with an approximately equal number of observations. For 
catego

 
 a 

rical predictors, the categories (classes) are "naturally" defined.  
erging categories. The next step is to cycle through the predictors to determine 
r each predictor the pair of (predictor) categories that is least significantly 

le; for classification problems 

nt 

 value), then 
 categories 

ill 
ue for 

ormed (given the alpha-to-
erge and alpha-to-split values).  
HAID and Exhaustive CHAID Algorithms. A modification to the basic CHAID 

ID, performs a more thorough merging and 

-

algorithm then proceeds as described above in the Selecting the split variable 

M
fo
different with respect to the dependent variab
(where the dependent variable is categorical as well), it will compute a Chi-
square test (Pearson Chi-square); for regression problems (where the depende
variable is continuous), F tests. If the respective test for a given pair of predictor 
categories is not statistically significant as defined by an alpha-to-merge value, 
then it will merge the respective predictor categories and repeat this step (i.e., 
find the next pair of categories, which now may include previously merged 
categories). If the statistical significance for the respective pair of predictor 
categories is significant (less than the respective alpha-to-merge
(optionally) it will compute a Bonferroni adjusted p-value for the set of
for the respective predictor.  
Selecting the split variable. The next step is to choose the split the predictor 
variable with the smallest adjusted p-value, i.e., the predictor variable that w
yield the most significant split; if the smallest (Bonferroni) adjusted p-val
any predictor is greater than some alpha-to-split value, then no further splits will 
be performed, and the respective node is a terminal node.  
Continue this process until no further splits can be perf
m
C
algorithm, called Exhaustive CHA
testing of predictor variables, and hence requires more computing time. 
Specifically, the merging of categories continues (without reference to any alpha
to-merge value) until only two categories remain for each predictor. The 



step, and selects among the predictors the one that yields the most significant 
split. For large datasets, and with many continuous predictor variables, this 

g 

f  and 
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it is a 
 

e, it 
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 use of 
ese powerful classification and regression 

chniques to the analysis of data from experimental.  

HAID, C&RT, and QUEST  

or classification

modification of the simpler CHAID algorithm may require significant computin
time.  
 
 

General Computation Issues of CHAID  

Reviewing large trees: Unique analysis management tools. A general issue that 
arises when applying tree classification or regression methods is that the final 
trees can become very large. In practice, when the input data are complex and, 
or example, contain many different categories for classification problems,

many possible predictors for performing the classification, then the resulting tree
can become very large. This is not so much a computational problem as 
problem of presenting the trees in a manner that is easily accessible to the data
analyst, or for presentation to the "consumers" of the research.  
Analyzing ANCOVA-like designs. The classic CHAID algorithms can 
accommodate both continuous and categorical predictor. However, in practic
is not uncommon to combine such variables into analysis of variance/covarianc
(ANCOVA) like predictor designs with main effects or interaction effects for 
categorical and continuous predictors. This method of analyzing coded 
ANCOVA-like designs is relatively new. However, it is easy to see how the
coded predictor designs expands th
te
 
 

C
F -type problems (categorical dependent variable), all three 

lgorithms can be used to build a tree for prediction. QUEST is generally faster 
an the other two algorithms, however, for very large datasets, the memory 

a
th



requirements are usually larger, so using the QUEST algorithms for classification 
ractical.  

For regression-type problems (continuous dependent variable), the QUEST 
not applicable, so only CHAID and C&RT can be used. CHAID will 

build non-binary trees that tend to be "wider". This has made the CHAID method 
p any 

tly 
 
 

ble 

b t 

be 
r interpretation and/or presentation.  

As far as predictive accuracy is concerned, it is difficult to derive general 
ject of active research. As a 

o  of 
v

 

Classification and Regression Trees (C&RT) 

with very large input data sets may be imp

algorithm is 

articularly popular in market research applications: CHAID often yields m
terminal nodes connected to a single branch, which can be convenien
summarized in a simple two-way table with multiple categories for each variable
or dimension of the table. This type of display matches well the requirements for
research on market segmentation, for example, it may yield a split on a varia
Income, dividing that variable into 4 categories and groups of individuals 

elonging to those categories that are different with respect to some importan
consumer-behavior related variable (e.g., types of cars most likely to be 
purchased). C&RT will always yield binary trees, which can sometimes not 
summarized as efficiently fo

recommendations, and this issue is still the sub
practical matter, it is best to apply different algorithms, perhaps compare them 
with user-defined interactively derived trees, and decide on the most reasonably 
and best performing model based n the prediction errors. For a discussion
arious schemes for combining predictions from different models, see, for 

example, Witten and Frank, 2000.  
 

 
 
 
 
 
 



  
 

Introductory Overview - Basic Ideas  

Overview 

C&RT builds classification and regression trees for predicting continuous 
dependent variables (regression) and categorical predictor variables 
(classification). The classic C&RT algorithm was popularized by Breiman et a
(Breiman, Friedman, Olshen, & Stone, 1984; see also Ripley, 1996). A general 
ntroduction to tree-classifiers, specifically to the 

l. 

i QUEST (Quick, Unbiased,
Efficient Sta istical Trees) algorithm, is also presented in the context of the 

 
t

Classification Trees Analysis facilities, and much of the following discussion 
presents the same information, in only a slightly different context. Another, simil
type of tree building algorithm is CHAID (Chi-square Automatic Interaction 
Detector; see Ka

ar 

ss, 1980). 

 

Classification and Regression Problems 

There are numerous algorithms for predicting continuous variables or categorical
variables from a set of continuous predictors and/or categorical factor effects. For 
example, in GLM (General Linear Models) and GRM (General Regression 
Models), you can specify a linear combination (design) of continuous predic
and categorical factor effects (e.g., with two-way and three-way interaction 
effects) to predict a continuous dependent variable. In GDA (General 
Discriminant Function Analysis), you can specify such designs for predictin
categorical variables, i.e., to solve classification problems.  
Regression-type problems. Regression-type problems are generally those whe
one attempts to predict the values of a continuous variable from one or more 
continuous and/or 

tors 

g 

re 

categorical predictor variables. For example, you may want
redict the selling prices of single family homes (a continuous 

 to 
p dependent 
variable) from various other continuous predictors (e.g., square footage) as well 



as categorical predictors (e.g., 
code or telephone area code w his 
latter variable would be categor
numeric values or codes). If you
general linear model (GLM) to predict the selling prices of single family homes, 
you would determine a linear eq
compute predicted selling price ocedures 
for fitting linear models (GLM

style of home, such as ranch, two-story, etc.; zip 
here the property is located, etc.; note that t
ical in nature, even though it would contain 
 used simple multiple regression, or some 

uation for these variables that can be used to 
s. There are many different analytic pr

, GRM, Regression), various types of nonlinear 
m  (GLZ)odels (e.g., Generalized Linear/Nonlinear Models , Generalized Additive 
Models (GAM), etc.), or completely custom-defined nonlinear models (see 
Nonlinear Estimation), where you can type in an arbitrary equation containing
parameters to be estimated. CHA

 
ID also analyzes regression-type problems, and 

e similar (in nature) to those computed by C&RT. Note 
that various neural network architectures are also applicable to solve regression-

w

produces results that ar

type problems. 
Classification-type problems. Classification-type problems are generally those 

here one attempts to predict values of a categorical dependent variable (class, 
group membership, etc.) from one or more continuous and/or categorical 
predictor variables. For example, you may be interested in predicting who will or
will not graduate from college, or who will or will not renew a subscription. These
would be examples of simple binary classification problems, where the 
categorical dependent variable can only assume two distinct and mutually 
exclusive values. In other cases one might be interested in predicting whic
of multiple different alternative consumer products (e.g., makes of cars) a per
decides to purchase, or which type of failure occurs with diffe

 
 

h one 
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rent types of 
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engines. In those cases there are multiple categories or classes for the 
categorical dependent variable. There are a number of methods for analyzing
classification-type problems and to compute predicted classifications, either 
simple continuous predictors (e.g., binomial or multinomial logit regressio
GLZ), from categorical predictors (e.g., Log-Linear analysis of multi-way 



frequency tables), or both (e.g., via ANCOVA-like 
designs in GLZ or GDA). The CHAID also 

 

 or 
es.  

analyzes classification-type problems, and 
produces results that are similar (in nature) to 
those computed by C&RT. Note that various 
neural network architectures are also applicable
to solve classification-type problems. 

Classification and Regression Trees (C&RT) 

In most general terms, the purpose of the analyses via tree-building algorithms is to 
determine a set of if-then logical (split) conditions that permit accurate prediction
classification of cas

Classification Trees 

For example, consider the widely referenced Iris data classification problem 
introduced by Fisher [1936; see also Discriminant Function Analysis and Gen

s (GDA)]. The data file Irisdat reports the lengths and w
of three types of irises (Setosa, Versicol, and Virginic). Th
is is to learn how one can discriminate between the three

ed on the four measures of width and length of petals
function analysis will estimate several linear combinations 
r computing classification scores (or probabilities) that allow 
 the predicted classification for each observation. A 

l determine a set of logical if-then conditions (instead of 
predicting or classifying cases instead: 

The interpretation of this tree is straightforward: If the petal width is less than or 
equal to 0.8,

eral 
Discriminant Analysi idths 
of sepals and petals e 
purpose of the analys  
types of flowers, bas  and 
sepals. Discriminant of 
predictor variables fo
the user to determine
classification tree wil
linear equations) for 

 the respective flower would be classified as Setosa; if the petal 
idth is greater than 0.8 and less than or equal to 1.75, then the respective 

flower would be classified as Virginic; else, it belongs to class Versicol.  
w

 
 



Regression Trees 

The general approach to derive predictions from 
few simple if-then conditions can be applied to 
regression problems as well. This example is 
based on the data file Poverty, which contains 
1960 and 1970 Census figures for a random 

selection of 30 counties. The research question (for that example) was to 
determine the correlates of poverty, that is, the variables that best predict the 
percent of families below the poverty line in a county. A reanalysis of those data, 
using the regression tree analysis [and v-fold cross-validation, yields the 
following results: 
Again, the interpretation of these results is rather straightforward: Counties where 
the percent of households with a phone is greater than 72% have generally a 
lower poverty rate. The greatest poverty rate is evident in those counties that 
show less than (or equal to) 72% of households with a phone, and where the 

population change (from the 1960 census to the 170 
census) is less than -8.3 (minus 8.3). These results are 
straightforward, easily presented, and intuitively clear as 
well: There are some affluent counties (where most 
households have a telephone), and those generally have 
little poverty. Then there are counties that are generally less 
affluent, and among those the ones that shrunk most 
showed the greatest poverty rate. A quick review of the 
scatterplot of observed vs. predicted values shows how the 

discrimination between the latter two groups is particularly well "explained" by the 
tree model. 
 
 

Advantages of Classification and Regression Trees (C&RT) Methods 



As mentioned earlier, there are a large number of methods that an analyst can choose 
from when analyzing classification or regression problems. Tree classification 
techniques, when they "work" and produce accurate predictions or predicted 
classifications based on few logical if-then conditions, have a number of advantages ov
many of those alternative techniques.  
Simplicity of results. In most cases, the interpretation of results summarized in a 
tree is very simple. This simplicity is useful not only for purposes of rapid 
classification of new observations (it is much easier to evaluate just one or two 
logical conditions, than to compute classification scores for each possible

er 

 group, 
e complex 

an also often yield a much simpler "model" for 
ervations are classified or predicted in a particular manner 

tree 

 
 

tion 

or predicted values, based on all predictors and using possibly som
nonlinear model equations), but c
explaining why obs
(e.g., when analyzing business problems, it is much easier to present a few 
simple if-then statements to management, than some elaborate equations).  
Tree methods are nonparametric and nonlinear. The final results of using 
methods for classification or regression can be summarized in a series of 
(usually few) logical if-then conditions (tree nodes). Therefore, there is no implicit
assumption that the underlying relationships between the predictor variables and
the dependent variable are linear, follow some specific non-linear link func
[e.g., see Generalized Linear/Nonlinear Models (GLZ)], or that they are even 
monotonic in nature. For example, some continuous outcome variable of interest 

 

uch a 
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could be positively related to a variable Income if the income is less than some
certain amount, but negatively related if it is more than that amount (i.e., the tree 
could reveal multiple splits based on the same variable Income, revealing s
non-monotonic relationship between the variables). Thus, tree methods ar
particularly well suited for data mining tasks, where there is often little a priori 
knowledge nor any coherent set of theories or predictions regarding wh
variables are related and how. In those types of data analyses, tree methods can 
often reveal simple relationships between just a few variables that could have 
easily gone unnoticed using other analytic techniques.  

General Computation Issues and Unique Solutions of C&RT 

ich 



The computational details involved in determining the best split conditions t
construct a simple yet useful and informative tree are quite complex. R
Breiman et al. (1984) for a discussion of their CART® algorithm to learn more 
about the general theory of and specific computational solutions for constructing 
classification and regression trees. An excellent general discussion of tree 
classification and regression methods, and comparisons with other app

o 
efer to 

roaches 

es to "real" 

. In 

 

ctors, i.e., random or noise 
variation. The general approach to addressing this issue is first to stop 

little overall 
improvement of the prediction. For example, if you can predict 90% of all cases 

to pattern recognition and neural networks, is provided in Ripley (1996).  

Avoiding Over-Fitting: Pruning, Crossvalidation, and V-fold 
Crossvalidation 

A major issue that arises when applying regression or classification tre
data with much random error noise concerns the decision when to stop splitting. 
For example, if you had a data set with 10 cases, and performed 9 splits 
(determined 9 if-then conditions), you could perfectly predict every single case
general, if you only split a sufficient number of times, eventually you will be able 
to "predict" ("reproduce" would be the more appropriate term here) your original 
data (from which you determined the splits). Of course, it is far from clear 
whether such complex results (with many splits) will replicate in a sample of new
observations; most likely they will not.  
This general issue is also discussed in the literature on tree classification and 
regression methods, as well as neural networks, under the topic of "overlearning" 
or "overfitting." If not stopped, the tree algorithm will ultimately "extract" all 
information from the data, including information that is not and cannot be 
predicted in the population with the current set of predi

generating new split nodes when subsequent splits only result in very 

correctly from 10 splits, and 90.1% of all cases from 11 splits, then it obviously 
makes little sense to add that 11th split to the tree. There are many such criteria 
for automatically stopping the splitting (tree-building) process. 



Once the tree building algorithm has stopped, it is always useful to furthe
evaluate the quality of the prediction of the current tree in samples of 
observations that did not participate in the original computations. These method
are used to "prune back" the tree, i.e., to eventually (and ideally) selec
tree than the one obtained whe

r 

s 
t a simpler 

n the tree building algorithm stopped, but one that 
is equally as accurate for predicting or classifying "new" observations. 

ply the tree computed from one set of 

s 

 cross-validated 
redicted values. In most cases, this tree will not be 

inal nodes, i.e., the most complex tree. This method 
 trees, can 

 smaller data sets. It is an essential 
ste o els, and because it can be 
com u d is often not found in tree classification 
or r r

eviewing Large Trees: Unique Analysis Management Tools 

tion or regression 

Crossvalidation. One approach is to ap
observations (learning sample) to another completely independent set of 
observations (testing sample). If most or all of the splits determined by the 
analysis of the learning sample are essentially based on "random noise," then 
the prediction for the testing sample will be very poor. Hence one can infer that 
the selected tree is not very good (useful), and not of the "right size."  
V-fold crossvalidation. Continuing further along this line of reasoning (described 
in the context of crossvalidation above), why not repeat the analysis many time
over with different randomly drawn samples from the data, for every tree size 
starting at the root of the tree, and applying it to the prediction of observations 
from randomly selected testing samples. Then use (interpret, or accept as your 
final result) the tree that shows the best average accuracy for
predicted classifications or p
the one with the most term
for pruning a tree, and for selecting a smaller tree from a sequence of
be very powerful, and is particularly useful for

p f r generating useful (for prediction) tree mod
p tationally difficult to do, this metho

eg ession software.  

R

Another general issue that arises when applying tree classifica
methods is that the final trees can become very large. In practice, when the input 
data are complex and, for example, contain many different categories for 



classification problems and many possible predictors for performing the 
classification, then the resulting trees can become very large. This is not so mu
a computational problem as it is a problem of presenting the trees in a manner 
that is easily accessible to the data analyst, or for presentation to the 
"consumers" of the research.  

Analyzing ANCOVA-like Designs 

The classic (Breiman et. al., 1984) classification and regression trees algorithms 
can accommodate both continuous and categorical predictor. However, in 

ch 

 is relatively new and. However, it is easy 

practice, it is not uncommon to combine such variables into analysis of 
variance/covariance (ANCOVA) like predictor designs with main effects or 
interaction effects for categorical and continuous predictors. This method of 
analyzing coded ANCOVA-like designs
to see how the use of coded predictor designs expands these powerful 
classification and regression techniques to the analysis of data from experimental 
designs (e.g., see for example the detailed discussion of experimental design 
methods for quality improvement in the context of the Experimental Design 
module of Industrial Statistics).  

Computational Details  

The process of computing classification and regression trees can be 
characterized as involving four basic steps:  

• Specifying the criteria for predictive accuracy  
• Selecting splits  
• Determining when to stop splitting  
• Selecting the "right-sized" tree.  

 

Specifying the Criteria for Predictive Accuracy 

The classification and regression trees (C&RT) algorithms are generally aimed at 
achieving the best possible predictive accuracy. Operationally, the most accurate 



prediction is defined as the prediction with the minimum costs. The no
costs was developed as a way to generalize, to a broader ran

tion of 
ge of prediction 
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 using the 
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 size of the priors assigned to each class can be used to "adjust" 

the importance of misclassifications for each class. However, no priors are 
 is building a regression tree. 

situations, the idea that the best prediction has the lowest misclassification rate. 
In most applications, the cost is measured in terms of proportion of misclassified 
cases, or variance. In this context, it follows, therefore, that a prediction would
considered best if it has the lowest misclassification rate or the smallest varian
The need for minimizing costs, rather than just the proportion of misclas
cases, arises when some predictions that fail are more catastrophic than others,
or when some predictions that fail occur more frequently than others. 
Priors. In the case of a categorical response (classification problem), minimizing
costs amounts to minimizing the proportion of misclassified cases when prior
are taken to be proportional to the class sizes and when misclassification costs 
are taken to be equal for every class.  
The a priori probabilities used in minimizing costs can greatly affect the 
classification of cases or objects. Therefore, care has to be taken while
priors. If differential base rates are not of interest for the study, or if one knows 
that there are about an equal number of cases in each class, then one w
equal priors. If the differential base rates are reflected in the class sizes (a
would be, if the sample is a probability sample), then one would use priors 
estimated by the class proportions of the sample. Finally, if you have specific 
knowledge about the base rates (for example, based on previous research), then 
one would specify priors in accordance with that knowledge The general point
that the relative

required when one
Misclassification costs. Sometimes more accurate classification of the response 
is desired for some classes than others for reasons not related to the relative 
class sizes. If the criterion for predictive accuracy is Misclassification costs, then 
minimizing costs would amount to minimizing the proportion of misclassified 



cases when priors are considered proportional to the class sizes and 
misclassification costs are taken to be equal for every class.  
Case weights. Case weights are treated strictly as case multipliers. For examp
the misclassification rates from an analysis of an aggregated data set using cas
weights will be identical to the misclassification rates from the same analysis 
where the cases are replicated the specified 
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number of times in the data file.  
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ases as class 1 cases, and analyzed the data without 

case weights. 

Selecting Splits 
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However, note that the use of case weights for aggregated data sets in 
classification problems is related to the issue of minimizing costs. Interestingl
as an alternative to using case weights for aggregated data sets, one could 
specify appropriate priors and/or misclassification costs and produce the sa
results while avoiding the additional processing required to analyze m
cases with the same values for all variables. Suppose that in an aggregated data
set with two classes having an equal number of cases, there are case weig
2 for all cases in the first class, and case weights of 3 for all cases in the second
class. If you specified priors of .4 and .6, respectively, specified equal 
misclassification costs, and analyzed the data without case weights, you wil
the same misclassification rates as you would get if you specified priors 
estimated by the class sizes, specified equal misclassification costs, and 
analyzed the aggregated data set using the case weights. You would also get th
same misclassification rates if you specified priors to be equal, specified the 
costs of misclassifying class 1 cases as class 2 cases to be 2/3 of the costs o
misclassifying class 2 c

The second basic step in classification and regression trees is to select the spli
on the predictor variables that are used to predict membership in classes o
categorical dependent variables, or to predict values of the continuous 
dependent (response) variable. In general terms, the split at each node will 
found that will generate the greatest improvement in predictive accuracy. This is 



usually measured with some type of node impurity measure, which provides a
indication of the relative homogeneity (the inverse of impurity)

n 
 of cases in the 

m

f 

terminal nodes. If all cases in each terminal node show identical values, then 
node impurity is minimal, homogeneity is maximal, and prediction is perfect (at 
least for the cases used in the computations; predictive validity for new cases is 
of course a different matter...). 
For classification problems, C&RT gives the user the choice of several impurity 

easures: The Gini index, Chi-square, or G-square. The Gini index of node 
impurity is the measure most commonly chosen for classification-type problems. 
As an impurity measure, it reaches a value of zero when only one class is 
present at a node. With priors estimated from class sizes and equal 
misclassification costs, the Gini measure is computed as the sum of products o
all pairs of class proportions for classes present at the node; it reaches its 
maximum value when class sizes at the node are equal; the Gini index is equal 
to zero if all cases in a node belong to the same class. The Chi-square measure 
is similar to the standard Chi-square value computed for the expected and 
observed classifications (with priors adjusted for misclassification cost), and the 
G-square measure is similar to the maximum-likelihood Chi-square (as for 
example computed in the Log-Linear module). For regression-type problems, a 
least-squares deviation criterion (similar to what is computed in least squares 
regression) is automatically used. Computational Formulas provides further 
computational details. 

Determining When to Stop Splitting 

nse 

e 
r 

As discussed in Basic Ideas, in principal, splitting could continue until all cases 
are perfectly classified or predicted. However, this wouldn't make much se
since one would likely end up with a tree structure that is as complex and 
"tedious" as the original data file (with many nodes possibly containing singl
observations), and that would most likely not be very useful or accurate fo
predicting new observations. What is required is some reasonable stopping rule. 



In C&RT, two options are available that can be used to keep a check on the 
splitting process; namely Minimum n and Fraction of objects. 
Minimum n. One way to control splitting is to allow splitting to continue until all
terminal nodes are pure or contain no more than a specified minimum number
cases or objects. In C&RT this is done by using the option Minimum n that allows
you to specify the desired minimum number of cases as a check on the spl
process. This option can be used when Prune on misclassification error, Prun
on deviance, or Prune on variance is active as the Stopping rule for the an
Fraction of objects. Another way to control splitting is to allow splitting to contin
until all terminal nodes are pure

 
 of 

 
itting 
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alysis.  

ue 
 or contain no more cases than a specified 

minimum fraction of the sizes of one or more classes (in the case of classification 
problems, or all cases in regression problems). This option can be used when 
FACT-style direct stopping has been selected as the Stopping rule for th
analysis. In C&RT, the desired minimum fraction can be specified as the Fract
of objects. For classification problems, if the priors used in the analysis are e
and class sizes are equal as well, then splitting will stop when all terminal nod
containing more than one class have no more cases than the specified fraction 
the class sizes for one or more classes. Alternatively, if the 
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ion 

qual 
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of 
priors used in the 

g more 

 
me time it should be as simple as possible. It 

should exploit information that increases predictive accuracy and ignore 
information that does not. It should, if possible, lead to greater understanding of 

analysis are not equal, splitting will stop when all terminal nodes containin
than one class have no more cases than the specified fraction for one or more 
classes. See Loh and Vanichestakul, 1988 for details.  

Pruning and Selecting the "Right-Sized" Tree 

The size of a tree in the classification and regression trees analysis is an 
important issue, since an unreasonably big tree can only make the interpretation 
of results more difficult. Some generalizations can be offered about what 
constitutes the "right-sized" tree. It should be sufficiently complex to account for
the known facts, but at the sa



the phenomena it describes. The options available in C&RT allow the use of 
either, or both, of two different strategies for selecting the "right-sized" tree
among all the possible trees. One strategy is to grow the

 from 
 tree to just the right 

ven 
size, where the right size is determined by the user, based on the knowledge 
from previous research, diagnostic information from previous analyses, or e
intuition. The other strategy is to use a set of well-documented, structured 
procedures developed by Breiman et al. (1984) for selecting the "right-sized" 
tree. These procedures are not foolproof, as Breiman et al. (1984) readily 
acknowledge, but at least they take subjective judgment out of the process of 
selecting the "right-sized" tree. 
FACT-style direct stopping. We will begin by describing the first strategy, in which 
the user specifies the size to grow the tree. This strategy is followed by selecting 
FACT-style direct stopping as the stopping rule for the analysis, and by 
specifying the Fraction of objects which allows the tree to grow to the desired 
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size. C&RT provides several options for obtaining diagnostic information to 
determine the reasonableness of the choice of size for the tree. Specifically, 
hree options are available for performing cross-validation of the selected tree
amely Test sample, V-fold, and Minimal cost-complexity.  

Test sample cross-validation. The first, and most preferred type of cross-
validation is the test sample cross-validation. In this type of cross-validation, the 
ree is computed from the learning sample, and its predictive accuracy is te

by applying it to predict the class membership in the test sample. If the costs for 
the test sample exceed the costs for the learning sample, then this is an 
indication of poor cross-validation. In that case, a different sized tree might c
validate better. The test and learning samples can be formed by collecting tw
independent data sets, or if a large learning sample is available, by reserving a 
randomly selected proportion of the cases, say a third or a half, for use as the 
test sample.  



In the C&RT module, test sample cross-validation is performed by specifying a 
sample identifier variable which contains codes for identifying the sample 
(learning or test) to which each case or object belongs.  
V-fold cross-validation. The second type of cross-validation available in C&RT is 
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, so 
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re, based on maximum-likelihood principles, called the deviance (see 

 

V-fold cross-validation. This type of cross-validation is useful when no test 
sample is available and the learning sample is too small to have the test samp
taken from it. The user-specified 'v' value for v-fold cross-validation (its default 
value is 3) determines the number of random subsamples, as equal in size as 
possible, that are formed from the learning sample. A tree of the specified size is 
computed 'v' times, each time leaving out one of the subsamples from the 
computations, and using that subsample as a test sample for cross-validation
that each subsample is used (v - 1) times in the learning sample and just once as 
the test sample. The CV costs (cross-validation cost) computed for each of the
test samples are then averaged to give the v-fold estimate of the CV costs. 
Minimal cost-complexity cross-validation pruning. In C&RT, minimal cost-
complexity cross-validation pruning is performed, if Prune on misclassifica
error has been selected as the Stopping rule. On the other hand, if Prune on 
deviance has been selected as the Stopping rule, then minimal deviance-
complexity cross-validation pruning is performed. The only difference in the two 
options is the measure of prediction error that is used. Prune on misclassificati
error uses the costs that equals the misclassification rate when priors are 
estimated and misclassification costs are equal, while Prune on deviance uses a 
measu
Ripley, 1996). For details about the algorithms used in C&RT to implement 
Minimal cost-complexity cross-validation pruning, see also the Introductory
Overview and Computational Methods sections of Classification Trees Analysis.
The sequence of trees obtained by this algorithm have a number of intere
properties. They are nested, because the successively pruned trees contain all 
the nodes of the next smaller tree in the sequence. Initially, many no

sting 

des are 
ree to the next smaller tree in the sequence, but often pruned going from one t



fewer nodes tend to be pruned as the root node is approached. The sequence of
largest trees is also optimally pruned, because for every size of tree in 
sequence, there is no other tree of the same size with lower costs. Proofs and/o
explanations of these properties can be found in Breiman et al. (1984).  
Tree selection after pruning. The pruning, as discussed above, often results in 
sequence of optimally pruned trees. So the next task is to use an appropriate 
criterion to
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 select the "right-sized" tree from this set of optimal trees. A natural 

tree, 
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 plus 1 times the standard error of the CV costs for the 

an 
result in 

the minimal CV cost tree being selected as the "right-sized" tree. Values greater 
 the minimal CV cost tree being 

he "right-sized" tree, 
except for, perhaps, specification of a value for the SE rule. V-fold cross-

 when repeatedly 
cross-validated in different samples randomly drawn from the data.  

l Formulas  

criterion would be the CV costs (cross-validation costs). While there is nothing 
wrong with choosing the tree with the minimum CV costs as the "right-sized" 
oftentimes there will be several trees with CV costs close to the minimum. 
Following Breiman et al. (1984) one could use the "automatic" tree selection
procedure and choose as the "right-sized" tree the smallest-sized (least complex
tree whose CV costs do not differ appreciably from the minimum CV costs
particular, they proposed a "1 SE rule" for making this selection, i.e., choose as
the "right-sized" tree the smallest-sized tree whose CV costs do not exceed 
minimum CV costs
minimum CV costs tree. In C&RT, a multiple other than the 1 (the default) c
also be specified for the SE rule. Thus, specifying a value of 0.0 would 

than 1.0 could lead to trees much smaller than
selected as the "right-sized" tree. One distinct advantage of the "automatic" tree 
selection procedure is that it helps to avoid "over fitting" and "under fitting" of the 
data.  
As can be been seen, minimal cost-complexity cross-validation pruning and 
subsequent "right-sized" tree selection is a truly "automatic" process. The 
algorithms make all the decisions leading to the selection of t

validation allows you to evaluate how well each tree "performs"

Computationa



In Classification and Regression Trees, estimates of accuracy are computed by 

type problems). For classification-type problems 
true 

f the 

s: The Gini measure, generalized Chi-square 
measure, and generalized G-square measure. The Chi-square measure is similar 

different formulas for categorical and continuous dependent variables 
(classification and regression-
(categorical dependent variable) accuracy is measured in terms of the 
classification rate of the classifier, while in the case of regression (continuous 
dependent variable) accuracy is measured in terms of mean squared error o
predictor. 
In addition to measuring accuracy, the following measures of node impurity are 
used for classification problem

to the standard Chi-square value computed for the expected and observed 
classifications (with priors adjusted for misclassification cost), and the G-square 
measure is similar to the maximum-likelihood Chi-square (as for example 
computed in the Log-Linear module). The Gini measure is the one most often 
used for measuring purity in the context of classification problems, and it is 
described below. 
For continuous dependent variables (regression-type problems), the least 
squared deviation (LSD) measure of impurity is automatically applied. 

Estimation of Accuracy in Classification 

ependent variable), three estimates of the 

e proportion of cases that 

In classification problems (categorical d
accuracy are used: resubstitution estimate, test sample estimate, and v-fold 
cross-validation. These estimates are defined here. 
Resubstitution estimate. Resubstitution estimate is th
are misclassified by the classifier constructed from the entire sample. This 
estimate is computed in the following manner: 

 
where X is the indicator function; 

X = 1, if the statement is true



X = 0, if the statement is false

and d (x) is the classifier. 
The resubstitution estimate is computed using the same data as used in 

mple estimate is the proportion of cases in the 

s computed in the following way. 
Let the learning sample Ζ of size N be partitioned into subsamples Ζ1 and Ζ2 of 

 and 

constructing the classifier d . 
Test sample estimate. The total number of cases are divided into two 
subsamples Ζ1 and Ζ2. The test sa
subsample Ζ2, which are misclassified by the classifier constructed from the 
subsample Ζ1. This estimate i

sizes N N2, respectively. 

 
where Ζ2 is the sub sample that is not used for constructing the classifier.  
v-fold crossvalidation. The total number of cases are divided into v sub s
Ζ

amples 
-fold cross validation estimate is the 

is estimate is computed in the 
following way. 

rtitioned into v sub samples Ζ1, Ζ2, ..., Ζv 

1, Ζ2, ..., Ζv of almost equal sizes. v
proportion of cases in the subsample Ζ that are misclassified by the classifier 
constructed from the subsample Ζ −  Ζv. Th

Let the learning sample Ζ of size N be pa
of almost sizes N1, N2, ..., Nv, respectively. 

 
where is computed from the sub sample Ζ − Ζ .  v 

inuous dependent variable) three estimates of the 
 estimate, test sample estimate, and v-fold 

cross-validation. These estimates are defined here. 
n estimate is the estimate of the 

Estimation of Accuracy in Regression 
In the regression problem (cont
accuracy are used: resubstitution

Resubstitution estimate. The resubstitutio
expected squared error using the predictor  of the continuous dependent 
variable. This estimate is computed in the following way. 

 



where  the learning sample Ζ consists of (xi,yi),i = 1,2,...,N. The resubstitution 
estimate is computed using the same data as used in constructing the predictor d 
.  

et the learning sample Ζ of size N be partitioned into subsamples Ζ1 and Ζ2 of 
sizes N and N2, respectively. 

Test sample estimate. The total number of cases are divided into two 
subsamples Ζ1 and Ζ2. The test sample estimate of the mean squared error is 
computed in the following way:  
L

 
where Ζ2 is the sub-sample that is not used for constructing the predictor.  
-fold cross-validation. The total number of cases are divided into v sub samples 

1, Ζ2, ..., Ζv of almost equal sizes. The subsample Ζ −  Ζv is used to construct the 
redictor d. Then  v-fold cross validation estimate is computed from the 
ubsample Ζv in the following way: 

Let the learning sample Ζ of size N be partitioned into v sub samples Ζ1, Ζ2, ..., Ζv 
zes N1, N2, ..., Nv, respectively. 

v
Ζ

p
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of almost si

 
 where is computed from the sub sample Ζ −  Ζ
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stimation of Node Impurity: Gini Measure 
he Gini measure is the measure of impurity of a node and is commonly used 
hen the dependent variable is a categorical variable, defined as: 
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if costs of misclassification are not specified, 

  

 
if costs of misclassification are specified, 
w ry 

 
category i. 

here the sum extends over all k categories. p( j / t) is the probability of catego
j at the node t and C(i / j ) is the probability of misclassifying a category  j case as



Estimation of Node Impurity: Least-Squared Deviation  
Least-squared deviation (LSD) is used as the measure of impurity of a node 
when the response variable is continuous, and is computed as: 

 
where Nw(t) is the weighted number of cases in node t, wi is the value of the 

ariable for case i,  fweighting v
value of the response variable, and 

i is the value of the frequency variable,  yi is the 
y(t)  is the weighted mean for node t. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classification Trees 

  
 

Basic Ideas  



Classification trees are used to predict membership of cases or objects in the 
classes of a categorical dependent variable from their measurements on one or 
more predictor variables. Classification tree analysis is one of the main 
techniques used in so-called Data Mining.  
The goal of classification trees is to predict or explain responses on a categorical 
dependent variable, and as such, the available techniques have much in 
common with the techniques used in the more traditional methods of 
Discriminant Analysis, Cluster Analysis, Nonparametric Statistics, and Nonlinear 
Estimation. The flexibility of classification trees make them a very attractive 
analysis option, but this is not to say that their use is recommended to the 
exclusion of more traditional methods. Indeed, when the typically more stringent 
theoretical and distributional assumptions of more traditional methods are met, 
the traditional methods may be preferable. But as an exploratory technique, or as 
a technique of last resort when traditional methods fail, classification trees are, in 
the opinion of many researchers, unsurpassed.  
What are classification trees? Imagine that you want to devise a system for 
sorting a collection of coins into different classes (perhaps pennies, nickels, 

fer, 

here a slot the diameter of a nickel is cut, and so 

your 
 to a wide variety of classification problems.  

classification trees

dimes, quarters). Suppose that there is a measurement on which the coins dif
say diameter, which can be used to devise a hierarchical system for sorting 
coins. You might roll the coins on edge down a narrow track in which a slot the 
diameter of a dime is cut. If the coin falls through the slot it is classified as a 
dime, otherwise it continues down the track to where a slot the diameter of a 
penny is cut. If the coin falls through the slot it is classified as a penny, otherwise 
it continues down the track to w
on. You have just constructed a classification tree. The decision process used by 

classification tree provides an efficient method for sorting a pile of coins, 
and more generally, can be applied
The study and use of  are not widespread in the fields of 

rn recognition (Ripley, 1996), but classification 
nosis), 

probability and statistical patte
trees are widely used in applied fields as diverse as medicine (diag



computer science (data structures), botany (classification), and psychology 
yed 

g  a 
(decision theory). Classification trees readily lend themselves to being displa

raphically, helping to make them easier to interpret than they would be if only
strict numerical interpretation were possible.  

 
Classification trees can be and sometimes are quite complex. However, 
graphical procedures can be developed to help simplify interpretation even for 
complex trees. If one's interest is mainly in the conditions that produce a 
particular class of response, perhaps a High response, a 3D Contour Plot can
produced to identify which terminal node of the classification tree classifies m
of the cases with High responses.  

 be 
ost 

 
In the example illustrated by this 3D Contour Plot, one could "follow the 

A ly 

branches" leading to terminal node 8 to obtain an understanding of the conditions 
leading to High responses.  

menability to graphical display and ease of interpretation are perhaps part
responsible for the popularity of classification trees in applied fields, but two 



features that characterize classification trees more generally are their hierarchica
nature and their flexibility.  
For information on techniques and issues in computing classification trees, see 

l 

Computational Methods. See also Exploratory Data Analysis and Data Mining 
Techniques.  
 
 

Characteristics of Classification Trees  

Hierarchical Nature of Classification Trees  

Breiman et al. (1984) give a number of examples of the use of classification 
trees. As one example, when heart attack patients are admitted to a hospital, 

ozens of tests are often performed to obtain physiological measures such as d

ly 

w
a a

heart rate, blood pressure, and so on. A wide variety of other information is also 
obtained, such as the patient's age and medical history. Patients subsequent
can be tracked to see if they survive the heart attack, say, at least 30 days. It 

ould be useful in developing treatments for heart attack patients, and in 
dvancing medical theory on he rt failure, if measurements taken soon after 

hospital admission could be used to identify high-risk patients (those who are not 
likely to survive at least 30 days). One classification tree that Breiman et al
(1984) developed to address this problem was a simple, three question dec
ree. Verbally, the binary classification tree can be described by the statemen

. 
ision 

t t, "If 

s

d

branch from which the leaf hangs. The hierarchical nature of classification trees

the patient's minimum systolic blood pressure over the initial 24 hour period is 
greater than 91, then if the patient's age is over 62.5 years, then if the patient 
displays sinus tachycardia, then and only then the patient is predicted not to 
urvive for at least 30 days." It is easy to conjure up the image of a decision 

"tree" from such a statement. A hierarchy of questions are asked and the final 
ecision that is made depends on the answers to all the previous questions. 

Similarly, the relationship of a leaf to the tree on which it grows can be described 
by the hierarchy of splits of branches (starting from the trunk) leading to the last 
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is one of their most basic features (but the analogy with trees in nature should 
not be taken too far; most decision trees are drawn downward on paper, so

ore exact analogy in nature would be a decision root system leading to
ips, hardly a poetic image).  

The hierarchical nature 

 the 
m  the root 
t

of classification trees is illustrated by a comparison to the 
in Discriminant Analysisdecision-making procedure employed . A traditional 

ould be 

 

 

t" on 

 
igh risk."  

I have 

ively, "If p + P is less than or equal to zero, the patient is low risk, else if a 
 or 

ially, 

linear discriminant analysis of the heart attack data would produce a set of 
coefficients defining the single linear combination of blood pressure, patient age, 
and sinus tachycardia measurements that best differentiates low risk from high 
risk patients. A score for each patient on the linear discriminant function w
computed as a composite of each patient's measurements on the three predictor 
variables, weighted by the respective discriminant function coefficients. The 
predicted classification of each patient as a low risk or a high risk patient would
be made by simultaneously considering the patient's scores on the three 
predictor variables. That is, suppose P (minimum systolic blood Pressure over
the 24 hour period), A (Age in years), and T (presence of sinus Tachycardia: 0 = 
not present; 1 = present) are the predictor variables, p, a, and t, are the 
corresponding linear discriminant function coefficients, and c is the "cut poin
the discriminant function for separating the two classes of heart attack patients. 
The decision equation for each patient would be of the form, "if pP + aA + tT - c is
less than or equal to zero, the patient is low risk, else the patient is in h
n comparison, the decision tree developed by Breiman et al. (1984) would 

the following hierarchical form, where p, a, and t would be -91, -62.5, and 0, 
respect
+ A is less than or equal to zero, the patient is low risk, else if t + T is less than
equal to zero, the patient is low risk, else the patient is high risk." Superfic
the Discriminant Analysis and classification tree decision processes might ap
imilar, because both involve coefficients and decision equations. But the 

difference of the simultaneous decisions of 

pear 
s

Discriminant Analysis from the 
hierarchical decisions of classification trees cannot be emphasized enough.  

http://www.statsoft.com/textbook/stdiscan.html


T  by 
c

he distinction between the two approaches can perhaps be made most clear
onsidering how each analysis would be performed in Regression. Because risk 

in the example of Breiman et al. (1984) is a dichotomous dependent variable, the 
Discriminant Analysis predictions could be reproduced by a simultaneous 
multiple regression of risk on the three predictor variables for all patients. The 
classification tree predictions could only be reproduced by three separate simple 
r  

f l

egression analyses, where risk is first regressed on P for all patients, then risk is
regressed on A for patients not classified as low risk in the first regression, and 
ina ly, risk is regressed on T for patients not classified as low risk in the second 
regression. This clearly illustrates the simultaneous nature of Discriminant 
Analysis decisions as compared to the recursive, hierarchical nature of 
classification trees decisions, a characteristic of classification trees that has fa
reaching implications.  

Flexibility of Classification Trees  

Another distinctive characteristic of 

r-

classification trees is their flexibility. Th
bility of classification trees to examine the effects of the predictor variables one 
t a time, rather than just all at once, has already been described, but there are a 

number of other ways in which classification trees are more flexible than 
traditional analyses. The ability of classification trees to perform univariate split
examining the effects of predictors one at a time, has implications for the variety 
of types of predictors that can be analyzed. In the Breiman et al. (1984) h

e 
a  
a

s, 

eart 

ps 

additional 

orical predictors, continuous 

attack example, blood pressure and age were continuous predictors, but 
presence of sinus tachycardia was a categorical (two-level) predictor. Even if 
sinus tachycardia was measured as a three-level categorical predictor (perha
coded as 0 = not present; 1 = present; 3 = unknown or unsure), without any 
underlying continuous dimension represented by the values assigned to its 
levels, univariate splits on the predictor variables could still be easily performed. 
Additional decisions would be added to the decision tree to exploit any 
information on risk provided by the additional category. To summarize, 
classification trees can be computed for categ



predictors, or any mix of the two types of predictors when univariate splits are 
used.  
Traditional linear discriminant analysis requires that the predictor variables be 
measured on at least an interval scale. For classification trees based on 
univariate splits for ordinal scale predictor variables, it is interesting that any 
monotonic transformation of the predictor variables (i.e., any transformation that 
preserves the order of values on the variable) will produce splits yielding the 
same predicted classes for the cases or objects (if the C&RT-style univariate split 

 
t sion 

u

selection method is used, see Breimen et al., 1984). Therefore, classification 
trees based on univariate splits can be computed without concern for whether a
unit change on a continuous predictor represents a unit change on he dimen

nderlying the values on the predictor variable; it need only be assumed that 
predictors are measured on at least an ordinal scale. In short, assumptions 
regarding the level of measurement of predictor variables are less stringent.  
Classification trees are not limited to univariate splits on the predictor variables. 
When continuous predictors are indeed measured on at least an interval scale, 
linear combination splits, similar to the splits for linear discriminant analysis, can
be computed for classification trees. However, the linear combination splits 
computed for Classification Trees do differ in important ways from the linea
combination splits computed for 

 

r 
Discriminant Analysis. In linear discriminant 

analysis the number of linear discriminant functions that can be extracted is the 
lesser of the number of predictor variables or the number of classes on the 
dependent variable minus one. The recursive approach implemented for 

f 
re 

 
 predictor variables unused.  

Classification Treesmodule does not face this limitation. For example, dozens o
recursive, linear combination splits potentially could be performed when there a
dozens of predictor variables but only two classes on the dependent variable. 
This compares with the single linear combination split that could be performed 
using traditional, non-recursive Iinear discriminant analysis, which could leave a
substantial amount of the information in the



Now consider the situation in which there are many categories but few predicto
Suppose you were trying to sort coins into classes (perhaps pennies, nickels, 
dimes, and quarters) based only on thickness and diameter measurements. 
Using traditional linear discriminant analysis, at most two linear discriminant 
functions could be extracted, and the coins could be successfully sorted only 
there were no more than two dimensions represented by linear combinations
thickness and diameter on which the coins differ. Again, the approach 
implemented for Classification Trees does not face a limitation on the number of 
linear combination splits that can be formed.  
The approach implemented for Classification Trees for linear combination splits
can also be used as the analysis me

rs. 

if 
 of 

 
thod for constructing classification trees 

st a special case of a linear 
r 

c e. 

a 

r 

using univariate splits. Actually, a univariate split is ju
combination split. Imagine a linear combination split in which the coefficients fo
reating the weighted composite were zero for all predictor variables except on

Since scores on the weighted composite would depend only on the scores on the 
one predictor variable with the nonzero coefficient, the resulting split would be 
univariate split.  
The approach implemented for Classification Trees for the Discriminant-based 
univariate split selection method for categorical and ordered predictors and fo
the Discriminant-based linear combination split selection method for ordered 
predictors is an adaption of the algorithms used in QUEST (Quick, Unbias
Efficient Statistical Trees). QUEST is a 

ed, 
classification tree program develop

Loh and Shih
ed by 

 (1997) that employs a modification of recursive quadratic 
 and includes a number of innovative features for improving 

f the classification trees that it computes.  
The a ms u T

discriminant analysis
the reliability and efficiency o

lgorith sed in QUES  are fairly technical, but the Classification Trees 
modu  offe Split selection method option based on a conceptually 
simple roac -style univariate split selection method is an 
adapt  the a h ed in C&RT

le also
r app

ion of

rs a 
h. The
lgorit

 C&RT
ms us , as described by Breiman et al. (1984). 

C&RT sifica gression Trees) is a classification tree (Clas tion And Re  program that 



uses an exhaustive grid search of all possible univariate splits to find the splits for 
a cla tion t
The QUEST

ssifica ree.  
 and T C&R  analy

g the best classification (in the 
lidatio

sis options compliment each other nicely. C&RT 
searches can be lengthy when there are a large number of predictor variables 
with many levels, and it is biased toward choosing predictor variables with more 
levels for splits, but because it employs an exhaustive search, it is guaranteed to 
find th ts pro learning sample, but not 
neces  in cross-va n samples

e spli
sarily

ducin
).  

QUEST is fast a b  The speed advantage of QUEST over C&RTnd un iased.  is 
particularly dramatic when the predictor variables have dozens of levels (Loh & 
Shih, 1997, report an analysis completed by QUEST in 1 CPU second that took 
C&RT  CPU s to complete). QUEST's lack of bias in variable selection 
for sp also n antage when some predictor variable have few 
levels and other predictor variables have many levels (predictors with many 
levels are more likely to produce "fluke theories," which fit the data well but have 

w predictive accuracy, see Doyle, 1973, and Quinlan & Cameron-Jones, 1995). 
inally, QUEST does not sacrifice predictive accuracy for speed (Lim, Loh, & 

 30.5
lits is 

 hour
a disti ct adv

lo
F
Shih, 1997). Together, the QUEST and C&RT options allow one to fully exploit 
the flexibility of classification trees.  

The Power and Pitfalls of Classification Trees  

he advantages of T classification trees over traditional methods such as linear 
discriminant analysis, at least in some applications, can be illustrated using a 
simple, fictitious data set. To keep the presentation even-handed, other situations 
in which linear discriminant analysis would outperform classification trees are 
illustrated using a second data set.  
Suppose you have records of the Longitude and Latitude coordinates at which 37 
storms reached hurricane strength for two classifications of hurricanes--Baro 
hurricanes and Trop hurricanes. The fictitious data shown below were presented 
for illustrative purposes by Elsner, Lehmiller, and Kimberlain (1996), who 



investigated the differences between baroclinic and tropical North Atlantic 
urricanes.  

DATA: Barotrop.sta 3v 
h

LONGITUD LATITUDE CLASS 
59.00 
59.50 
60.00 
60.50 
61.00 
61.00 
61.50 
61.50 
62.00 
63.00 
63.50 
64.00 
64.50 
65.00 
65.00 
65.00 
65.50 

17.00 
21.00 
12.00 
16.00 
13.00 
15.00 
17.00 
19.00 
14.00 
15.00 
19.00 
12.00 
16.00 
12.00 
15.00 
17.00 
16.00 

BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 

65.50 
65.50 
66.00 
66.00 
66.00 
66.50 
66.50 
66.50 
67.00 
67.50 
68.00 
68.50 
69.00 
69.00 
69.50 
69.50 
70.00 
70.50 
71.00 
71.50 

19.00 
21.00 
13.00 
14.00 
17.00 
17.00 
18.00 
21.00 
14.00 
18.00 
14.00 
18.00 
13.00 
15.00 
17.00 
19.00 
12.00 
16.00 
17.00 
21.00 

TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 

 
 
A linear discriminant analysis of hurricane Class (Baro or Trop) using Longitude
and Latitude as predictors correctly classifies only 20 of the 37 hurricanes (54%
A 

 
). 

classification tree for Class using the C&RT-style exhaustive search for 



univariate splits option correctly classifies all 37 hurricanes. The Tree graph for 
the classification tree is shown below.  

 
The headings of the graph give the summary information that the classification 
tree has 2 splits and 3 terminal nodes. Terminal nodes, or terminal leaves as 
hey are sometimes called, are points on the tree beyond which no further 
decisions are made. In the graph itself, terminal nodes are outlined with dotted 
red lines, while the remaining decision nodes or split nodes are outlined with 
solid black lines. The tree s

t

tarts with the top decision node, sometimes called the 

 
n because there are slightly more Baro 

than Trop hurricanes, as indicated by the histogram

root node. In the graph it is labeled as node 1 in its top-left corner. Initially, all 37 
hurricanes are assigned to the root node and tentatively classified as Baro 
hurricanes, as indicated by the Baro label in the top-right corner of the root node.
Baro is chosen as the initial classificatio

 plotted within the root node. 
 

es 

nes, and that hurricanes with Longitude coordinate 
 number 3 and classified as 

Ba  hurri s r  abo des 2 and 3, 
respectively, indicate the number e two child nodes 

The legend identifying which bars in the node histograms correspond to Baro and
Trop hurricanes is located in the top-left corner of the graph.  
The root node is split, forming two new nodes. The text below the root node 
describes the split. It indicates that hurricanes with Longitude coordinate valu
of less than or equal to 67.75 are sent to node number 2 and tentatively 
classified as Trop hurrica
values of greater than 67.75 are assigned to node

ro cane . The values of 27 and 10 p inted ve no
 of cases sent to each of thes



from their parent, the root node. Similarly, node 2 is subsequently split. The split 
is such that the 9 hurrica  w Longitude c rdinate alues of less than or 
equal to 62.5 are sent to node number 4 and classified as Baro hurricanes, and 

Longitude coordinate values of greater than 

read the tw m line, the histograms 
plotted within the tree's terminal nodes show that the classification tree

nes ith oo  v

the remaining 18 hurricanes with 
62.5 are sent to node number 5 and classified as Trop hurricanes.  
The Tree graph presents all this information in a simple, straightforward way, and 
probably allows one to digest the information in much less time than it takes to 

o preceding paragraphs. Getting to the botto
 classifies 

the hurricanes perfectly. Each of the terminal nodes is "pure," containing no 
misclassified hurricanes. All the information in the Tree graph is also available in 
the Tree structure Scrollsheet shown below.  
Tree Structure (barotrop.sta) 
CLASSIF. 

TREES 
Child nodes, observed class n's, 
predicted class, and split condition for each node 

  
Node 
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LONGITUD
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Note that in the Scrollsheet nodes 3 through 5 are identified as terminal nodes 
because no split is performed at those nodes. Also note the signs of the Spli
constants displayed in the Scrollsheet, for example, -67.75 for the split at node 
n the Tree graph, the split condition at node 1 is described as LONGIT

rather than as (the equivalent) -67

t 
1. 

I UD 67.75 
.75 + LONGITUD 0. This is done simply to 

s can be ranked on a 
s of their potential importance in accounting for responses 

r this example, Longitude is clearly very important 
and Latitude is relatively unimportant.  

save space on the graph.  
When univariate splits are performed, the predictor variable
0 - 100 scale in term
on the dependent variable. Fo



 
A cla tion ssifica tree C

roduc

sing 
 1 Tro
trop.st

l ing the Discriminant-based univariate split selection 
meth ion p es similar results. The Tree structure Scrollsheet shown for 
this analysis shows that the splits of -63.4716 and -67.7516 are quite similar to 
the sp und u t RT-style exhaustive search for univariate splits 
option ugh ane in terminal node 2 is misclassified as Baro.  
Tree S e (baro

ass us

he C&
p hurric
a) 

od opt

lits fo
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tructur
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 categorized scatterplot for Longitude and Latitude clearly shows why linear 
iscriminant analysis fails so miserably at predicting Class, and why the 

A
d
classification tree succeeds so well.  

 



The plot clearly shows that there is no strong linear relationship of longitude or 
atitude coordinates with Class, or of any possible linear combination of longitude 
and latitude with Class. Class is n
l

ot functionally related to longitude or latitude, at 
pl own on 

t dicted Trop 
hurricanes (above the split line) from predicted Baro hurricanes (below the split 

least in the linear sense. The LDF (Linear Discriminant Function) S it sh
he graph is almost a "shot in the dark" at trying to separate pre

line). The C&RT univariate splits, because they are not restricted to a single 
linear combination of longitude and latitude scores, find the "cut points" on the
Longitude dimension that allow the best possible (in this case, perfect) 
classification of hurricane Class.  
Now we ca

 

n examine a situation illustrating the pitfalls of classification tree. 
Suppose that the following hurricane data were available.  
DATA: Barotro2.sta 3v 
LONGITUD LATITUDE CLASS 

59.00 
59.50 

17.00 
21.00 

BARO 
BARO 

60.00 
60.50 
61.00 
61.00 
61.50 
61.50 
62.00 
63.00 
63.50 
64.00 
64.50 
65.00 
65.00 

12.00 
16.00 
13.00 
15.00 
17.00 
19.00 
14.00 
15.00 
19.00 
12.00 
16.00 
12.00 
15.00 

TROP 
BARO 
TROP 
TROP 
BARO 
BARO 
TROP 
TROP 
BARO 
TROP 
TROP 
TROP 
TROP 

TROP 

65.00 
65.50 
65.50 
65.50 
66.00 
66.00 
66.00 
66.50 
66.50 
66.50 
67.00 
67.50 
68.00 
68.50 
69.00 
69.00 

17.00 
16.00 
19.00 
21.00 
13.00 
14.00 
17.00 
17.00 
18.00 
21.00 
14.00 
18.00 
14.00 
18.00 
13.00 
15.00 

BARO 
TROP 
BARO 
BARO 
TROP 
TROP 
BARO 
BARO 
BARO 
BARO 
TROP 
BARO 

BARO 
TROP 
TROP 



69.50 
69.50 
70.00 

17.00 
19.00 
12.00 

TROP 
BARO 
TROP 

70.50 
71.00 
71.50 

16.00 
17.00 
21.00 

TROP 
TROP 
BARO 

 
 
A linear discriminant analysis of hurricane Class (Baro or Trop) using Longitude 

 tree 

ents for Longitude and Latitude on the (single) discriminant 
nction are .122073 and -.633124, respectively, and hurricanes with higher 
ngitude and lower latitude coordinates are classified as Trop. The interpretation 
ould be that hurricanes in the western Atlantic at low latitudes are likely to be 

 further east in the Atlantic at higher latitudes 

 for univariate splits option is shown below.  

and Latitude as predictors correctly classifies all 37 of the hurricanes. A 
classification tree analysis for Class using the C&RT-style exhaustive search for 
univariate splits option also correctly classifies all 37 hurricanes, but the
requires 5 splits producing 6 terminal nodes. Which results are easier to 
interpret? In the linear discriminant analysis, the raw canonical discriminant 
function coeffici
fu
lo
w
Trop hurricanes, and that hurricanes
are likely to be Baro hurricanes.  
The Tree graph for the classification tree analysis using the C&RT-style 
exhaustive search

 



One could methodically describe the splits in this classification tree, exactly as 
was done in the previous example, but because there are so many splits, the 
interpretation would necessarily be more complex than the simple interpretation 
provided by the single discriminant function from the linear discrimination 
analysis.  
However, recall that in describing the flexibility of Classification Trees , it was 
noted that an option exists for Discriminant-based linear combination splits for 
ordered predictors using algorithms from QUEST. The Tree graph for the 
classification tree analysis using linear combination splits is shown below.  

 
Note that in this tree, just one split yields perfect prediction. Each of the terminal 
nodes is "pure," containing no misclassified hurricanes. The linear comb
split used to split the root node into its left child node and right child node is 
summarized by the description "F(0) -.2342." This indicates that if a hurricane 

as a score of less than or equal to -.2342 on the split function--abbreviated as 
F(0)--then it is sent to the left child node and classified as 

ination 

h
Baro, otherwise it is 

ficients 

.  

sent to the right child node and classified as Trop. The split function coef
(.011741 for Longitude and -.060896 for Latitude) have the same signs and are 
similar in their relative magnitude to the corresponding linear discriminant 
function coefficients from the linear discriminant analysis, so the two analyses 
are functionally identical, at least in terms of their predictions of hurricane Class
The moral of this story of the power and pitfalls of classification trees is that 
classification trees are only as good as the choice of analysis option used t
produce them. For finding models that predict well, there is no substitute fo

o 
r a 



thorough understanding of the nature of the relationships between the predicto
and dependent variables.  
We have seen that classification trees analysis can be characterized as a 

ierarchical, highly flexible set of techniques for predicting membership o
or objects in the classes of a categorical dependent variable from their 
measurements on one or more predictor variables. With this groundwork behind 
us, we now are ready to look at the methods for computing classification trees
greater detail.  
 

r 

h f cases 

 in 

 
 

Computational Methods  

The process of computing classification trees can be characterized as involving 
four basic steps:  

1. Specifying the criteria for predictive accuracy,  
2. Selecting splits,  
3. Determining when to stop splitting, and  
4. Choosing the "right-sized" tree.  

Specifying the Criteria for Predictive Accuracy  

The goal of classification tree analysis, simply stated, is to obtain the most 

prediction is hard to come by. T
 is 

 term costs 
n espond 

cases, arises when some predictions that fail are more catastrophic than others, 

accurate prediction possible. Unfortunately, an operational definition of accurate 
o solve the problem of defining predictive 

accuracy, the problem is "stood on its head," and the most accurate prediction
operationally defined as the prediction with the minimum costs. The

eed not seem mystifying. In many typical applications, costs simply corr
to the proportion of misclassified cases. The notion of costs was developed as a 
way to generalize, to a broader range of prediction situations, the idea that the 
best prediction has the lowest misclassification rate.  
The need for minimizing costs, rather than just the proportion of misclassified 



o osts 
 

 of 

b s 

correspond to minimizing the proportion 
izes 

r when some predictions that fail occur more frequently than others. The c
to a gambler of losing a single bet (or prediction) on which the gambler's whole
fortune is at stake are greater than the costs of losing many bets (or predictions) 
on which a tiny part of the gambler's fortune is at stake. Conversely, the costs
losing many small bets can be larger than the costs of losing just a few bigger 

ets. One should spend proportionately more effort in minimizing losses on bet
where losing (making errors in prediction) costs you more.  
Priors. Minimizing costs, however, does 
of misclassified cases when Priors are taken to be proportional to the class s
and when Misclassification costs are taken to be equal for every class. We wi
address Priors first. Priors, or, a priori probabilities, specify how likely it is
using any prior knowledge of the values for the predictor variables in the model, 
that a case or object will fall into one of the classes. For example, in an 
educational study of high school drop-outs, it may happen that, overall, there a
fewer drop-outs than students who stay in school (i.e., there are different base 
rates); thus, the a priori probability that a student drops out is lower than that 
student remains in school.  
The a priori probabilities used in minimizing costs can greatly affect the 
classification of cases or objects. If differential base rates are not of inter
the study, or if one knows that there are about an equal number of cases in ea
class, then one would use equal priors. If the differential base rates are reflecte
in the class sizes (as they would be, if the sample is a probability sample) then 

ne would use priors estimated by the class proportions of the sample. Finally, if 

ll 
, without 

re 

a 

est for 
ch 
d 

o
nowledge about the base rates (for example, based on 

the 

you have specific k
previous research), then one would specify priors in accordance with that 
knowledge. For example, a priori probabilities for carriers of a recessive gene 
could be specified as twice as high as for individuals who display a disorder 
caused by the recessive gene. The general point is that the relative size of the 
priors assigned to each class can be used to "adjust" the importance of 
misclassifications for each class. Minimizing costs corresponds to minimizing 



overall proportion of misclassified cases when Priors are taken to be proportional
to the c

 
lass sizes (and Misclassification costs are taken to be equal for every 
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class), because prediction should be better in larger classes to produce an 
verall lower misclassification rate.  

Misclassification costs. Sometimes more accurate classification is desired for 
some classes than others for reasons unrelated to relative class sizes. 
Regardless of their relative frequency, carriers of a disease who are contagi
to others might need to be more accurately predicted than carriers of the diseas

ho are not contagious to others. If one assumes that little is lost in avoiding a
non-contagious person but much is lost in not avoiding a contagious person, 
higher misclassification costs could be specified for misclassifying a contagio
carrier as non-contagious than for misclassifying a non-contagious person as 
contagious. But to reiterate, minimizing costs corresponds to minimizing the 
proportion of misclassified cases when Priors are taken to be proportional to th
class sizes and when Misclassification costs are taken to be equal for every 
class.  
Case weights. A little less conceptually, the use of case weights on a weigh
variable as case multipliers for aggregated data sets is also related to the issue 
of minimizing costs. Interestingly, as an alternative to using cas
aggregated data sets, one could specify appropriate priors and/or 
misclassification costs and produce the same results while avoiding the 
additional processing required to analyze multiple cases with the same values fo
all variables. Suppose that in an aggregated data set with two classes having an
equal number of cases, there are case weights of 2 for all the cases in the first 
class, and case weights of 3 for all the cases in the second class. If you specify 
priors of .4 and .6, respectively, specify equal misclassification costs, and 
analyze the data without case weights, you will get the same misclassification 
rates as you would get if you specify priors estimated by the class sizes, spec
equal misclassification costs, and analyze the aggregated data set using the 
case weights. You would also get the same misclassification rates if you spec



priors to be equal, specify the costs of misclassifying class 1 cases as cla
cases to be 2/3 of the costs of misclassifying class 2 cases as class 1 cases, and
analyze the data without case weights.  
The relationships between priors, misclassification costs, and case weights 
become quite complex in all but the simplest situations (for discussions, see 
Breiman et al, 1984; Ripley, 1996). In analyses where minimizing costs 
corresponds to minimizing the misclassification rate, however, these issues nee
not caus

ss 2 
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e any concern. Priors, misclassification costs, and case weights are 
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p in classification tree analysis is to select the splits on the 
he 

  

brought up here, however, to illustrate the wide variety of prediction situations 
that can be handled using the concept of minimizing costs, as compared to the 
rather limited (but probably typical) prediction situations that can be handled 

sing the narrower (but simpler) idea of minimizing misclassification rates. 
Furthermore, minimizing costs is an underlying goal of classification tree 
analysis, and is explicitly addressed in the fourth and final basic step in 
classification tree analysis, where in trying to select the "right-sized" tree, one 
chooses the tree with the minimum estimated costs. Depending on the type
prediction problem you are trying to solve, understanding the idea of reduction o
estimated costs may be important for understanding the results of the analysis

Selecting Splits  

The second basic ste
predictor variables which are used to predict membership in the classes of t
dependent variables for the cases or objects in the analysis. Not surprisingly,
given the hierarchical nature of classification trees, these splits are selected one 
at time, starting with the split at the root node, and continuing with splits of 
resulting child nodes until splitting stops, and the child nodes which have not 
been split become terminal nodes. Three Split selection methods are disc
here.  
Discriminant-based univariate splits. The first step in split selection when th
Discriminant-based univariate splits option is chosen is to determine the be
terminal node to split in the current tree, and which predictor variable to use to 

ussed 

e 
st 



perform the split. For each terminal node, p-levels are computed for tests of the 
significance of the relationship of class membership with the levels of each 
predictor variable. For categorical predictors, the p-levels are computed for Chi-
square tests of independence of the classes and the levels of the categorica
predictor that are present at the node. For ordered predictors, the p-levels are 
computed for ANOVAs of the relationship of the classes to the values of the 

rdered predictor that are present at the node. If the smallest computed p-level is
smaller than the default Bonferoni-adjusted p-level for multiple comparisons of 
.05 (a different threshold value can be used), the predictor variable producin
that smallest p-level is chosen to split the corresponding node. If no p-level 
smaller than the threshold p-level is found, p-levels are computed for statistic
tests that are robust to distributional violations, such as Levene's F. Details 
concerning node and predictor variable selection when no p-level is smaller t
he specified threshold are described in Loh and Shih (1997).  

The next step is to determine the split. For ordered predictors, the 2-mea
clustering 
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algorithm of Hartigan and Wong (1979, see also Cluster Analysis) is 

e node. The two roots are found for a 
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applied to create two "superclasses" for th
quadratic equation describing the difference in the means of the "superclasses" 
on the ordered predictor, and the values for a split corresponding to each root are 
computed. The split closest to a "superclass" mean is selected. For categorical 
predictors, dummy-coded variables representing the levels of the categorical
predictor are constructed, and then singular value decomposition methods are 
applied to transform the dummy-coded variables into a set of non-redundant 
ordered predictors. The procedures for ordered predictors are then applie
the obtained split is "mapped back" onto the original levels of the categorical 
variable and represented as a contrast between two sets of levels of the 
categorical variable. Again, further details about these procedures are de
in Loh and Shih (1997). Although complicated, these procedures reduce a bias in
split selection that occurs when using the C&RT-style exhaustive search method 
for selecting splits. This is the bias toward selecting variables with more levels for 



splits, a bias which can skew the interpretation of the relative importance of the
predictors in explaining responses on the dependent variable (Breiman et. al., 
1984).  

 

Discriminant-based linear combination splits. The second split selection method 
is the Discriminant-based linear combination split option for ordered predictor 
variables (however, the predictors are assumed to be measured on at least 
interval scales). Surprisingly, this method works by treating the continuous 
predictors from which linear combinations are formed in a manner which is 
similar to the way categorical predictors are treated in the previous method. 

are 

p

Singular value decomposition methods are used to transform the continuous 
predictors into a new set of non-redundant predictors. The procedures for 
creating "superclasses" and finding the split closest to a "superclass" mean 
then applied, and the results are "mapped back" onto the original continuous 

redictors and represented as a univariate split on a linear combination of 
predictor variables.  
C&RT-style exhaustive search for univariate splits. The third split-selection 
method is the C&RT-style exhaustive search for univariate splits method for 
categorical or ordered predictor variables. With this method, all possible splits fo
each predictor variable at 

r 
each node are examined to find the split producing the 

t (or equivalently, the largest reduction in 
or 

c

lits 

H  

ode 

largest improvement in goodness of fi
lack of fit). What determines the domain of possible splits at a node? F
ategorical predictor variables with k levels present at a node, there are 2(k-1) - 1 

possible contrasts between two sets of levels of the predictor. For ordered 
predictors with k distinct levels present at a node, there are k -1 midpoints 
between distinct levels. Thus it can be seen that the number of possible sp
that must be examined can become very large when there are large numbers of 
predictors with many levels which must be examined at many nodes.  

ow is improvement in goodness of fit determined? Three choices of Goodness
of fit measures are discussed here. The Gini measure of node impurity is a 
measure which reaches a value of zero when only one class is present at a n



(with priors estimated from class sizes and equal misclassification costs, the 
measure is computed as the sum of products of all pairs of class proportions fo
classes present at the node; it reaches its maximum value when cla

Gini 
r 

ss sizes at 

p
the node are equal). The Gini measure was the measure of goodness of fit 

referred by the developers of C&RT (Breiman et. al., 1984). The two other 
indices are the Chi-square measure, which is similar to Bartlett's Chi-square 
(Bartlett, 1948), and the G-square measure, which is similar to the maximum-
likelihood Chi-square used in structural equation modeling. The C&RT-style 
exhaustive search for univariate splits method works by searching for the split 
that maximizes the reduction in the value of the selected goodness of fit 

easure. When the fit is perfect, classification is perfect.  

Determining When to Stop Splitting  

The third step in classification tree analysis is to determine when to stop spl
One characteristic of 

m

itting. 
classification trees is that if no limit is placed on the number 

of splits that are performed, eventually "pure" classification will be achieved, with
each terminal node containing only one class of cases or objects. However, 
"pure" classification is usually unrealistic. Even a simple classification tree such 

 

ch 

r 
in "noise," it is unrealistic to continue to sort until every terminal node is 

ere. 

as a coin sorter can produce impure classifications for coins whose sizes are 
distorted or if wear changes the lengths of the slots cut in the track. This 
potentially could be remedied by further sorting of the coins that fall into ea
slot, but to be practical, at some point the sorting would have to stop and you 
would have to accept that the coins have been reasonably well sorted.  
Likewise, if the observed classifications on the dependent variable or the levels 
on the predicted variable in a classification tree analysis are measured with erro
or conta
"pure." Two options for controlling when splitting stops will be discussed h
These two options are linked to the choice of the Stopping rule specified for th
analysis.  
Minimum n. One option for controlling when splitting stops is to allow splitting to 
continue until all terminal nodes are pure or contain no more than a spec

e 

ified 



minimum number of cases or objects. The desired minimum number of cases 
an be specified as the Minimum n, and splitting will stop when all terminal 

containing more than one class have no more than the specified number of 
cases or objects.  
Fraction of objects. Another option for controlling when splitting stops is to allow 
splitting to continue until all terminal nodes are pure or contain no more cases 

c nodes 

top 

u
n 

putes a huge 

than a specified minimum fraction of the sizes of one or more classes. The 
desired minimum fraction can be specified as the Fraction of objects and, if the 
priors used in the analysis are equal and class sizes are equal, splitting will s
when all terminal nodes containing more than one class have no more cases 
than the specified fraction of the class sizes for one or more classes. If the priors 

sed in the analysis are not equal, splitting will stop when all terminal nodes 
containing more than one class have no more cases than the specified fractio
for one or more classes.  

Selecting the "Right-Sized" Tree  

After a night at the horse track, a studious gambler com
classification tree with numerous splits that perfectly account for the win, place, 
show, and no show results for every horse in every race. Expecting to become 
rich, the gambler takes a copy of the Tree graph to the races the next night, sorts
the horses racing that night using the classification tree, makes his or her 
predictions and places his or her bets, and leaves the race track later much les
ich than had been expected. The poor gambler has foolishly assumed that a

classification tree computed from a learning sample in which the outcomes are
already known will perform equally well in predicting outcomes in a second, 
independent test sample. The gambler's classification tree performed poorly 
during 

 

s 
r  

 

cross-validation. The gambler's payoff might have been larger using a 
maller classification tree that did not s classify perfectly in the learning sample, 

" 
but which was expected to predict equally well in the test sample.  
Some generalizations can be offered about what constitutes the "right-sized
classification tree. It should be sufficiently complex to account for the known 
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" tree. These procedures are 
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, in which 

acts, but at the same time it should be as simple as possible. It should exploit
nformation that increases predictive accuracy and ignore information that does 
not. It should, if possible, lead to greater understanding of the phenomena
t describes. Of course, these same characteristics apply to any scientific theory, 
so we must try to be more specific about what constitutes the "right-sized" 
classification tree. One strategy is to grow the tree to just the right size, where 
the right size is determined by the user from knowledge from previous resear
diagnostic information from previous analyses, or even intuition. The other 
strategy is to use a set of well-documented, structured procedures developed by
Breiman et al. (1984) for selecting the "right-sized

ot foolproof, as Breiman et al. (1984) readily acknowledge, but at least they take 
subjective judgment out of the process of selecting the "right-sized" tree.  
FACT-style direct stopping. We will begin by describing the first strategy
the researcher specifies the size to grow the classification tree. This strategy 
followed by using 

is 
FACT-style direct stopping as the Stopping rule for the 

analysis, and by specifying the Fraction of objects which allows the tre
o the desired size. There are several options for obtaining diagnostic informa
o determine the reasonableness of the choice of size for the tree. Three options 
or performing 

e to grow 
t tion 
t
f cross-validation of the selected classification tree are discussed 
below.  
Test sample cross-validation. The first, and most preferred type of cross-
validation is test sample cross-validation. In this type of cross-validation, the 
classification tree is computed from the learning sample, and its predictive 
accuracy is tested by applying it to predict class membership in the test sample. 
If the costs for the test sample exceed the costs for the learning sample 
(remember, costs equal the proportion of misclassified cases when priors are 
estimated and misclassification costs are equal), this indicates poor cross-
validation and that a different sized tree might cross-validate better. The test and 
learning samples can be formed by collecting two independent data sets, or if a 



large learning sample is available, by reserving a randomly selected proportion o
he cases, say a third or a half, for use as the test sample.  
V-fold cross-validation. This type of 

f 
t

cross-validation is useful when no test 
sample is available and the learning sample is too small to have the test samp
aken from it. A specified V value for V-fold cross-validation determines the 
number of random subsamples, as equal in size as possible, that are formed
from the learn

le 
t

 
ing sample. The classification tree of the specified size is computed 

s, V times, each time leaving out one of the subsamples from the computation
and using that subsample as a test sample for cross-validation, so that each 
subsample is used V - 1 times in the learning sample and just once as the tes
sample. The CV costs computed for each of the V test samples are then 
averaged to give the V-fold estimate of the CV costs.  
Global cross-validation. In global cross-validation, the entire analysis is replicated 
a specified number of times holding out a fraction of the learning sample equa
1 over the specified number of times, and using each hold-out sample in turn a
a test sam

t 

l to 
s 

ple to cross-validate the selected classification tree. This type of cross-
validation is probably no more useful than V-fold cross-validation when FA
style direct stopping is used, but can be quite useful as a method validation 
procedure when automatic tree selection techniques are used (for discussion, 
see Breiman et. al., 1984). This brings us to the second of the two strategies that 
can used to select the "right-sized" tree, an automatic tree selection method 
based on a technique developed by Breiman et al. (1984) called minimal cost-
complexity cross-validation pruning.  
Minimal cost-complexity cross-validation pruning. Two methods of pruning can
be used depending on the Stopping Rule you choose to use. Minimal cost-
complexity 

CT-

 

cross-validation pruning is performed when you decide to Prune on 
misclassification error (as a Stopping rule), and minimal deviance-complexity 
cross-validation pruning is performed when you choose to Prune on deviance
a Stopping rule). The only difference in the two options is the measure of 
prediction error that is used. 

 (as 

Prune on misclassification error uses the costs that 



we have discussed repeatedly (which equal the misclassification rate when priors 
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 from CV costs, because V-fold cross-
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are estimated and misclassification costs are equal). Prune on deviance uses a 
measure, based on maximum-likelihood principles, called the deviance (see 

ipley, 1996). We will focus on cost-complexity cross-validation pruning (as 
originated by Breiman et. al., 1984), since deviance-complexity pruning merely 
involves a different measure of prediction error.  
The costs needed to perform cost-complexity pruning are computed as the tr
being grown, starting with the split at the root node up to its maximum size, as 
determined by the specified Minimum n. The learning sample costs are 
computed as each split is added to the tree, so that a sequence of generally 
decreasing costs (reflecting better classification) are obtained corresponding to 
the number of splits in the tree. The learning sample costs are called 
resubstitution costs to distinguish them
validation is also performed as each split is added to the tree. Use the es
CV costs from V-fold cross-validation as the costs for the root node. Note t
tree size can be taken to be the number of terminal nodes, because for binary 
trees the tree size starts at one (the root node) and increases by one with each 
added split. Now, define a parameter called the complexity parameter whose 
initial value is zero, and for every tree (including the first, containing only the 
node), compute the value for a function defined as the costs for the tree plus the 
complexity parameter times the tree size. Increase the complexity parameter 
ontinuously until the value of the function for the largest tree exceeds the valu

of the function for a smaller-sized tree. Take the smaller-sized tree to be the new 
largest tree, continue increasing the complexity parameter continuously until the
value of the function for the largest tree exceeds the value of the function fo
smaller-sized tree, and continue the process until the root node is the larg
ree. (Those who are familiar with numerical analysis will recognize the use
penalty function in this algorithm. The function is a linear combination of co
which generally decrease with tree size, and tree size, which increases linearly. 

sts, 

As the complexity parameter is increased, larger trees are penalized for their 



complexity more and more, until a discrete threshold is reached at which a 
smaller-sized tree's higher costs are outweighed by the largest tree's higher 
complexity)  
The sequence of largest trees obtained by this algorithm have a number of 
interesting properties. They are nested, because successively pruned trees 
contain all the nodes of the next smaller tree in the sequence. Initially, many 
nodes are often pruned going from one tree to the next smaller tree in the 
sequence, but fewer nodes tend to be pruned as the root node is approached.
The sequence of largest trees is also optimally pruned, because for every size of 
tree in the sequence, there is no other tree of the same size with lower costs. 
Proofs and/or explanations of these pr

 

operties can be found in Breiman et al. 
984).  

ree selection after pruning. We now select the "right-sized" tree from the 
equence of optimally pruned trees. A natural criterion is the CV costs. While 
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there is nothing wrong with choosing the tree with the minimum CV costs as the
"right-sized" tree, oftentimes there will be several trees with CV costs close to the 
minimum. Breiman et al. (1984) make the reasonable suggestion that one should 
choose as the "right-sized" tree the smallest-sized (least complex) tree whose 
CV costs do not differ appreciably from the minimum CV costs. They proposed a 
"1 SE rule" for making this selection, i.e., choose as the "right-sized" tree the 
smallest-sized tree whose CV costs do not exceed the minimum CV costs plus 1 
times the Standard error of the CV costs for the minimum CV costs tree.  
One distinct advantage of the "automatic" tree selection procedure is that it helps 
to avoid "overfitting" and "underfitting" of the data. The graph below shows a 
typical plot of the Resubstitution costs and CV costs for the sequence of 
successively pruned trees.  



 
As shown in this graph, the Resubstitution costs (e.g., the misclassification rate 
in the learning sample) rather consistently decrease as tree size increases. The 
CV costs, on the other hand, approach the minimum quickly as tree size initiall
increases, but actually start to rise as tree size becomes very large. Note that the
selected "right-sized" tree is close to the inflection point in the curve, that is, close
to the point where the initial sharp drop in CV costs 

y 
 
 

with increased tree size 
elect 

 
ta 

starts to level out. The "automatic" tree selection procedure is designed to s
the simplest (smallest) tree with close to minimum CV costs, and thereby avoid
the loss in predictive accuracy produced by "underfitting" or "overfitting" the da
(note the similarity to the logic underlying the use of a "scree plot" to determine 
the number of factors to retain in Factor Analysis; see also Reviewing the Results 
of a Principal Components Analysis).  
As has been seen, minimal cost-complexity cross-validation pruning and 
subsequent "right-sized" tree selection is a truly "automatic" process. The 
algorithms make all the decisions leading to selection of the "right-sized" tree, 

zes 

except for, perhaps, specification of a value for the SE rule. One issue that arises 
with the use of such "automatic" procedures is how well the results replicate, 
where replication might involve the selection of trees of quite different si
across replications, given the "automatic" selection process that is used. This is 
where global cross-validation can be very useful. As explained previously, in 
global cross-validation, the entire analysis is replicated a specified number of 
times (3 is the default) holding out a fraction of the cases to use as a test sampl
to cross-validate the selected classification tree. If the average of the costs for 

e 



the test samples, called the global CV costs, exceeds the CV costs for the 
selected tree, or if the standard error of the global CV costs exceeds
standard error of the CV costs for the selected tree, this indicates that the 
"automatic" tree selection procedure is allowing too much variability in tree 
selection rather than consistently selecting a tree with minimum estimated cost
Classification trees and traditional methods. As can be seen in the methods used
in computing classification trees, in a number of respects classification trees ar
decidedly different from traditional statistical methods for predicting class 
membership on a categorical dependent variable. They employ a hierarchy o
predictions, with many predictions sometimes being applied to particular cases, 
to sort the cases into predicted classes. Traditional methods use simultaneous 
techniques to make one and only one class membership prediction for each an
every case. In other respects, such as having as its goal accurate prediction, 
classification tree analysis is indistinguishable from traditional methods. Time w
tell if classification tree analysis has enough to commend itself to become as 
accepted as the traditional methods.  
 
 
 

A Brief Comparison of Classification Tree Programs  

A variety of classification tree programs have been developed to predict 
membership of cases or objects in the classes of a categorical dependent 
variable from their measurements on one or more 

 the 
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predictor variables. In the 
revious section, Computational Methodsp , we have discussed the QUEST (Loh & 

Shih, 1997) and C&RT (Breiman et. al., 1984) programs for computing binary 
lassification trees based on univariate splits for categorical predictor variables, 
rdered predictor variables (measured on at least an ordinal scale), or a mix of 

both types of predictors. We have also discussed computing classification trees 
ased on linear combination splits for interval scale predictor variables.  

c
o
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Some classification trees programs, such as FACT (Loh & Vanichestakul, 1988) 
and THAID (Morgan & Messenger, 1973, as well as the related programs AID, 

r Automatic Interaction Detection, Morgan & Sonquist, 1963, and CHAIDfo , for 
hi-SquareC  Automatic Interaction Detection, Kass, 1980) perform multi-level 

splits rather than binary splits when computing classification trees. A multi-level 
plit performs k - 1 splits (where k is the number of levels of the splittting 
ariable), as compared to a binary split which performs one split (regardless of 

the number of levels of the splittting variable). However, it should be noted that 
ere is no inherent advantage of multi-level splits, because any multi-level split 

 binary splits, and there may be disadvantages 
of using multi-level splits. With multi-level splits, predictor variables can be used 

r splitting only once, so the resulting classification trees may be unrealistically 
short and uninteresting (Loh & Shih, 1997). A more serious problem is bias in 
ariable selection for splits. This bias is possible in any program such as THAID

s
v

th
can be represented as a series of

fo

v  
organ & Sonquist, 1963) that employs an exhaustive search for finding splits 

(for a discussion, see Loh & Shih, 1997). Bias in variable selection is the bias 
ward selecting variables with more levels for splits, a bias which can skew the 
terpretation of the relative importance of the predictors in explaining responses 

on the dependent variable (B
nant-based 

(univariate

(M

to
in

reiman et. al., 1984).  
be avoided by using the DiscrimiBias in variable selection can 

 or linear combination) split options. These options make use of the 
algorithms in QUEST (Loh & Shih, 1997) to prevent bias in variable selection. 
The C&RT-style exhaustive search for univariate splits option is useful if one's 
goal is to find splits producing the best possible classification in the learnin
sample (but not necessarily in independent cross-validiation samples). For 
reliable splits, as well as computational speed, the Discriminant-based split 
options are recommended. For information on techniques and issues in 
computing classification trees, see the 

g 

Computational Methods section.  
Building trees interactively. In contrast, another method for building trees that has 
proven popular in applied research and data exploration is based on experts' 



knowledge about the domain or area under investigation, and relies on 
interactive choices (for how to grow the tree) by such experts to arrive at 
(valid) models for prediction

"good" 
 or predictive classification. In other words, instead of 
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, it 
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b

ictor for the next 
iable data on income from the 

building trees automatically, using sophisticated algorithms for choosing good 
predictors and splits (for growing the branches of the tree), a user may want to 
determine manually which variables to include in the tree, and how to split those 
variables to create the branches of the tree. This enables the user to experimen
with different variables and scenarios, and ideally to derive a better 
understanding of the phenomenon under investigation by combining her or his 
expertise with the analytic capabilities and options for building the. In practice
may often be most useful to combine the automatic methods for building trees 
with "educated guesses" and domain-specific expertise. You may want to grow 
some portions of the tree using automatic methods and refine and modify th
tree based on your expertise. Another common situation where this type of 
combined automatic and interactive tree building is called for is when some 
variables that are chosen automatically for some splits are not easily observable

ecause they cannot be measured reliably or economically (i.e., obtaining such 
measurements would be too expensive). For example, suppose the automatic 
analysis at some point selects a variable Income as a good pred
split; however, you may not be able to obtain rel
new sample to which you want to apply the results of the current analysis (e.g., 
for predicting some behavior of interest, such as whether or not the person will 
purchase something from your catalog). In this case, you may want to select a 
"surrogate" variable, i.e., a variable that you can observe easily and that is likely 
related or similar to variable Income (with respect to its predictive power; for 
example, a variable Number of years of education may be related to Income and 
have similar predictive power; while most people are reluctant to reveal their level 
of income, they are more likely to report their level of education, and hence, this 
latter variable is more easily measured).  

 



 

 

 

 

 

 

 

 

 

 

Cluster Analysis 

 

 

 

 

 

 

  
 

General Purpose  
The term cluster analysis (first used by Tryon, 1939) encompasses a number of 
different algorithms and methods for grouping objects of similar kind into 



respective categories. A general question facing researchers in many areas of 
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re, such as different types of meat or 
d in the same or nearby locations. There is a countless 

e, 
l 

, 
on, 

s), etc. 
ing 

inquiry is how to organize observed data into meaningful structures, that is, to 
develop taxonomies. In other words cluster analysis is an exploratory data 
analysis tool which aims at sorting different objects into groups in a way that the
degree of association between two objects is maximal if they belong to the same 
group and minimal otherwise. Given the above, cluster analysis can be used to 
discover structures in data without providing an explanation/interpretation. In 
other words, cluster analysis simply discovers structures in data without 
explaining why they exist.  
We deal with clustering in almost every aspect of daily life. For example, a group
of diners sharing the same table in a restaurant may be regarded as a clus
people. In food stores items of similar natu
vegetables are displaye
number of examples in which clustering playes an important role. For instanc
biologists have to organize the different species of animals before a meaningfu
description of the differences between animals is possible. According to the 
modern system employed in biology, man belongs to the primates, the mammals
the amniotes, the vertebrates, and the animals. Note how in this classificati
the higher the level of aggregation the less similar are the members in the 
respective class. Man has more in common with all other primates (e.g., apes) 
than it does with the more "distant" members of the mammals (e.g., dog
For a review of the general categories of cluster analysis methods, see Join
(Tree Clustering), Two-way Joining (Block Clustering), and k-Means Clustering. 
In short, whatever the nature of your business is, sooner or later you will run into 
a clustering problem of one form or another.  

Statistical Significance Testing  
Note that the above discussions refer to clustering algorithms and do not m
anything about statistical significance testing. In fact, cluster analysis is not as 
much a typical statistical test as it is a "collection" of differe

ention 

nt algorithms that "put 
objects into clusters according to well defined similarity rules." The point here is 



that, unlike many other statistical procedures, cluster analysis methods are 
mostly used when we do not have any a priori hypotheses, but are still in the 
exploratory phase of our research. In a sense, cluster analysis finds the "most 

herefore, statistical significance testing is really 
 

significant solution possible." T
not appropriate here, even in cases when p-levels are reported (as in k-means
clustering).  

Area of Application  
Clustering techniques have been applied to a wide variety of research problems. 
Hartigan (1975) provides an excellent summary of the many published studies 
reporting the results of cluster analyses. For example, in the field of medicine, 
clustering diseases, cures for diseases, or symptoms of diseases can lead to 
very useful taxonomies. In the field of psychiatry, the correct diagnosis of clusters 
of symptoms such as paranoia, schizophrenia, etc. is essential for successful 
therapy. In archeology, researchers have attempted to establish taxonomies of 
stone tools, funeral objects, etc. by applying cluster analytic techniques. In 
general, whenever one needs to classify a "mountain" of information into 
manageable meaningful piles, cluster analysis is of great utility.  
 
 
 

 

 Introduction

Joining (Tree Clustering)  

  

General Logic  
The example in the General Purpose  illustrates the goal of the 

u lgorithm. The purpose of this algorithm is to join joining or tree cl stering a
together objects (e.g., animals) into successively larger clusters, using some 
measure of similarity or distance. A typical result of this type of clustering is the 
hierarchical tree.  



Hierarchical Tree  
Consider a Horizontal Hierarchical Tree Plot (see graph below), on the le
plot, we begin with each object in a class by itself. Now imagine that, in very 
small steps, we "relax" our criterion as to what is and is not unique. Put another 
way, we lower our threshol

ft of the 

d regarding the decision when to declare two or more 
ame cluster.  objects to be members of the s

 
As a result we link more and more objects together and aggregate (amalgamate) 

c gly dissimilar elements. Finally, in the last 
 these plots, the horizontal axis denotes 

age 

ked 
 

 
 

 
example the rule for grouping a number of dinners was whether they shared the 

larger and larger clusters of in reasin
step, all objects are joined together. In
the linkage distance (in Vertical Icicle Plots, the vertical axis denotes the link
distance). Thus, for each node in the graph (where a new cluster is formed) we 
can read off the criterion distance at which the respective elements were lin
together into a new single cluster. When the data contain a clear "structure" in
terms of clusters of objects that are similar to each other, then this structure will
often be reflected in the hierarchical tree as distinct branches. As the result of a
successful analysis with the joining method, one is able to detect clusters 
(branches) and interpret those branches.  

Distance Measures  
The joining or tree clustering method uses the dissimilarities (similarities) or 
distances between objects when forming the clusters. Similarities are a set of 
rules that serve as criteria for grouping or separating items. In the previous



same table or not. These distances (similarities) can be based on a single 
dimension or multiple dimensions, with each dimension representing a rule or 

, we 

d clidean 
- or three-dimensional space this measure is the actual 

r 

 probably the most commonly chosen type of distance. 
uted 

condition for grouping objects. For example, if we were to cluster fast foods
could take into account the number of calories they contain, their price, 
subjective ratings of taste, etc. The most straightforward way of computing 

istances between objects in a multi-dimensional space is to compute Eu
distances. If we had a two
geometric distance between objects in the space (i.e., as if measured with a 
ruler). However, the joining algorithm does not "care" whether the distances that 
are "fed" to it are actual real distances, or some other derived measure of 
distance that is more meaningful to the researcher; and it is up to the researche
to select the right method for his/her specific application.  
Euclidean distance. This is
It simply is the geometric distance in the multidimensional space. It is comp
as:  
distance(x,y) = { i (xi - yi)2 }½  
Note that Euclidean (and squared Euclidean) distances are usually compute
from raw data, and not from standardized data. This method has certain 
advantages (e.g., the distance between any two objects is not affected by t

ys

d 

he 
addition of new objects to the anal is, which may be outliers). However, the 

s 
f nsions 

s 
n 

ctice to 

d er 

distances can be greatly affected by differences in scale among the dimension
rom which the distances are computed. For example, if one of the dime

denotes a measured length in centimeters, and you then convert it to millimeter
(by multiplying the values by 10), the resulting Euclidean or squared Euclidea
distances (computed from multiple dimensions) can be greatly affected (i.e., 
biased by those dimensions which have a larger scale), and consequently, the 
results of cluster analyses may be very different. Generally, it is good pra
transform the dimensions so they have similar scales.  
Squared Euclidean distance. You may want to square the standard Euclidean 

istance in order to place progressively greater weight on objects that are furth



apart. This distance is computed as (see also the note in the previous 
paragraph):  

istance(x,y) = i (xi - yi)2  d
City-block (Manhattan) distance. This distance is simply the average difference 
across dimensions. In most cases, this distance measure yields results sim
the simple Euclidean distance. However, note that in this measure, the effect of 
single large differences (outliers) is dampened (since they are not square
city-block distance is computed as:  
distance(x,y) = 

ilar to 

d). The 

i |xi - yi|  
hebychev distance. This distance measure may be approC priate in cases when 

ects 
distance. The power 

d

one wants to define two objects as "different" if they are different on any one of 
the dimensions. The Chebychev distance is computed as:  
distance(x,y) = Maximum|xi - yi|  
Power distance. Sometimes one may want to increase or decrease the 
progressive weight that is placed on dimensions on which the respective obj
are very different. This can be accomplished via the power 
distance is computed as:  

istance(x,y) = ( i |xi - yi|p)1/r  
here r and p are user-defined parameters. A few example calculations may 
emonstrate how this measure "behaves." Parameter p controls the progressive 
eight that is placed on differences on individual dimensions, parameter r 

controls the progressive weight that is placed on larger differences between 
l to 2, then this distance is equal to the Euclidean 

distance.  
ercent disagreement. This measure is particularly useful if the data for the 

e analysis are categorical in nature. This distance is 

w
d
w

objects. If r and p are equa

P
dimensions included in th
computed as:  
distance(x,y) = (Number of xi yi)/ i  

Amalgamation or Linkage Rules  



At the first step, when each object represents its own cluster, the distances 
between those objects are defined by the chosen distance measure. However, 
once several objects have been linked together, how do we determine the
distances between those new clusters? In other words, we need a linkage or 
amalgamation rule to determine when two clusters are 

 

sufficiently similar to be 
e are various possibilities: for example, we could link two 

r 

, 
" by only single objects that happen to be close 

together. Alternatively, we may use the neighbors across clusters that are 
furthest away from each other; this method is called complete linkage. There are 
numerous other linkage rules such as these that have been proposed.  
Single linkage (nearest neighbor). As described above, in this method the 
distance between two clusters is determined by the distance of the two closest 
objects (nearest neighbors) in the different clusters. This rule will, in a sense, 
string objects together to form clusters, and the resulting clusters tend to 
represent long "chains."  

 
the 

ed 

linked together. Ther
clusters together when any two objects in the two clusters are closer togethe
than the respective linkage distance. Put another way, we use the "nearest 
neighbors" across clusters to determine the distances between clusters; this 
method is called single linkage. This rule produces "stringy" types of clusters
that is, clusters "chained together

Complete linkage (furthest neighbor). In this method, the distances between 
clusters are determined by the greatest distance between any two objects in the 
different clusters (i.e., by the "furthest neighbors"). This method usually performs 
quite well in cases when the objects actually form naturally distinct "clumps." If 
the clusters tend to be somehow elongated or of a "chain" type nature, then this 
method is inappropriate.  
Unweighted pair-group average. In this method, the distance between two
clusters is calculated as the average distance between all pairs of objects in 
two different clusters. This method is also very efficient when the objects form 
natural distinct "clumps," however, it performs equally well with elongated, 
"chain" type clusters. Note that in their book, Sneath and Sokal (1973) introduc



th
method using arithmetic averages
W

e abbreviation UPGMA to refer to this method as unweighted pair-group 
.  

eighted pair-group average. This method is identical to the unweighted pair-
omputations, the size of the 

hem) is used as a 
weight. Thus, this method (rather than the previous method) should be used 
when the cluster sizes are suspected to be greatly uneven. Note that in their 
book, Sneath and Sokal (1973) introduced the abbreviation WPGMA to refer to 

weighted pair-group method using arithmetic averages.  

nter 
two 

s 

c n 
, when there are (or one suspects there to be) considerable 
in cluster sizes, this method is preferable to the previous one. Sneath 

n 
n 
o 

r 

ods of clustering, see Two-way Joining

group average method, except that in the c
respective clusters (i.e., the number of objects contained in t

this method as 
Unweighted pair-group centroid. The centroid of a cluster is the average point in 
the multidimensional space defined by the dimensions. In a sense, it is the ce
of gravity for the respective cluster. In this method, the distance between 
clusters is determined as the difference between centroids. Sneath and Sokal 
(1973) use the abbreviation UPGMC to refer to this method as unweighted pair-
group method using the centroid average.  
Weighted pair-group centroid (median). This method is identical to the previou
one, except that weighting is introduced into the computations to take into 
onsideration differences in cluster sizes (i.e., the number of objects contained i

them). Thus
differences 
and Sokal (1973) use the abbreviation WPGMC to refer to this method as 
weighted pair-group method using the centroid average.  
Ward's method. This method is distinct from all other methods because it uses a
analysis of variance approach to evaluate the distances between clusters. I
short, this method attempts to minimize the Sum of Squares (SS) of any tw
(hypothetical) clusters that can be formed at each step. Refer to Ward (1963) fo
details concerning this method. In general, this method is regarded as very 
efficient, however, it tends to create clusters of small size.  
For an overview of the other two meth  and 

gk-Means Clusterin .  



 
 
 

 

 

Two-way Joining  

  

Introductory Overview  
Previously, we have discussed this method in terms of "objects" that are to be
clustered (see Joining (Tree Clustering)). In all other types of analyses the 
research question of interest is usually expressed in terms of cases 
(observations) or variables. It turns out that the clustering of both may yield 

of 
 abilities.  

wo-way Joining  
iven the discussion in the paragraph above concerning whether to cluster 

ases or variables, one may wonder why not cluster both simultaneously? Two-
way joining is useful in (the relatively rare) circumstances when one expects that 

 uncovering of 
meaningful patterns of clusters.  

useful results. For example, imagine a study where a medical researcher has 
gathered data on different measures of physical fitness (variables) for a sample 
of heart patients (cases). The researcher may want to cluster cases (patients) to 
detect clusters of patients with similar syndromes. At the same time, the 
researcher may want to cluster variables (fitness measures) to detect clusters 
measures that appear to tap similar physical

T
G
c

both cases and variables will simultaneously contribute to the

http://www.statsoft.com/textbook/stanman.html


 
F

f 

tain 
lting 

lusters) is by nature not homogeneous. This may seem a bit 

or example, returning to the example above, the medical researcher may want 
to identify clusters of patients that are similar with regard to particular clusters o
similar measures of physical fitness. The difficulty with interpreting these results 
may arise from the fact that the similarities between different clusters may per
to (or be caused by) somewhat different subsets of variables. Thus, the resu
structure (c
confusing at first, and, indeed, compared to the other clustering methods 
described (see Joining (Tree Clustering) and k-Means Clustering), two-way 
joining is probably the one least commonly used. However, some researchers 
bel
inform d in 
Hartig
 
 
 

ieve that this method offers a powerful exploratory data analysis tool (for more 
ation you may want to refer to the detailed description of this metho
an, 1975).  

 
ring  k-Means Cluste

• Example  
• Computations  
• Interpretation of results  

General logic  
This method of clustering is very different from the Joining (Tree Clustering) and 
Two-way Joining. Suppose that you already have hypotheses concerning the 



number of clusters in your cases or variables. You may want to "tell" the 
computer to form exactly 3 clusters that are to be as distinct as possible. This is 
the type of research question that can be addressed by the k- means clustering 
algorithm. In general, the k-means method will produce exactly k different 
clusters of greatest possible distinction. It should be mentioned that the be
number of clusters k leading to the greatest separation (distance) is not known as 
a priori and must be computed from the data (see 

st 

Finding the Right Number of 
Clusters).  

Example  
n the physical fitness example (see I Two-way Joining), the medical researcher 
may have a "hunch" from clinical experience that her heart patients fall basically 

e 
of 

would represent a quantitative way of expressing 

into three different categories with regard to physical fitness. She might wonder 
whether this intuition can be quantified, that is, whether a k-means cluster 
analysis of the physical fitness measures would indeed produce the thre
clusters of patients as expected. If so, the means on the different measures 
physical fitness for each cluster 
the researcher's hypothesis or intuition (i.e., patients in cluster 1 are high on 
measure 1, low on measure 2, etc.).  

Computations  
Computationally, you may think of this method as analysis of variance (ANOVA) 
"in reverse." The program will start with k random clusters, and then move 

ly 
 

en 

s clustering, the program tries to move objects (e.g., 
cases) in and out of groups (clusters) to get the most significant ANOVA results.  

objects between those clusters with the goal to 1) minimize variability within 
clusters and 2) maximize variability between clusters. In other words, the 
similarity rules will apply maximally to the members of one cluster and minimal
to members belonging to the rest of the clusters. This is analogous to "ANOVA in
reverse" in the sense that the significance test in ANOVA evaluates the betwe
group variability against the within-group variability when computing the 
significance test for the hypothesis that the means in the groups are different 
from each other. In k-mean



In
U
m

terpretation of results  
sually, as the result of a k-means clustering analysis, we would examine the 
eans for each cluster on each dimension to assess how distinct our k clusters 

 
 of how well the respective 

 

are. Ideally, we would obtain very different means for most, if not all dimensions, 
used in the analysis. The magnitude of the F values from the analysis of variance
performed on each dimension is another indication
dimension discriminates between clusters.  

 
 

 

ed 

o 
 

study is to 
 
d 

ans clustering. To reiterate, the classic k-Means algorithm was popularized 
ic 

ired 

EM (Expectation Maximization) Clustering  

  

Introductory Overview  
The methods described here are similar to the k-Means algorithm describ
above, and you may want to review that section for a general overview of these 
techniques and their applications. The general purpose of these techniques is to 
detect clusters in observations (or variables) and to assign those observations t
the clusters. A typical example application for this type of analysis is a marketing
research study in which a number of consumer behavior related variables are 
measured for a large sample of respondents. The purpose of the 
detect "market segments," i.e., groups of respondents that are somehow more
similar to each other (to all other members of the same cluster) when compare
to respondents that "belong to" other clusters. In addition to identifying such 
clusters, it is usually equally of interest to determine how the clusters are 
different, i.e., determine the specific variables or dimensions that vary and how 
they vary in regard to members in different clusters.  
k-me
and refined by Hartigan (1975; see also Hartigan and Wong, 1978). The bas
operation of that algorithm is relatively simple: Given a fixed number of (des



o

n the (final) clusters.  

). 

ns. 

thin each sample, 

d b  population) may look like 
this:  

r hypothesized) k clusters, assign observations to those clusters so that the 
means across clusters (for all variables) are as different from each other as 
possible.  
Extensions and generalizations. The EM (expectation maximization) algorithm 
extends this basic approach to clustering in two important ways:  

1. Instead of assigning cases or observations to clusters to maximize the differences 
in means for continuous variables, the EM clustering algorithm computes 
probabilities of cluster memberships based on one or more probability 
distributions. The goal of the clustering algorithm then is to maximize the overall 
probability or likelihood of the data, give

2. Unlike the classic implementation of k-means clustering, the general EM 
algorithm can be applied to both continuous and categorical variables (note that 
the classic k-means algorithm can also be modified to accommodate categorical 
variables). 

The EM Algorithm  
The EM algorithm for clustering is described in detail in Witten and Frank (2001
The basic approach and logic of this clustering method is as follows. Suppose 
you measure a single continuous variable in a large sample of observatio
Further, suppose that the sample consists of two clusters of observations with 
different means (and perhaps different standard deviations); wi
the distribution of values for the continuous variable follows the normal 

istri ution. The resulting distribution of values (in the

 



Mixtures of distributions. The illustration shows two normal distributions with 
different means and different standard deviations, and the sum of the two 
distributions. Only the mixture (sum) of the two normal distributions (with different 

 data (distribution). Put another way, the 
 algorithm attempts to approximate the observed distributions of values based 

n mixtures of different distributions in different clusters.  
ith the implementation of the EM algorithm in some computer programs, you 
ay be able to select (for continuous variables) different distributions such as the 
ormal

means and standard deviations) would be observed. The goal of EM clustering is 
to estimate the means and standard deviations for each cluster so as to 
maximize the likelihood of the observed
EM
o
W
m
n , log-normal, and Poisson distributions. You can select different 

istributions for different variables and, thus, derive clusters for mixtures of 
different types of distri

ategorical variables. The EM algorithm can also accommodate categorical 
variables. The method will at first randomly assign different probabilities (weights, 

 class or category, for each cluster. In successive 
 of 

but 
ach 

d
butions.  

C

to be precise) to each
iterations, these probabilities are refined (adjusted) to maximize the likelihood
the data given the specified number of clusters.  
Classification probabilities instead of classifications. The results of EM clustering 
are different from those computed by k-means clustering. The latter will assign 
observations to clusters to maximize the distances between clusters. The EM 
algorithm does not compute actual assignments of observations to clusters, 
classification probabilities. In other words, each observation belongs to e
cluster with a certain probability. Of course, as a final result you can usually 
review an actual assignment of observations to clusters, based on the (largest) 
classification probability.  
 
 
 

 



Finding the Right Number of Clusters in k-Means and EM
Clustering: v-Fold Cross-Validation  
An important question that needs to be answered before applying the k-means
EM clustering algorithms is how many clusters there are in the data. This is not 
known a priori and, in fact, there might be no definite or unique answer as t
what value k should take. In other words, k is a nuisance parameter of the 
clustering model. Luckily, an estimate of k can be obtained from the data us
the method of cross-validation. Remember that the k-means and EM methods 
will determine cluster solutions for a particular user-defined number of clusters.
The k-means and EM clustering techniques (described above) can be opti
and enhanced for typical applications in 

 

 or 

o 

ing 

 
mized 

data mining. The general metaphor of 

 what the analysist might find (in contrast to the hypothesis-testing 
approac of scientific ctice, e analyst usually does not know 

 of time how e i  in the sample. For that reason, 
c e imp en n  v-fold cross-validation

data mining implies the situation in which an analyst searches for useful 
structures and "nuggets" in the data, usually without any strong a priori 
expectations of

h research). In pra  th
ahead  many clusters th re m ght be
some programs in lud an lem tatio  of a  algorithm 

e m g t a.  
h is en ly u l l general "pattern-recognition" 

ermin e number of market ng research 
tudy, the number of distinct spending patterns in studies of consumer behavior, 

s in 
o 

for automatically d
This unique algorit

ter
m 

inin
 imm

he number of clusters in the dat
se sefu in al

tasks - to det e th segments in a marketi
s
the number of clusters of different medical symptoms, the number of different 
types (clusters) of documents in text mining, the number of weather pattern
meteorological research, the number of defect patterns on silicon wafers, and s
on.  
The v-fold cross-validation algorithm applied to clustering. The v-fold cross-
validation algorithm is described in some detail in Classification Trees and 
General Classification and Regression Trees (GC&RT). The general idea of th
method is to divide the overall sample into a number of v folds. The same type o
analysis is then successively applied to the observations belonging to the v-1 

is 
f 

folds (training sample), and the results of the analyses are applied to sample v 



(the sample or fold that was not used to estimate the parameters, build the tree,
determine the clusters, etc.; this is the testing sample) to compute some index of 
predictive validity. The results for the v replications are aggregated (averaged) to 
yield a single measure of the stability of the respective model, i.e., the validity
the model for predicting new observations.  
Cluster analysis is an 

 

 of 

unsupervised learning technique, and we cannot observe 
 the the (real) number of clusters in the data. However, it is reasonable to replace

usual notion (applicable to supervised learning) of "accuracy" with that of 
"distance." In general, we can apply the v-fold cross-validation method to a ra
of numbers of clusters in k-means or EM clustering, and observe the resulting 
average distance of the observations (in the cross-validation or testing samples) 
from their cluster centers (for k-means clustering); for EM clustering, an 
appropriate equivalent measure would be the average negative (log-) l

nge 

ikelihood 
computed for the observations in the testing samples.  
Reviewing the results of v-fold cross-validation. The results of v-fold cross-
validation are best reviewed in a simple line graph.  

 
Shown here is the result of analyzing a data set widely known to contain thre
clusters of observations (specifically, the well-known Iris data file repo
Fisher, 1936, and widely referenced in the literature on 

e 
rted by 

discriminant function 
analysis). Also shown (in the graph to the right) are the results for analyzing 
simple normal random numbers. The "real" data (shown to the left) exhibit the 



characteristic scree-plot pattern (see also Factor Analysis), where the co
function (in this case, 2 times the log-likelihood of the cross-validation data
the estimated parameters) quickly decreases as the number of clusters 
increases, but then (past 3 clusters) levels off, and even increases as the dat
are 

st 
, given 

a 
overfitted. Alternatively, the random numbers show no such pattern, in fact, 

 

on 

 

rrespondence Analysis 

there is basically no decrease in the cost function at all, and it quickly begins to
increase as the number of clusters increases and overfitting occurs.  
It is easy to see from this simple illustration how useful the v-fold cross-validati
technique, applied to k-means and EM clustering can be for determining the 
"right" number of clusters in the data.  
 
 
 
 
 

Co
  

 

designed to 
analyze simple two-way and multi-way tables containing some measure of 

and columns. The results provide information 

Gene
Corre

ral Pur
sponde

pose 
nce an

 

alysis is a descriptive/exploratory technique 

correspondence between the rows 
which is similar in nature to those produced by Factor Analysis techniques, and 
they allow one to explore the structure of categorical variables included in the 
table. The most common kind of table of this type is the two-way frequency 
crosstabulation table (see, for example, Basic Statistics or Log-Linear).  
In a typical correspondence analysis, a crosstabulation table of frequencies is 

. One first standardized, so that the relative frequencies across all cells sum to 1.0
way to state the goal of a typical analysis is to represent the entries in the table of 
relative frequencies in terms of the distances between individual rows and/or 

http://www.statsoft.com/textbook/stfacan.html


columns in a low-dimensional space. This is best illustrated by a simple examp
which will be described below. There are several parallels in interpretation 
between c

le, 

orrespondence analysis and Factor Analysis, and some similar 

e 

homogeneity analysis). In the following paragraphs, a general 

u collected data on the smoking habits of different 
 in a company. The following data set is presented in Greenacre 

gory   

concepts will also be pointed out below.  
For a comprehensive description of this method, computational details, and its 
applications (in the English language), refer to the classic text by Greenacre 
(1984). These methods were originally developed primarily in France by Jean-
Paul Benzérci in the early 1960's and 1970's (e.g., see Benzérci, 1973; see also 
Lebart, Morineau, and Tabard, 1977), but have only more recently gained 
increasing popularity in English-speaking countries (see, for example, Carrol, 
Green, and Schaffer, 1986; Hoffman and Franke, 1986). (Note that similar 
techniques were developed independently in several countries, where they wer
known as optimal scaling, reciprocal averaging, optimal scoring, quantification 
method, or 
introduction to correspondence analysis will be presented.  
Overview. Suppose yo
employees
(1984, p. 55).  

  Smoking Cate

Staff 
 Group None Light Medium

(4) 
Heavy

Row
Totals

(1) 
 

(2) 
 

(3) 

(1
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

  4 
25 
18 
10 

  3 
10 
24 
  6 

  7 
12 
33 
  7 

  4 
  4 
13 
  2 

  18
  51
  88
  25 

) Senior Managers   4   2   3   2   11

Column Totals 61 45 62 25 193 

 
One may think of the 4 column values in each row of the table as coordinat
a 4-dimensional space, and one could compute the (Euclidean) distances 
between the 5 row points in the 4- dimensional space. The distances between 
the points in the 4-dimensional space summarize all information ab

es in 

out the 
similarities between the rows in the table above. Now suppose one could find a 



lower-dimensional space, in which to position the row points in a manner that 
retains all, or almost all, of the information about the differences between the 
rows. You could then present all information about the similarities between the
rows (types of employees in this case) in a simple 1, 2, or 3-dimensional gra
While this may not appear to be particularly useful for small tables like the one 
shown above, one can easily imagine how the presentation and interpretation 
very large tables (e.g., differential preference for 10 consumer items among 100 

 
ph. 

of 

 in a consumer survey) could greatly benefit from the 
simplification that can be achieved via correspondence analysis (e.g., represent 

 consumer ace).  

groups of respondents

the 10 items in a two- dimensional sp
Mass. To continu
above, computatio
the frequenc

e i  e nted 
m mpute the relative frequencies for 

y tab h entries is equal to 1.0 (each 
lement will be divided by the total, i.e., 193). One could say that this table now 

logy of 

 with
nally

le, so 

 the s
, the p
that t

mpler
rogra
e sum

xample of the two-way table prese
 will f
 of all

irst co
 table 

e
shows how one unit of mass is distributed across the cells. In the termino
correspondence analysis, the row and column totals of the matrix of relative 
frequencies are called the row mass and column mass, respectively.  
Inertia. The term inertia in correspondence analysis is used by analogy with the 

 applied mathematics of "moment of inertia," which stands for the definition in
ral integ of mass times the squared distance to the 

rtia
centroid (e.g., Greenacre, 

.1984, p  35). Ine  is defined as the total Pearson Chi-square for the two-way 
 b  (193 in the present example).  

ertia
divided y the total sum
In  and row and column profiles. If the rows and columns in a table are 
completely independent of each other, the entries in the table (distribution of 
mass) can be reproduced from the row and column totals alone, or row and 
column profiles in the terminology of correspondence analysis. According to the 
well-known formula for computing the Chi-square statistic for two-way tables, the 
expected frequencies in a table, where the column and rows are independent of 

nder the 
each other, are equal to the respective column total times the row total, divided 
by the grand total. Any deviations from the expected values (expected u



hypothesis of complete independence of the row and column variables) will 
contribute to the overall Chi-square. Thus, another way of looking at 
correspondence analysis is to consider it a method for decomposing the overall 
Chi-square statistic (or Inertia=Chi- square/Total N) by identifying a small number 
of dimensions in which the deviations from the expected values can be 
represented. This is similar to the goal of Factor Analysis, where the total 
variance is decomposed, so as to arrive at a lower-dimensional representation of 
the variables that allows one to reconstruct most of the variance/covariance 
matrix of variables.  
Analyzing rows and columns. This simple example began with a discussion of 

rested 

ances) 

s and 
-

a

the row-points in the table shown above. However, one may rather be inte
in the column totals, in which case one could plot the column points in a small-
dimensional space, which satisfactorily reproduces the similarity (and dist
between the relative frequencies for the columns, across the rows, in the table 
shown above. In fact it is customary to simultaneously plot the column point
the row points in a single graph, to summarize the information contained in a two
way table.  
Reviewing results. Let us now look at some of the results for the table shown 

bove. First, shown below are the so-called singular values , eigenvalues, 
percentages of inertia explained, cumulative percentages, and the contribution
the overall Chi- square.  

 to 

Eigenvalues and Inertia for all Dimensions 
Input Table (Rows x Columns):  5 x 4 
Total Inertia = .08519 Chi² = 16.442  
No. of 
Dims 

Singular 
Values 

Eigen- 
Values 

Perc. of 
Inertia 

Cumulatv
Percent 

Chi 
Squares

1 
2 
3 

.273421 

.100086 

.020337 

.074759 

.010017 

.000414 

87.75587 
11.75865 

.48547 

87.7559
99.5145

100.0000

14.42851
1.93332

.07982

 
Note that the dimensions are "extracted" so as to maximize the distances 
between the row or column points, and successive dimensions (which are 
independent of or orthogonal to each other) will "explain" less and less of the 



overall Chi-square value (and, thus, inertia). Thus, the extraction of the 
dimensions is similar to the extraction of principal components in Factor Analysis.  
First, it appears that, with a single dimension, 87.76% of the inertia can be 
"explained," that is, the relative frequency values that can be reconstructed f
a single dimension can reproduce 87.76% of the total Chi-square value (and, 
thus, of the 

rom 

inertia) for this two-way table; two dimensions allow you to explain 

l to 

 
d on 

y arginal totals). Thus, the maximum 
to 

t s 

in 

99.51%.  
Maximum number of dimensions. Since the sums of the frequencies across the 
columns must be equal to the row totals, and the sums across the rows equa
the column totals, there are in a sense only (no. of columns-1) independent 
entries in each row, and (no. of rows-1) independent entries in each column of
the table (once you know what these entries are, you can fill in the rest base
our knowledge of the column and row m

number of eigenvalues that can be extracted from a two- way table is equal 
he minimum of the number of columns minus 1, and the number of rows minu

1. If you choose to extract (i.e., interpret) the maximum number of dimensions 
that can be extracted, then you can reproduce exactly all information contained 
the table.  
Row and column coordinates. Next look at the coordinates for the two-
dimensional solution.  
Row Name Dim. 1 Dim. 2
(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

-.065768 
.258958 

-.380595 
.232952 

-.201089 

.193737

.243305

.010660
-.057744
-.078911

 
Of course, you can plot these coordinates in a two-dimensional scatterplot. 
Remember that the purpose of correspondence analysis is to reproduce the 
distances between the row and/or column points in a two-way table in a lower-
dimensional display; note that, as in Factor Analysis, the actual rotational 
orientation of the axes is arbitrarily chosen so that successive dimensions 
"explain" less and less of the overall Chi-square value (or inertia). You could, for 



example, reverse the signs in each column in the table shown above, there
effectively rotating the respective axis in th

by 
e plot by 180 degrees.  

s ces of the points in the two-dimensional display, 
 

ual 
 

ntensity.  
ow Totals 

What i important are the distan
which are informative in that row points that are close to each other are similar
with regard to the pattern of relative frequencies across the columns. If you have 
produced this plot you will see that, along the most important first axis in the plot, 
the Senior employees and Secretaries are relatively close together on the left 
side of the origin (scale position 0). If you looked at the table of relative row 
frequencies (i.e., frequencies standardized, so that their sum in each row is eq
to 100%), you will see that these two groups of employees indeed show very
similar patterns of relative frequencies across the categories of smoking i
Percentages of R

  Smoking Category   
Staff 
Group 

(1) 
None 

(2) 
Light 

(3) 
Medium

(4) 
Heavy

Row
Totals

(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

36.36 
22.22 
49.02 
20.45 
40.00 

18.18 
16.67 
19.61 
27.27 
24.00 

27.27 
38.89 
23.53 
37.50 
28.00 

18.18
22.22
  7.84
14.77
  8.00

100.00
100.00
100.00
100.00
100.00

 
Obviously the final goal of correspondence analysis is to find theoretical 
interpretations (i.e., meaning) for the extracted dimensions. One method that 
may aid in i lot the column points. Shown 

he colu r e n o ension.  
nterpreting extracted dimensions is to p

below are t mn coo dinates for th  first a d sec nd dim
Smoking 
category 

  
Dim. 1 D

  
im. 2 

None 
Light 
Medium 

-.393308 
.099456 
.1963

.03
-.14

Heavy 
21 

.293776 
-.0
.197766 

0492 
1064 

07359 

 
It appears that the first dimension distinguishes mostly between the different 
degrees of smoking, and in particular between category None and the others. 
Thus one can interpret the greater similarity of Senior Managers with Secretaries, 



with regard to their position on the first axis, as mostly deriving from the relative
large numbers of None smokers in these two groups of employees.  
Compatibility of row and column coordinates. It is customary to summarize the 
row and colum

ly 

n coordinates in a single plot. However, it is important to 
 row 

n 
remember that in such plots, one can only interpret the distances between
points, and the distances between column points, but not the distances betwee
row points and column points.  

 
To continue with this example, it would not be appropriate to say that the 
category None is similar to Senior Employees (the two points are very close in 
the simultaneous plot of row and column coordinates). However, as was 
indicated earlier, it is appropriate to make general statements about the nature 
the dimensions, based on which side of the origin particular points fall. For 
example, because category None is the only column point on the left side of the
origin for the first axis, and since employee group Senior Employees also fa

nto that side of the first axis, one may conclude that the first axis separates 
None smokers from the other categories of smokers, and that Senior Employees 

of 

 
lls 

o

ture 

are different from, for example, Junior Employees, in that there are relatively 
more non-smoking Senior Employees.  
Scaling of the coordinates (standardization options). Another important decision 
that the analyst must make concerns the scaling of the coordinates. The na
of the choice pertains to whether or not you want to analyze the relative row 
percentages, column percentages, or both. In the context of the example 



described above, the row percentages were shown to illustrate how the patterns 
of those percentages across the columns are similar for points which appear 
more closely together in the graphical display of the row coordinates. Put another 

ch 
bility 

 from 

 and 

ization amounts to a rescaling of the coordinates 

f 

 matrices.  

 
f 

t (1) 
se either row-profile standardization or 

lumn 

way, the coordinates are based on the analysis of the row profile matrix, where 
the sum of the table entries in a row, across all columns, is equal to 1.0 (ea
entry rij in the row profile matrix can be interpreted as the conditional proba
that a case belongs to column j, given its membership in row i). Thus, the 
coordinates are computed so as to maximize the differences between the points 
with respect to the row profiles (row percentages). The row coordinates are 
computed from the row profile matrix, the column coordinates are computed
the column profile matrix.  
A fourth option, Canonical standardization (see Gifi, 1981), is also provided,
it amounts to a standardization of the columns and rows of the matrix of relative 
frequencies. This standard
based on the row profile standardization and the column profile standardization, 
and this type of standardization is not widely used. Note also that a variety o
other custom standardizations can be easily performed if you have the raw 
eigenvalues and eigenvector
Metric of coordinate system. In several places in this introduction, the term 
distance was (loosely) used to refer to the differences between the pattern of 
relative frequencies for the rows across the columns, and columns across the
rows, which are to be reproduced in a lower-dimensional solution as a result o
the correspondence analysis. Actually, these distances represented by the 
coordinates in the respective space are not simple Euclidean distances 
computed from the relative row or column frequencies, but rather, they are 
weighted distances. Specifically, the weighting that is applied is such that the 
metric in the lower- dimensional space is a Chi-square metric, provided tha
you are comparing row points, and cho
both row- and column-profile standardization, or (2) you are comparing co



points, and chose either column-profile standardization or both row- a
profile standardization.  
In that case (but not if you chose the canonical standardization), the squared 
Euclidean distance between, for example, two row points i and i' in the respective
coordinate system of a given number of dimensions actually approximates a 
weighted (i.e., Chi-square) distance between the relative frequencies (see 
Hoffman and Franke, 1986, formula 21):  
d

nd column-

 

ii '2 = j (1/cj (pij /ri - p2i ' j /ri '))  
In
s

 this formula, dii ' stands for the squared distance between the two points, cj 
tands for the column total for the j'th column of the standardized frequency table 

1.0), pij stands for the individual (where the sum of all entries or mass is equal to 
cell entries in the standardized frequency table (row i, column j), ri stands for the 
row total for the i'th column of the relative frequency table, and the summation 
is over the columns of the table. To reiterate, only the distances between row
points, and correspondingly, between column points are interpretable in this 
manner; the distances between row points and column points cannot be 
interpreted.  

 

e qualityJudging th  of a solution. A number of auxiliary statistics are reported, to 
aid in the evaluation of the quality of the respective chosen numbers of 

 here is that all (or at least most) points are 
esen ective solution, that is, that their distances to 

 b  to a satisfactory degree. Shown below are all 
tatistics reported for the row coordinates for the example table discussed so far, 

dimensions. The g
properly repr

eneral c
ted by th

oncern
e resp

other points can e approximated
s
based on a one-dimensional solution only (i.e., only one dimension is used to 
reconstruct the patterns of relative frequencies across the columns).  

Row Coordinates and Contributions to Inertia 
  
Staff Group 

Coordin. 
Dim.1 

  
Mass 

  
Quality

Relative
Inertia

Inertia
Dim.1

Cosine²
Dim.1

(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

-.065768 
.258958 
-.380595 
.232952 
-.201089 

.056995

.093264

.264249

.455959

.129534

.092232

.526400

.999033

.941934

.865346

.031376

.139467

.449750

.308354

.071053

.003298

.083659

.512006

.330974

.070064

.092232

.526400

.999033

.941934

.865346



 
 
Coordinates. The first numeric column shown in the table above contains the 
coordinates, as discussed in the previous paragraphs. To reiterate, the specific 
interpretation of these coordinates depends on the standardization chosen for the
solution (see above). The number of dimensions is chosen by the user (in th
ase we chose only one dimension), and coordinate values will be shown for 

each dimension (i.e., there will be one column with c

 
is 

c
oordinate values for each 

dimension).  
Mass. The Mass column contains the row totals (since these are the row 
coordinates) for the table of relative frequencies (i.e., for the table where each 

t entry is the respective mass, as discussed earlier in this section). Remember tha
the coordinates are computed based on the matrix of conditional probabilities 
shown in the Mass column.  
Quality. The Quality column contains information concerning the quality of 
representation of the respective row point in the coordinate system defined by 
the respective numbers of dimensions, as chosen by the user. In the table shown 
above, only one dimension was chosen, and the numbers in the Quality column 
pertain to the quality of representation in the one-dimensional space. To 
reiterate, computationally, the goal of the correspondence analysis is to 
reproduce the distances between points in a low-dimensional space. If you 
extracted (i.e., interpreted) the maximum number of dimensions (which i
to the minimum of the number of rows and the number of columns, minus 1), y

s equal 
ou 

uld reconstruct all st  The Qualityco di ances exactly.  of a point is defined as the 
nt from the origin in the chosen number of 
 from the origin in the space defined by 
emember that the metric here is Chi-

rib gy to Factor Analysis

ratio of the square
dimensions, over 
the maximum num

d dista
the squ
ber of 

nce of 
ared d
dimens

the poi
istance
ions (r

square, as desc ed earlier). By analo , the quality of a point 
 similar in its interpretation to the communality for a variable in factor analysis.  is



Note that the Quality measure reported is independent of the chosen method of 
standardization, and always pertains to the default standardization (i.e
distance metric is Chi-square, and the 

., the 
quality measure can be interpreted as th

"proportion of Chi- square accounted for" for the respective row, given the 
espective number of dimensions). A low 

e 

r quality means that the current number 
of dimensions does not well represent the respective row (or column). In the 
table shown above, the quality for the first row (Senior Managers) is less than .1, 
indicating that this row point is not well represented by the one- dimensional 
representation of the points.  
Relative inertia. The Quality of a point (see above) represents the proportion of 
the contribution of that point to the overall inertia (Chi-square) that can be 
a
in

ccounted for by the chosen number of dimensions. However, it does not 
dicate whether or not, and to what extent, the respective point does in fact 

contribute to the overall inertia (Chi- square value). The relative inertia represents 
the proportion of the total inertia accounted for by the respective point, and it is 
independent of the number of dimensions chosen by the user. Note tha
particular solution may represent a point very well (high 

t a 
Quality), but the same 

point may not contribute much to the overall inertia (e.g., a row point with a 
pattern of relative frequencies across the columns that is similar to the average 
pattern across all rows).  
Relative inertia for each dimension. This column contains the relative contribution
of the respective (row) point to the 

 
inertia "accounted for" by the respective 

dimension. Thus, this value will be reported for each (row or column) point, f
each dimension

or 
.  

Cosine² (quality or squared correlations with each dimension). This column 
contains the quality for each point, by dimension. The sum of the values in these 
columns across the dimensions is equal to the total Quality value discussed 

e (since in the m  ta  ab , o ne dimension was chose, the 
m re ent  to the values in the overall Quality

abov  exa ple ble ove nly o
values in this colu n a  id ical  column). 

e rpre  as  " elation" of the respective point This value may also b inte ted  the corr



with the respective e n.  te Cosine² refers to the fact that this value 
uared in alu f th ng e point makes with the respective 

imension (refer to Greenacre, 1984, for details concerning the geometric 

A note about "statistical significance." It should be noted at this point that 
correspondence analys oratory technique. Actually, 

development of models that fit the data, rather than the rejection of hypotheses 
based on the lack of fit (Benzecri's "second principle" states that "The model 
must fit the ata, n vice v a;" se reena e, 19 , p 0). Therefore, there 
are no stati tical si ificanc  customarily applied to the results of a 
correspondence analysis; the primar purpos of th ec ique  to p uce a 
simplified (low- dimensional) representation of the information in  larg

equency table (or tables with similar measures of correspondence).  

T  
n 

entary row or column points, that were not used to perform the original 
 the 

 dim nsio  The rm 
is also the sq  cos e v e o e a le th
d
aspects of correspondence analysis).  

is is an expl the method was 
developed based on a philosophical orientation that emphasizes the 

 d
s

ot 
gn

ers
e tests that are

e G

y 
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e 
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e t
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Supplementary Points  
he introductory section provides an overview of how to interpret the coordinates

and related statistics computed in a correspondence analysis. An important aid i
the interpretation of the results from a correspondence analysis is to include 
supplem
analyses. For example, consider the following results which are based on
example given in the introductory (based on Greenacre, 1984).  
Row Name Dim. 1 Dim. 2
(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

-.065768 
.258958 

-.380595 
.232952 

-.201089 

.193737

.243305

.010660
-.057744
-.078911

National Average -.258368 -.117648

 
The table above shows the coordinate values (for two dimensions) computed for 
a frequency table of different types of employees by type of smoking habit. The 



row labeled National Average contains the coordinate values for the 
supplementary point, which is the national average (percentages) for the different 

okers: 

coordinates in a two-dimensiona s, 

 
. If 

you refer back to the original two-way table shown in the introductory section

smoking categories (which make up the columns of the table; those fictitious 
percentages reported in Greenacre (1984) are: Nonsmokers: 42%, light sm
29%, medium smokers, 20%; heavy smokers: 9%). If you plotted these 

l scatterplot, along with the column coordinate
it would be apparent that the National Average supplementary row point is 
plotted close to the point representing the Secretaries group, and on the same
side of the horizontal axis (first dimension) as the Nonsmokers column point

, this 
 

y table 

finding is consistent with the entries in the table of row frequencies, that is, there
are relatively more nonsmokers among the Secretaries, and in the National 
Average. Put another way, the sample represented in the original frequenc
contains more smokers than the national average.  
While this type of information could have been easily gleaned from the original 
frequency table (that was used as the input to the analysis), in the case of very 
large tables, such conclusions may not be as obvious.  
Quality of representation of supplementary points. Another interesting result for 
supplementary points concerns the quality of their representation in the chosen 
number of dimensions (see the introductory section for a more detailed 
discussion of the concept of quality of representation). To reiterate, the goal of 
the correspondence analysis is to reproduce the distances between the row or 

ows, 

sions. 

  
Staff Group 

  
Quality 

Cosine²
Dim.1

Cosine²
Dim.2

column coordinates (patterns of relative frequencies across the columns or r
respectively) in a low-dimensional solution. Given such a solution, one may ask 
whether particular supplementary points of interest can be represented equally 
well in the final space, that is, whether or not their distances from the other points 
in the table can also be represented in the chosen numbers of dimen
Shown below are the summary statistics for the original points, and the 
supplementary row point National Average, for the two-dimensional solution.  



(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employee

.892568 

.991082 
.092232
.526400

.800336

.464682
s .999817 .999033 .000784

(4) Junior Employees 
(5) Secretaries 

.999810 

.998603 
.941934
.865346

.057876

.133257
National Average .761324 .630578 .130746

 
he statistics reported in the table above are discussed in the T introductory 

section. In short, the Quality of a row or column point is defined as the ratio o
squared distance of the point from the origin in the chosen number of 
dimensions, over the squared distance from the origin in the space defined by
the maximum number of dimensions (remember that the metric here is 

f the 

 
Chi-

square, as described in the introductory section). In a sense, the overall quality is
the "proportion of squared distance-from-the-overall-centroid accounted for." The 
supplementary row point National Average has a 

 

quality of .76, indicating that it 
is reasonably well represented in the two-dimensional solution. The Cosine² 
statistic is the quality "accounted for" by the respective row point, by the 
respective dimension (the sum of the Cosine² values over the respective numbe
of dimensions is equal to the total 

r 
Quality, see also the introductory section).  

 
 

Multiple Correspondence Analysis (MCA)  

 

Multiple correspondence analysis (MCA) may be considered to be an extension 
of simple correspondence analysis to more than two variables. For an 
introductory overview of simple correspondence analysis, refer to the introductory
section . Multiple correspondence analysis is a simple correspondence analysis
carried out on an indicator (or design) matrix with cases as rows and categories 
of variables as columns. Actually, one usually analyzes

 

 the inner product of such 
a matrix, called the Burt Table in an MCA; this will be discussed later. However, 
to clarify the interp rrespondence analysis, 

s  is of an indicator or 
retation of the results from a multiple co

it is easier to discu
design matrix.  

s the simple correspondence analys

http://www.statsoft.com/textbook/stmulreg.html
http://www.statsoft.com/textbook/stmulreg.html


Indicator or des
the 

ign a o-way table presented in 
c
m
tio

tri
n

x. Consider again the simple tw
introductory se :  

  Smoking Category   
S
Group None Light Medium Heavy Totals

taff (1) (2) (3) (4) Row

(1) Senior Managers 
(2) Junior Managers 
3) Senior Employees 
4) Junior Employees 

(5) Secretaries 

  4 
  4 
25 
18 
10 

  2 
  3 
10 
24 
  6 

  3 
  7 
12 
33 
  7 

  2 
  4 
  4 
13 
  2 

  11
  18
  51
  88
  25 

(
(

Column Totals 61 45 62 25 193 

 
Suppose you had entered the data for this table in the following manner, as an 
indicator or design matrix:  

  Staff Group Smoking 
Case 
Number 

Senior 
Manager 

Junior 
Manager 

Senior 
Employee

Junior 
Employee

  
Secretary

  
None

  
Light

  
Medium 

  
Heavy 

1 
2 
3 
4 
5 
... 
... 
... 

191 

1 
1 
1 
1 
1 
. 
. 
. 
0 

0 
0 
0 
0 
0 
. 
. 
. 
0 

0 
0 
0 
0 
0 
. 
. 
. 
0 

0 
0 
0 
0 
0 
. 
. 

0 

0 
0 
0 
0 
0 
. 
. 

1 
1 
1 
1 
0 
. 
. 

0 
0 
0 
0 
1 
. 
. 

0 
0 
0 
0 
0 
. 
. 

0 
0 
0 
. 
. 

192 
193 

0 
0 

0 
0 

0 
0 

. 

0 
0 

. 
1 
1 
1 

. 
0 
0 
0 

. 
0 
0 
0 

. 
1 
0 
0 

0 
0 

. 
0 
1 
1 

 
Each one of the 193 total cases in the table is represented by one case in this 

nd thus there will be four cases like 

m
An zin n matrix.  now analyzed this sign or 

t  results 
of the correspondence analysis would provide column coordinates

data file. For each case a 1 is entered into the category where the respective 
case "belongs," and a 0 otherwise. For example, case 1 represents a Senior 
Manager who is a None smoker. As can be seen in the table above, there are a 
total of 4 such cases in the two-way table, a
this in the indicator matrix. In all, there will be 193 cases in the indicator or design 

atrix.  
aly g the desig  If you  data file (de

indicator ma rix) shown above as if it were a two-way frequency table, the
 that would 



allow you to relate the different categories to each other, based on the distances 
betwe  e ro  point  i.e., be een the individual cases. In fact, the two-
dimensional display you would obtain for the column coordinates would look very 
similar to the combined display r row d colu n coo nates, if you had 
performed the simple correspondence analysis  the t -way fre ency table 

ote that the metric will be different, but the relative positions of the points will be 

ne of three age groups a 

Fuzzy coding. It is not necessary that each ca nly 
f each ca rica bl R e n th r-1 coding scheme, 
 probabiliti  fo be i  a gor  some other 
presents z h reenacre (1984) 

rent types of coding schemes of this kind. For example, suppose 
ign ma  s a , u miss data for a few cases 

 h ts stead of discarding those cases entirely from 
e analysis (or creating a new category Missing data), you could assign to the 
ifferent smoking categories proportions (which should add to 1.0) to represent 

ry (e.g., 

for 
the column coordinates from a simple correspondence analysis of the design or 

en th w s, tw

 fo an m
 on

rdi
wo qu

(n
very similar).  
More than two variables. The approach to analyzing categorical data outlined 
above can easily be extended to more than two categorical variables. For 
example, the indicator or design matrix could contain two additional variables 
Male and Female, again coded 0 and 1, to indicate the subjects' gender; and 
three variables could be added to indicate to which o
case belongs. Thus, in the final display, one could represent the relationships 
(similarities) between Gender, Age, Smoking habits, and Occupation (Staff 
Groups).  

se is assigned exclusively to o
one category o
one could enter
measure that re
discusses diffe
in the example des
regarding their smoking

tego
es

a fu

trix
abi

l v
r m

zy rule for group members

how
. In

aria
em

n e

e. 
rsh

rlier

ath
p in

 yo

r tha
 cate

had 

e 0-o
y, or
ip. G

ing 

th
d
the probabilities that the respective case belongs to the respective catego
you could enter proportions based on your knowledge about estimates for the 
national averages for the different categories).  
Interpretation of coordinates and other results. To reiterate, the results of a 
multiple correspondence analysis are identical to the results you would obtain 



indicator matrix. Therefore, the interpretation of coordinate values, quality valu
ported as the results from a multiple 

es, 
cosine²'s and other statistics re
correspondence analysis can b ed in 
the context of the simple corre

e interpreted in the same manner as describ
spondence analysis (see introductory section), 
in to the total however, these statistics perta inertia associated with the entire 

and "multiple regression" for categorical variabl
ysis of design matrices via correspondence 
lows you to perform the equivalent of a 

design matrix.  
Supplementary column points es. 
Another application of the anal
analysis techniques is that it al Multiple 
Regression for categorical vari

ign matrix. For example, suppose you added to the design matrix shown 
arlier two columns to indicate whether or not the respective subject had or had 
ot been ill over the past year (i.e., you could add one column Ill and another 

column Not ill, and again enter 0's and 1's to indicate each subject's health 
n a simple correspondence analysis of the design matrix, you added 

hen (1) the summary 
statistics for the quality

ables, by adding supplementary columns to the 
des
e
n

status). If, i
those columns as supplementary columns to the analysis, t

 of representation (see the introductory section) for those 
olumns would give you an indication of how well you can "explain" illness as a 

 variables in the design matrix, and (2) the display of the 
c the 

tive 

c
function of the other
olumn points in the final coordinate system would provide an indication of 

nature (e.g., direction) of the relationships between the columns in the design 
matrix and the column points indicating illness; this technique (adding 
supplementary points to an MCA analysis) is also sometimes called predic
mapping.  
The Burt table. The actual computations in multiple correspondence ana
not performed on a design or indicator matrix (which, potentially, may be very 
large if there are many cases), but on the inner product of this matrix; this matrix 
is also called the Burt matrix. With frequency tables, this amounts to tabulatin
the stacked categories a

lysis are 

g 
gainst each other; for example the Burt for the two-way 

frequency table presented earlier would look like this.  

  Employee Smoking 



(1) (2) (3) (4) (5) (1) (2) (3) (4)
(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 
(1) Smoking:None 
(2) Smoking:Light 
(3) Smoking:Medium 
(4) Smoking:Heavy 

11 
0 
0 
0 
0 
4 
2 
3 
2 

0 
18 

0 
0 
0 
4 
3 
7 
4 

0 
0 

51 
0 
0 

25 
10 
12 

4 

0
0
0

88
0

18
24
33
13

0
0
0
0

25
10

6
7
2

4
4

25
18
10
61

0
0
0

2
3

10
24

6
0

45
0
0

3
7

12
33

7
0
0

62
0

2
4
4

13
2
0
0
0

25

 
The Burt has a clearly defined structure. In the case of two categorical va
(shown above), it consists of 4 partitions: (1) the crosstabulation of variable 
Employee against itself, (2) the crosstabulation of variable Employee against
variable Smoking, (3), the crosstabulation of variable Smoking against variable 
Employee, and (4) the crosstabulation of varia

riables 

 

ble Smoking against itself. Note 
 

 
, and 

oyee 

that the matrix is symmetrical, and that the sum of the diagonal elements in each
partition representing the crosstabulation of a variable against itself must be the
same (e.g., there were a total of 193 observations in the present example
hence, the diagonal elements in the crosstabulation tables of variable Empl
against itself, and Smoking against itself must also be equal to 193).  
Note that the off-diagonal elements in the partitions representing the 
crosstabulations of a variable against itself are equal to 0 in the table shown 
above. However, this is not necessarily always the case, for example, when the 
Burt was derived from a design or indicator matrix that included fuzzy codin
category membership (see above).  
 

g of 

roduct of a design or indicator matrix, 
ne 

 

Burt Tables  
The Burt table is the result of the inner p
and the multiple correspondence analysis results are identical to the results o
would obtain for the column points from a simple correspondence analysis of the 
indicator or design matrix (see also MCA).  

http://www.statsoft.com/textbook/stclatre.html


For example, suppose you had entered data concerning the Survival for
Age groups in different Locations like this:  

  SURVIVAL AGE LOCATION 

 different 

Case No. NO YES LESST50 A50TO69 OVER69 TOKYO BOSTON GLAMORGN 
1 
2 

0 
1 

1 
0 

0 
1 

1 
0 

3 
4 

... 

... 

... 
762 
763 
764 

0 
0 
. 
. 
. 
1 
0 
0 

1 
1 
. 
. 
. 
0 
1 
1 

0 
0 
. 
. 
. 
0 
1 
0 

1 
0 
. 
. 
. 
1 
0 
1 

0 
1 
. 
. 
. 
0 
0 
0 

0 
0 
. 
. 
. 
1 
0 
0 

1 
0 

. 
0 
1 
0 

0 
1 
. 
. 
. 
0 
0 
1 

0 
0 

0 
1 

0 
0 

. 

. 

1 
0 

 
In this data arrangement, for each case a 1 was entered to indicate to which 
category, of a particular set of categories, a case belongs (e.g., Survival, with the 
categories No and Yes). For example, case 1 survived (a 0 was entered for 
variable No, and a 1 was entered for variable Yes), case 1 is between age 50 
and 69 (a 1 was entered for variable A50to69), and was observed in Glamorgn). 
Overall there are 764 observations in the data set.  
If you denote the data (design or indicator matrix) shown above as matrix X, then 
matrix product X'X is a Burt table); shown below is an example of a Burt table 
that one might obtain in this manner.  

SURVIVAL AGE LOCATION   
NO YES <50 50-69 69+ TOKYO BOSTON GLAMORGN 

SURVIVAL:NO 
SURVIVAL:YES 
  
AGE:UNDER_50 
AGE:A_50TO69 
AGE:OVER_69  
 
LOCATION:TOKYO 
LOCATION:BOSTON 

OCATION:GLAMORGN 

210 
0 
  

68 
93 
49 

  
60 
82 
68 

0
554

 
212
258
84

 
230
171
153

68
212

 
280

0
0
 

151
58
71

93
258

 
0

351
0
 

120
122
109

49
84

 
0
0

133
 

19
73
41

  60 
230 

  
151 
120 
  19 

  
290 
    0 
    0 

  82 
171 

  
  58 
122 
  73 

  
    0 
253 
    0 

  68 
153 

  
  71 
109 
  41 

  
    0 
    0 
221 L

 

symmetrical. In the case of 3 categorical variables (as shown above), the data 

 
The Burt table has a clearly defined structure. Overall, the data matrix is 



matrix consists 3 x 3 = 9 partitions, created by each variable being tabulated 
against itself, and against the categories of all other variables. Note that the su
of the diagonal elements in each diagonal partition (i.e., w
v
case).  
T
the cases in the design or indicator matrix are assigned to categories via fuzzy
oding (i.e., if probabilities are used to indic

c
diagonal elements of the diagonal partitions are not necessarily equal to 0.  
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m 
here the respective 

ariables are tabulated against themselves) is constant (equal to 764 in this 

he off-diagonal elements in each diagonal partition in this example are all 0. If 
 

c ate likelihood of membership in a 
ategory, rather than 0/1 coding to indicate actual membership), then the off-
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ata Mining  D



Data Mining is an analytic process designed to 
explore data (usually large amounts of data - 
typically business or market related) in search of 
consistent patterns and/or systematic relationsh
between variables, and then to validate the 
findings by applying the detected patterns to new 
subsets of data. The ultimate goal of data mining

is prediction - and 

ips 

 
predictive data mining is the most common type of data m

and one that has the most direct business applications. The process of data 
mining consists of three stages: (1) the initial exploration, (2) model building 
pattern identification with 

ining 

or 
validation/verification, and (3) deployment (i.e., the 

application of the model to new data in order to generate predictions).  
Stage 1: Exploration. This stage usually starts with data preparation which may 
involve cleaning data, data transformations, selecting subsets of records and 
case of data sets with large numbers of variables ("fields") - performing some 
preliminary 

- in 

feature selection operations to bring the number of variables to a 
manageable range (depending on the statistical methods which are bein
considered).

g 
 Then, depending on the nature of the analytic problem, this first 

e process of data mining may involve anywhere between a simple 

s 

stage of th
choice of straightforward predictors for a regression model, to elaborate 
exploratory analyses using a wide variety of graphical and statistical method
(see Exploratory Data Analysis (EDA)) in order to identify the most relevant 
variables and determine the complexity and/or the general nature of models that 

eveloped 

can be taken into account in the next stage.  
Stage 2: Model building and validation. This stage involves considering various 
models and choosing the best one based on their predictive performance (i.e., 
explaining the variability in question and producing stable results across 
samples). This may sound like a simple operation, but in fact, it sometimes 
involves a very elaborate process. There are a variety of techniques d
to achieve that goal - many of which are based on so-called "competitive 



evaluation of models," that is, applying different models to the same data set a
then comparing their performance to choose the best. These techniques - w
are often considered the core of 

nd 
hich 

predictive data mining - include: Bagging 
(Voting, Averaging), Boosting, Stacking (Stacked Generalizations), and Meta-
Learning.  
Stage 3: Deployment. That final stage involves using the model selected as best 

ictions 

s 

w analytic techniques specifically 

in the previous stage and applying it to new data in order to generate pred
or estimates of the expected outcome.  
The concept of Data Mining is becoming increasingly popular as a busines
information management tool where it is expected to reveal knowledge structures 
that can guide decisions in conditions of limited certainty. Recently, there has 
been increased interest in developing ne
designed to address the issues relevant to business Data Mining (e.g., 
Classification Trees), but Data Mining is still based on the conceptual principles
of statistics including the traditional 

 
Exploratory Data Analysis (EDA) and 

modeling and it shares with them both some components of its general 
approaches and specific techniques.  
However, an important general difference in the focus and purpose between 
Data Mining and the traditional Exploratory Data Analysis (EDA) is that Data 

 more oriented towards applications than the basic nature of the 
r words, Data Mining is relatively less concerned 

s between the involved variables. For 

ain goal 

Mining is
underlying phenomena. In othe
with identifying the specific relation
example, uncovering the nature of the underlying functions or the specific types 
of interactive, multivariate dependencies between variables are not the m
of Data Mining. Instead, the focus is on producing a solution that can generate 
useful predictions. Therefore, Data Mining accepts among others a "black box" 
approach to data exploration or knowledge discovery and uses not only the 
traditional Exploratory Data Analysis (EDA) techniques, but also such techniques 
as Neural Networks which can generate valid predictions but are not capable of 



identifying the specific nature of the interrelations between the variables on whic
the predictions are based.  

h 

 be "a blend of statistics, AI [artificial 
y 

ng 

e, for example, the recent annual International Conferences on 
the American Statistical 

 

g 

 

 
 

: 

Data Mining is often considered to
intelligence], and data base research" (Pregibon, 1997, p. 8), which until ver
recently was not commonly recognized as a field of interest for statisticians, and 
was even considered by some "a dirty word in Statistics" (Pregibon, 1997, p. 8). 
Due to its applied importance, however, the field emerges as a rapidly growi
and major area (also in statistics) where important theoretical advances are 
being made (se
Knowledge Discovery and Data Mining, co-hosted by 
Association). 
For information on Data Mining techniques, please review the summary topics 
included below in this chapter of the Electronic Statistics Textbook. There are 
numerous books that review the theory and practice of data mining; the followin
books offer a representative sample of recent general books on data mining, 
representing a variety of approaches and perspectives:  
 
Berry, M., J., A., & Linoff, G., S., (2000). Mastering data mining. New York: Wiley.
 
Edelstein, H., A. (1999). Introduction to data mining and knowledge discovery 
(3rd ed). Potomac, MD: Two Crows Corp. 
 
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996).
Advances in knowledge discovery & data mining. Cambridge, MA: MIT Press.
 
Han, J., Kamber, M. (2000). Data mining: Concepts and Techniques. New York
Morgan-Kaufman. 
 
Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical 
learning : Data mining, inference, and prediction. New York: Springer. 



 
Pregibon, D. (1997). Data Mining. Statistical Computing and Graphics, 7, 8.  
 
Weiss, S. M., & Ind
New York: Morgan-Kaufman. 
 
Westphal, C., Blaxton, T. (1998). Data mining solutions. New York: Wiley. 
 
Witten, I. H., & Frank, E. (2000). Data mining. New York: Morgan-Kaufman
 

Crucial Concepts in Data Mining  

Bagging (Voting, Averaging) 
The concept of bagging (voting for classification, averaging for regression-type 

urkhya, N. (1997). Predictive data mining: A practical guide. 

n. 

problems with continuous dependent variables of interest) applies to the area of 
predictive data mining, to combine the predicted classifications (prediction) from 
multiple models, or from the same type of model for different learning data. It is 
also used to address the inherent instability of results when applying complex 
models to relatively small data sets. Suppose your data mining task is to build a 
model for predictive classification, and the dataset from which to train the model 
(learning data set, which contains observed classifications) is relatively small. 

ub-sampleYou could repeatedly s
apply, for example, a tree classifier (e.g., 

 (with replacement) from the dataset, and 
C&RT and CHAID) to the successive 

samples. In practice, very different trees will often be grown for the different 
samples, illustrating the instability of models often evident with small datasets. 
One method of deriving a single prediction (for new observations) is to use all 
trees found in the different samples, and to apply some simple voting: The final 
classification is the one most often predicted by the different trees. Note that 
some weighted combination of predictions (weighted vote, weighted average) is 
also possible, and commonly used. A sophisticated (machine learning) algorithm 



for generating weights for weighted prediction or voting is the Boosting 
procedure.  
Boosting 
The concept of boosting applies to the area of predictive data mining, to ge
multiple models or classifiers (for prediction or classification), and to derive
weights to combine the predictions from those models in

nerate 
 

to a single prediction or 
fication (see also Baggingpredicted classi ).  

 A simple algorithm for boosting works like this: Start by applying some method
(e.g., a tree classifier such as C&RT or CHAID) to the learning data, where each
observation is assigned an equal weight. Compute the predicted classification
and apply weights to the observations in the learning sample that are

 
s, 

 inversely 
 

 

proportional to the accuracy of the classification. In other words, assign greater
weight to those observations that were difficult to classify (where the 
misclassification rate was high), and lower weights to those that were easy to
classify (where the misclassification rate was low). In the context of C&RT for 
example, different misclassification costs (for the different classes) can be 
applied, inversely proportional to the accuracy of prediction in each class. Then 
apply the classifier again to the weighted data (or with different misclassification 
costs), and continue with the next iteration (application of the analysis m
classification to the re-weighted data).  
Boosting will generate a sequence of classifiers, where each consecutive 
classifier in the sequence is an "expert" in classifying observations that were not
well classified by those preceding it. During 

ethod for 

 
deployment (for prediction or

classification of new cases), the predictions from the different classifiers can then
 

 

 
costs. In that case, random sub-sampling 

rning data in the successive steps of the iterative 
 the 

be combined (e.g., via voting, or some weighted voting procedure) to derive a 
single best prediction or classification.  
Note that boosting can also be applied to learning methods that do not explicitly
support weights or misclassification 
can be applied to the lea
boosting procedure, where the probability for selection of an observation into



subsample is inversely proportional to the accuracy of the prediction for that 
observation in the previous iteration (in the sequence of iterations of the boostin
procedure).  
CRISP 
See 

g 

Models for Data Mining.  

 

as the input into 
the analyses. Often, the method by which the data where gathered was not 
tightly controlled, and so the data may contain out-of-range values (e.g., Income: 
-100), impossible data combinations (e.g., Gender: Male, Pregnant: Yes), and 
the like. Analyzing data that has not been carefully screened for such problems 
can produce highly misleading results, in particular in predictive data mining

Data Preparation (in Data Mining) 
Data preparation and cleaning is an often neglected but extremely important step
in the data mining process. The old saying "garbage-in-garbage-out" is 
particularly applicable to the typical data mining projects where large data sets 
collected via some automatic methods (e.g., via the Web) serve 

.  
Data Reduction (for Data Mining) 
The term Data Reduction in the context of data mining is usually applied to 

on 
projects where the goal is to aggregate or amalgamate the information contained 
in large datasets into manageable (smaller) information nuggets. Data reducti
methods can include simple tabulation, aggregation (computing descriptive 
statistics) or more sophisticated techniques like clustering, principal components 
analysis, etc.  
See also predictive data mining, drill-down analysis.  
Deployment 
The concept of deployment in predictive data mining refers to the application of a 
model for prediction or classification to new data. After a satisfactory model or
of models has been identified (trained) for a partic

 set 
ular application, one usually 

n 
t card company may want 

wants to deploy those models so that predictions or predicted classifications ca
quickly be obtained for new data. For example, a credi



to deploy a trained model or set of models (e.g., neural networks, meta-learner) 
 transactions which have a high probability of being fraudulent.  

the 
terest (e.g., Gender, geographic region, etc.). 

ant to "drill-down" to expose and 

ain, 

e, 
a y 

 

to quickly identify
Drill-Down Analysis 
The concept of drill-down analysis applies to the area of data mining, to denote 
the interactive exploration of data, in particular of large databases. The process 
of drill-down analyses begins by considering some simple break-downs of 
data by a few variables of in
Various statistics, tables, histograms, and other graphical summaries can be 
computed for each group. Next one may w
further analyze the data "underneath" one of the categorizations, for example, 
one might want to further review the data for males from the mid-west. Ag
various statistical and graphical summaries can be computed for those cases 
only, which might suggest further break-downs by other variables (e.g., incom

ge, etc.). At the lowest ("bottom") level are the raw data: For example, you ma
want to review the addresses of male customers from one region, for a certain 
income group, etc., and to offer to those customers some particular services of
particular utility to that group.  
Feature Selection 
One of the preliminary stage in predictive data mining, when the data set 
includes more variables than could be included (or would be efficient to include) 
in the actual model building phase (or even in initial exploratory operations), is to 
select predictors from a large list of candidates. For example, when data are 
collected via automated (computerized) methods, it is not uncommon that 
measurements are recorded for thousands or hundreds of thousands (o
of predictors. The standard analytic methods for predictive data mining, such 

r more) 
as 

neural network analyses, classification and regression trees, generalized linear 
models, or general linear models become impractical when the number of 

 than a few hundred variables.  predictors exceed more
Feature selection selects a subset of predictors from a large list of candidate 
predictors without assuming that the relationships between the predictors and the 



dependent or outcome variables of interest are linear, or even monotone. 
Therefore, this is used as a pre-processor for predictive data mining, to select
manageable sets of predictors that are likely related to the dependent (outcom
variables of interest, for further analyses with any of the other methods for 
regression and classification.  
Machine Learning 
Machine learning, computational learning theory, and similar terms are ofte
used in the context of 

 
e) 

n 
Data Mining, to denote the application of generic model-

fitting or classification algorithms for predictive data mining. Unlike traditional 
 data analysis, which is usually concerned with the estimation of 

stical inference, the emphasis in data mining (and 
lly on the accuracy of prediction (predicted 

egardless of whether or not the "models" or techniques that are 
terpretable or open to simple explanation. 

statistical
population parameters by stati
machine learning) is usua
classification), r
used to generate the prediction is in
Good examples of this type of technique often applied to predictive data mining 
are neural networks or meta-learning techniques such as boosting, etc. These
methods usually involve the fitting of very complex "generic" models, that are
related to a

 
 not 

ny reasoning or theoretical understanding of underlying causal 
processes; instead, these techniques can be shown to generate accurate 
predictions or classification in crossvalidation samples.  
Meta-Learning 
The concept of meta-learning applies to the area of predictive data mining, to 
combine the predictions from multiple models. It is particularly useful when the
types of models included in the project are very different. In this context, this 
procedure is also referred to as Stacking (Stacked Generalization).  
Suppose your data mining project includes tree classifiers, such as 

 

C&RT and 
CHAID, linear discriminant analysis (e.g., see GDA), and Neural Networks. Ea
computes predicted classifications for a 

ch 
crossvalidation sample, from which 

overall goodness-of-fit statistics (e.g., misclassification rates) can be computed. 
Experience has shown that combining the predictions from multiple methods 



often yields more accurate predictions than can be derived from any one 
(e.g., see Witten and Frank, 2000). The predictions from different classifiers can 

method 

he 
lassifications from the tree classifiers, linear model, and the neural 

ifier(s) can be used as input variables into a neural network meta-
classifier, which will attempt to
predictions from the different m
One can apply meta-learners t
"meta-meta"-learners, and so o
in the amount of data processi
yield less and less marginal uti
Models for Data Mining 
In the business environment, c

be used as input into a meta-learner, which will attempt to combine the 
predictions to create a final best predicted classification. So, for example, t
predicted c
network class

 "learn" from the data how to combine the 
odels to yield maximum classification accuracy.  

o the results from different meta-learners to create 
n; however, in practice such exponential increase 

ng, in order to derive an accurate prediction, will 
lity.  

omplex data mining projects may require the 
perts, stakeholders, or departments throughout an 
 mining literature, various "general frameworks

have been proposed to serve as blueprints for how to organize the process of 
gathering data,

coordinate efforts of various ex
entire organization. In the data " 

 analyzing data, disseminating results, implementing results, and 
ing improvements.  

l, CRISP (Cross-Industry Standard Process for data mining) was 
roposed in the mid-1990s by a European consortium of companies to serve as 
 non-proprietary standard process model for data mining. This general approach 
ostulates the following (perhaps not particularly controversial) general sequence 

ts: 

monitor
One such mode
p
a
p
of steps for data mining projec

 



Another approach - the Six Sigma methodology - is a well-structured, data-driven 
methodology for eliminating defects, waste, or quality control problems of all 
kinds in manufacturing, service delivery, management, and other business 
activities. This model has recently become very popular (due to its successful 
implementations) in various American industries, and it appears to gain favor 
worldwide. It postulated a sequence of, so-called, DMAIC steps -  

 
- that grew up from the manufacturing, quality improvement, and process cont

"p

rol 
traditions and is particularly well suited to production environments (including 

roduction of services," i.e., service industries).  
nother framework of this kind (actually somewhat similar to Six Sigma) is the 
pproach proposed by SAS Institute called SEMMA - 

A
a

 
- which is focusing more on the technical activities typically involved in a data 
mining project.  
All of these models are concerned with the process of how to integrate data 
mining methodology into an organization, how to "convert data into information," 
how to involve important stake-holders, and how to disseminate the information 
in a form that can easily be converted by stake-holders into resources for 
strategic decision making. 
Some software tools for data mining are specifically designed and documented to 
fit into one of these specific frameworks.  
The general underlying philosophy of StatSoft's STATISTICA Data Miner is to 
provide a flexible data mining workbench that can be integrated into any 
organization, industry, or organizational culture, regardless of the general data 
mining process-model that the organization chooses to adopt. For example, 
STATISTICA Data Miner can include the complete set of (specific) necessary 
tools for ongoing company wide Six Sigma quality control efforts, and users can 
take advantage of its (still optional) DMAIC-centric user interface for industrial 
data mining tools. It can equally well be integrated into ongoing marketing 



research, CRM (Customer Relationship Management) projects, etc. that follow 
either the CRISP or SEMMA approach - it fits both of them perfectly well w
favoring either one. Also, STATISTICA Data Miner offers all the advantages o
general data mining oriented "development kit" that includes easy to use tools
incorporating into your projects not only such components as

ithout 
f a 
 for 

 custom database 
ateway solutions, prompted interactive queries, or proprietary algorithms, but 
lso systems of access privileges, workgroup management, and other 
ollaborative work tools that allow you to design large scale, enterprise-wide 

ination of both models) 

g projects 
dels that 

c o
c

g
a
c
systems (e.g., following the CRISP, SEMMA, or a comb
that involve your entire organization.  
Predictive Data Mining 
The term Predictive Data Mining is usually applied to identify data minin
with the goal to identify a statistical or neural network model or set of mo
an be used to predict some resp nse of interest. For example, a credit card 
ompany may want to engage in predictive data mining, to derive a (trained) 

model or set of models (e.g., neural networks, meta-learner) that can quickly 
identify transactions which have a high probability of being fraudulent. Other 
types of data mining projects may be more exploratory in nature (e.g., to identify 
cluster or segments of customers), in which case drill-down descriptive and 

. Data reductionexploratory methods would be applied  is another possible 
 objective for data mining (e.g., to aggregate or amalgamate the information in

very large data sets into useful and manageable chunks).  
SEMMA 
See Models for Data Mining.  
Stacked Generalization  
See Stacking.  
Stacking (Stacked Generalization) 
The concept of stacking (short for Stacked Generalization) applies to the area of 
predictive data mining, to combine the predictions from multiple models. It is 

http://www.statsoft.com/textbook/stbasic.html


particularly useful when the types of models included in the project are very 
different.  
Suppose your data mining project includes tree classifiers, such as C&RT or 
CHAID, linear discriminant analysis (e.g., see GDA), and Neural Networks. Eac
computes predicted classifications for a 

h 
crossvalidation sample, from which 

overall goodness-of-fit statistics (e.g., misclassification rates) can be computed. 
Experience has shown that combining the predictions from multiple methods 
often yields more accurate predictions than can be derived from any one method 
(e.g., see Witten and Frank, 2000). In stacking, the predictions from different 
classifiers are used as input into a meta-learner, which attempts to combine the 
predictions to create a final best predicted classification. So, for example, the 
predicted classifications from the tree classifiers, linear model, and the neural 
network classifier(s) can be used as input variables into a neural network meta-
classifier, which will attempt to "learn" from the data how to combine the 
predictions from the different models to yield maximum classification accuracy.  
Other methods for combining the prediction from multiple models or methods 
(e.g., from multiple datasets used for learning) are Boosting and Bagging 
(Voting).  
Text Mining 
While Data Mining is typically concerned with the detection of patterns in numeric 
data, very often important (e.g., critical to business) information is stored in the 

al 
with. Text mining generally consists of the analysis of (multiple) text documents 

aration of the text 

, 

Voting 
See Bagging.

form of text. Unlike numeric data, text is often amorphous, and difficult to de

by extracting key phrases, concepts, etc. and the prep
processed in that manner for further analyses with numeric data mining 
techniques (e.g., to determine co-occurrences of concepts, key phrases, names
addresses, product names, etc.).  

  

http://www.statsoft.com/textbook/stcluan.html
http://www.statsoft.com/textbook/stcluan.html
http://www.statsoft.com/textbook/stdiscan.html
http://www.statsoft.com/textbook/stmulsca.html
http://www.statsoft.com/textbook/stmulsca.html
http://www.statsoft.com/textbook/stloglin.html
http://www.statsoft.com/textbook/stloglin.html


 
 
 

sets in a way that facilitates t
The most efficient data warehous
or at least referencing all data 

e

Data Warehousing  

StatSoft defines data warehousing as a process of 
organizing the storage of large, multivariate data 

he retrieval of information for analytic purposes.  
ing architecture will be capable of incorporating 

available in the relevant enterprise-wide 
information management systems, using designated technology suitable for 
corporate data base management (e.g., Oracle, Sybas , MS SQL Server. Also, a 
flexible, high-performance (see the IDP technology), open architecture appr
to data warehousing - that flexibly integrates with the existing corporate systems 
and allows the users to organize and efficiently reference for analytic purposes
enterprise repositories of data of practically any complexity - is offered in StatSoft 

oach 

 

enterprise systems such as SEDAS (STATISTICA Enterprise-wide Data Analysis
System) and 

 
SEWSS (STATISTICA Enterprise-wide SPC System), which can 

also work in conjunction with STATISTICA Data Miner and WebSTATISTICA 
Server Applications.  
 
 
 
 

On-Line Analytic Processing (OLAP)  

The term On-Line Analytic Processing - OLAP (or Fast Analysis of Shared 
Multidimensional Information - FASMI) refers to technology that allows users of 
multidimensional databases to generate on-line descriptive or comparative 
summaries ("views") of data and other analytic queries. Note that despite its 
name, analyses referred to as OLAP do not need to be performed truly "on-line" 



(or in real-time); the term applies to analyses of multidimensional databases (that 
may, obviously, contain dynamically updated information) through efficient 
"multidimensional" queries that reference various types of data. OLAP facilities 
can be integrated into corporate (enterprise-wide) database systems and they 
allow analysts and managers to monitor the performance of the business (e.g., 
such as various aspects of the manufacturing process or numbers and types of 
completed transactions at different locations) or the market. The final result of 
OLAP techniques can be very simple (e.g., frequency tables, descriptive 
tatistics, simple cross-tabulations) or more complex (e.g., they may involve 
easonal adjustments, removal of outliers, and other forms of cleaning the data). 

s
s
Although Data Mining techniques can operate on any kind of unprocessed or 
even unstructured information, they can also be applied to the data views and 
summaries generated by OLAP to provide more in-depth and often more 
multidimensional knowledge. In this sense, Data Mining techniques could be 
considered to represent either a different analytic approach (serving different 
purposes than OLAP) or as an analytic extension of OLAP.  
 
 
 

Exploratory Data Analysis (EDA)  

EDA vs. Hypothesis Testing  

As opposed to traditional hypothesis testing designed to verify a priori 
hypotheses about relations between variables (e.g., "There is a positive 

ion"), 
exploratory data analysis (EDA) is used to identify systematic relations between 

te) a priori expectations as to the 
nature of those relations. In a typical exploratory data analysis process, many 
variables are taken into account and compared, using a variety of techniques in 
the search for systematic patterns.  

Computational EDA techniques  

correlation between the AGE of a person and his/her RISK TAKING disposit

variables when there are no (or not comple



Computational exploratory data analysis methods include both simple basic 
statistics and more advanced, designated multivariate exploratory techniques 
designed to identify patterns in multivariate data sets.  
Basic statistical exploratory methods. The basic statistical exploratory methods 
include such techniques as examining distributions of variables (e.g., to identify 
highly skewed or non-normal, such as bi-modal patterns), reviewing large 
correlation matrices for coefficients that meet certain thresholds (see example 
above), or examining multi-way frequency tables (e.g., "slice by slice" 
systematically reviewing combinations of levels of control variables).  

 
Multivariate exploratory techniques. Multivariate exploratory techniques designed 
specifically to identify patterns in multivariate (or univariate, such as sequences 
of measurements) data sets include: Cluster Analysis, Factor Analysis, 
Discriminant Function Analysis, Multidimensional Scaling, Log-linear Analysis, 
Canonical Correlation, Stepwise Linear and Nonlinear (e.g., Logit) Regression, 
Correspondence Analysis, Time Series Analysis, and Classification Trees.  



 
Neural Networks. Neural Networks are analytic techniques modeled after the 
(hypothesized) processes of learning in the cognitive system and the 
neurological functions of the brain and capable of predicting new observations 
(on specific variables) from other observations (on the same or other variables) 
after executing a process of so-called learning from existing data.  

 
For more information, see Neural Networks; see also STATISTICA Neural 
Networks.  

Graphical (data visualization) EDA techniques  

A large selection of powerful exploratory data analytic techniques is also offered 
by graphical data visualization methods that can identify relations, trends, and
biases "hidden" in unstructured data sets.  
 
Brushing. Perhaps the most 
common and historically first 
widely used technique explicitly 

 

identified as graphical exploratory 
data analysis is brushing, an 



interactive method allowing one to select on-screen specific data points or 
subsets of data and identify their (e.g., common) characteristics, or to examine 
their effects on relations between relevant variables. Those relations between 
variables can be visualized by fitted functions (e.g., 2D lines or 3D surfaces) and 
their confidence intervals, thus, for example, one can examine changes in those 
functions by interactively (temporarily) removing or adding specific subsets of 
data. For example, one of many applications of the brushing technique is to 
select (i.e., highlight) in a matrix scatterplot all data points that belong to a certain 
category (e.g., a "medium" income level, see the highlighted subset in the fourth 

w 
s in the 
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component graph of the first row in the illustration left) in order to examine ho
those specific observations contribute to relations between other variable
same data set (e.g, the correlation between the "debt" and "assets" in the curren

xample). If the brushing facility supports features like "animated brushing"
automatic function re-fitting", one can define a dynamic brush that would m

over the consecutive ranges of a criterion variable (e.g., "income" measured on
continuous scale or a discrete [3-level] scale as on the illustration above) and 

xamine the dynamics of the contribution of the criterion variable to the relati
between other relevant variables in the same data set.  
 

  

 
Other graphical EDA techniques. Other graphical exploratory analytic technique
include function fitting and plotting, data smoothing, overlaying and merging of 



multiple displays, categorizing data, splitting/merging subsets of data in graphs, 
aggregating data in graphs, identifying and marking subsets of data that meet 
specific conditions, icon plots,  

 
g, plotting confidence intervals and confidence areas (e.g., shadin sesellip ),  

 
generating tessellations, spectral planes,  



 
integrated layered compressions,  

 
and projected contours, data image reduction techniques, interactive (and 
continuous) rotation  

 



w
h

ith animated stratification (cross-sections) of 3D displays, and selective 
ighlighting of specific series and blocks of data.  
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Verification of results of ED
The exploration of data can only serve as the first stage of data analysis and
results can be treated as tentative at best as long as they are not confirmed, e
crossvalidated, using a different data set (or and independent subset). If the 
result of the exploratory stage suggests a particular model, then its valid
be verified by applying it to a new data set and testing its fit (e.g., testing its 
predictive validity). Case selection conditions can be used to quickly define 
subsets of data (e.g., for estimation and verification), and for testing the 
robustness of results. 

ity can 

 
 
 
 

Neural Networks 

  
Neural Networks are analytic techniques modeled after the (hypothesized) 
processes of learning in the cognitive system and the neurological functions of 
the brain and capable of predicting new observations (on specific variables) from 
other observations (on the same or other variables) after executing a process of 
so-called learning from existing data. Neural Networks is one of the Data Mining 
techniques.  

 

http://www.statsoft.com/textbook/stanman.html


The first step is to design a specific network architecture (that includes a specific 
umber of "layers" each consisting of a certain number of "neurons"). The size 

and structure of the network needs to match the nature (e.g., the formal 
complexity) of the investigated phen

n

omenon. Because the latter is obviously not 

 
a

 number of inputs (variables) to adjust 

known very well at this early stage, this task is not easy and often involves 
multiple "trials and errors." (Now, there is, however, neural network software that

pplies artificial intelligence techniques to aid in that tedious task and finds "the 
best" network architecture.)  
The new network is then subjected to the process of "training." In that phase, 
neurons apply an iterative process to the
the weights of the network in order to optimally predict (in traditional terms one 
could say, find a "fit" to) the sample data on which the "training" is performed. 
After the phase of learning from an existing data set, the new network is ready 
and it can then be used to generate predictions.  

 
T
p

he resulting "network" developed in the process of "learning" represents a 
attern detected in the data. Thus, in this approach, the "network" is the 

lations between variables in the traditional 

 

value of C is low and D is high"). Some neural networks can produce highly 

functional equivalent of a model of re
model building approach. However, unlike in the traditional models, in the 
"network," those relations cannot be articulated in the usual terms used in
statistics or methodology to describe relations between variables (such as, for 
example, "A is positively correlated with B but only for observations where the 



accurate predictions; they represent, however, a typical a-theoretical (one can 
say, "a black box") research approach. That approach is concerned only w
practical con

ith 
siderations, that is, with the predictive validity of the solution and its 

e 
lp explore data sets in search for relevant variables or 

, 

f neural networks is that, theoretically, they are 
oes 
e 

 
at explain phenomena.  

applied relevance and not with the nature of the underlying mechanism or its 
relevance for any "theory" of the underlying phenomena.  
However, it should be mentioned that Neural Network techniques can also be 
used as a component of analyses designed to build explanatory models becaus
Neural Networks can he
groups of variables; the results of such explorations can then facilitate the 
process of model building. Moreover, now there is neural network software that 
uses sophisticated algorithms to search for the most relevant input variables
thus potentially contributing directly to the model building process.  
One of the major advantages o
capable of approximating any continuous function, and thus the researcher d
not need to have any hypotheses about the underlying model, or even to som
extent, which variables matter. An important disadvantage, however, is that the 
final solution depends on the initial conditions of the network, and, as stated 
before, it is virtually impossible to "interpret" the solution in traditional, analytic
terms, such as those used to build theories th

 
Some authors stress the fact that neural networks use, or one should say, are 
expected to use, massively parallel computation models. For example Haykin 
(1994) defines neural network as:  



"a massively parallel distributed processor that has a natural propensity 
for storing experiential knowledge and making it available for use. It 
resembles the brain in two respects: (1) Knowledge is acquired by the 
network through a learning process, and (2) Interneuron connection 
strengths known as synaptic weights are used to store the knowledge." (p. 
2).  

 
However, as Ripley (1996) points out, the vast majority of contemporary neural 
network applications run on single-processor computers and he argues that a 

y by developing software that will take large speed-up can be achieved not onl
advantage of multiprocessor hardware by also by designing better (more 
efficient) learning algorithms.  
Neural networks is one of the methods used in Data Mining; see also Exploratory 
Data Analysis. For more information on neural networks, see Haykin (1994), 
Masters (1995), Ripley (1996), and Welstead (1994). For a discussion of neural 

 as statistical tools, see Warner and Misra (1996). See also, networks
STATISTICA Neural Networks.  

 

 
 
 

 
 
 
 
 



Discriminant Function Analysis 
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General Purpose  
Discriminant function analysis is used to determine which variables discrimin
between two or more naturally occurring groups. For example, an educatio
researcher may want to investigate which variables discriminate between high 
school graduates who decide (1) to go to college, (2) to attend a trade or 
professional school, or (3) to seek no further training or education. For that 
purpose the researcher could collect data on numerous variables prior to 
students' graduation. After graduation, most students will naturally fa
the three categories. Discriminant Analysis could then be used to determine 

hich variable(s) are the best predictors of students' subsequent educational 
hoice.  

A medical researcher may record different variables relating to patients' 
backgrounds in order to learn which variables best predict whether a patient is 
likely to recover comple
biologist could record different characteristics of similar types (groups) of flowers, 

nd then perform a discriminant function analysis to determine the set of 
haracteristics that allows for the best discrimination between the types. 

 
 

omputational Approach  
Computationally, discriminant function analysis is very similar to analysis of 
variance (ANOVA). Let us consider a simple example. Suppose we measure 
height in a random sample of 50 males and 50 females. Females are, on the 
average, not as tall as males, and this difference will be reflected in the 
difference in means (for the variable Height). Therefore, variable height allows us 
to discriminate between males and females with a better than chance probability: 
if a person is tall, then he is likely to be a male, if a person is short, then she is 
likely to be a female.  



We can generalize this reasoning to groups and variables that are less "trivial." 
or example, suppose we have two groups of high school graduates: Those who

choose to attend college after graduation and those who do not. We could
F  

 have 
o 
e 

t y 
ate guidance to the respective 

le. To 

measured students' stated intention to continue on to college one year prior t
graduation. If the means for the two groups (those who actually went to colleg
and those who did not) are different, then we can say that intention to attend 
college as stated one year prior to graduation allows us to discriminate between 
hose who are and are not college bound (and this information may be used b
career counselors to provide the appropri
students).  
To summarize the discussion so far, the basic idea underlying discriminant 
function analysis is to determine whether groups differ with regard to the mean of 
a variable, and then to use that variable to predict group membership (e.g., of 
new cases).  
Analysis of Variance. Stated in this manner, the discriminant function problem 
can be rephrased as a one-way analysis of variance (ANOVA) problem. 
Specifically, one can ask whether or not two or more groups are significantly 
different from each other with respect to the mean of a particular variab
learn more about how one can test for the statistical significance of differences 
between means in different groups you may want to read the Overview section to 
ANOVA/MANOVA. However, it should be clear that, if the means for a variable
are significantly different in different groups, then we can say that this variable 
discriminates between the groups.  
In the case of a single variable, the final significance test of whether or not 
variable discriminates between groups is the F test. As described in 

 

a 
Elementary 

Concepts and ANOVA /MANOVA, F is essentially computed as the ratio of the 

v ust be 
between-groups variance in the data over the pooled (average) within-group 
ariance. If the between-group variance is significantly larger then there m

significant differences between means.  



Multiple Variables. Usually, one includes several variables in a study in order
see which one(s) contribute to the discrimination between groups. In that c
we have a matrix of total variances and covariances; likewise, we have a matrix 
of pooled within-group variances and covariances. We can compare those two
matrices via multivariate F tests in order to determined whether or not there 
any significant differences (with regard to all variables) between groups. This 
procedure is identical to multivariate analysis of variance or 

 to 
ase, 

 
are 

MANOVA. As in 
MANOVA, one could first perform the multivariate test, and, if statistically 
significant, proceed to see which of the variables have significantly different 
means across the groups. Thus, even though the computations with multiple 
variables are more complex, the principal reasoning still applies, namely, tha
are looking for variables that discriminate between groups, as evident in 

t we 

bserved mean differences.  

is is to 

ted 
l graduates' choices for further education would probably 

luded in the prediction of 
in the model" if 

f 

o
 
 

Stepwise Discriminant Analysis  
Probably the most common application of discriminant function analys
include many measures in the study, in order to determine the ones that 
discriminate between groups. For example, an educational researcher interes
in predicting high schoo
include as many measures of personality, achievement motivation, academic 
performance, etc. as possible in order to learn which one(s) offer the best 
prediction.  
Model. Put another way, we want to build a "model" of how we can best predict 
to which group a case belongs. In the following discussion we will use the term 
"in the model" in order to refer to variables that are inc
group membership, and we will refer to variables as being "not 
they are not included.  
Forward stepwise analysis. In stepwise discriminant function analysis, a model o
discrimination is built step-by-step. Specifically, at each step all variables are 



reviewed and evaluated to determine which one will contribute most to the 
discrimination between groups. That variable will then be included in the mo
and the process starts again.  
Backward stepwise analysis. One can also step backwards; in that case all 
variables are included in the model and then, at each step, the variable tha
contributes least to the prediction of group membership is elimin
he result of a successful discriminant function analysis, one would 
"important" variables in the model, that is, those variables that contribute the 
most to the discrimination between groups.  

del, 

t 
ated. Thus, as 

t only keep the 

tical 
F to enter, F to remove. The stepwise procedure is "guided" by the respective F 
to enter and F to remove values. The F value for a variable indicates its statis
significance in the discrimination between groups, that is, it is a measure of the 
extent to which a variable makes a unique contribution to the prediction of group 
membership. If you are familiar with stepwise multiple regression procedures, 
then you may interpret the F to enter/remove values in the same way as in 
stepwise regression.  
Capitalizing on chance. A common misinterpretation of the results of stepwise 
discriminant analysis is to take statistical significance levels at face value. By
nature, the stepwise procedures will capitalize on chance because they "pick an
choose" the variables to be included in the model so as to yield maximum 
discrimination. Thus, when using the stepwise approach the researcher should 
be aware that the sig

 
d 

nificance levels do not reflect the true alpha error rate, that 
is, the probability of erroneously rejecting H0 (the null hypothesis that there is no 
discrimination between groups).  
 
 

Interpreting a Two-Group Discriminant Function  
In the two-group case, discriminant function analysis can also be thought of as 
(and is analogous to) multiple regression (see Multiple Regression; the two-group
discriminant analysis is also called Fisher

 
 linear discriminant analysis after 



Fisher, 1936; computationally all of these approaches are analogous). If we co
the two groups in the analysis as 1 and 2, and use that variable as the depend
variable in a multiple regression analysis, then we would get results that are 
analogous to those we would obtain via Discriminant Analysis. In general, in the 
two-group case we fit a linear equation of the type:  
Group = a + b

de 
ent 

sely 
 regression: Those variables with the largest 

tandardized) regression coefficients are the ones that contribute most to the 
rediction of group membership.  

resented above. For example, when there are 
t roup 1 

t

ome 
t 
and so 

on. Moreover, the functions will be independent or orthogonal, that is, their 

1*x1 + b2*x2 + ... + bm*xm  
where a is a constant and b1 through bm are regression coefficients. The 
interpretation of the results of a two-group problem is straightforward and clo
follows the logic of multiple
(s
p
 
 

Discriminant Functions for Multiple Groups  
When there are more than two groups, then we can estimate more than one 
discriminant function like the one p
hree groups, we could estimate (1) a function for discriminating between g

and groups 2 and 3 combined, and (2) another function for discriminating 
between group 2 and group 3. For example, we could have one function that 
discriminates between those high school graduates that go to college and those 
who do not (but rather get a job or go to a professional or trade school), and a 
second function to discriminate between those graduates that go to a 
professional or trade school versus those who get a job. The b coefficients in 
hose discriminant functions could then be interpreted as before.  
Canonical analysis. When actually performing a multiple group discriminant 
analysis, we do not have to specify how to combine groups so as to form 
different discriminant functions. Rather, you can automatically determine s
optimal combination of variables so that the first function provides the mos
overall discrimination between groups, the second provides second most, 



contributions to the discrimination between groups will not overlap. 
Computationally, you will perform a canonical correlation analysis (see also 
Canonical Correlation) that will determine the successive functions and cano
roots (the term root refers to the eigenvalues that are associated with the 
respective canonical function). The maximum number of functions will be equa
to the number of groups minus one, or the number of variables in the analysis, 
whichever is smaller.  

nical 

l 

. As before, we will get b (and standardized 

t
w.) However, these coefficients do not tell us 

imination for each discriminant (canonical) function 

Interpreting the discriminant functions
beta) coefficients for each variable in each discriminant (now also called 
canonical) function, and they can be interpreted as usual: the larger the 
standardized coefficient, the greater is the contribution of the respective variable 
o the discrimination between groups. (Note that we could also interpret the 

structure coefficients; see belo
between which of the groups the respective functions discriminate. We can 
identify the nature of the discr
by looking at the means for the functions across groups. We can also visualize 
how the two functions discriminate between groups by plotting the individual 
scores for the two discriminant functions (see the example graph below).  

 
In this example, Root (function) 1 seems to discriminate mostly between group
Setosa, and

s 
 Virginic and Versicol combined. In the vertical direction (Root 2), a 

define a particular discriminant function is to look at the factor structure. The 

slight trend of Versicol points to fall below the center line (0) is apparent.  
Factor structure matrix. Another way to determine which variables "mark" or 



factor structure coefficients are the correlations between the variables in the 
model and the discriminant functions; if you are familiar with factor analysis (see 
Factor Analysis) you may think of these correlations as factor loadings of th
variables on each discriminant function.  
Some authors have argued that these structure coefficients should be used 
interpreting the substantive "meaning" of discriminant functions. The reaso
given by those authors are that (1) supposedly the structure coefficients are mor
stable, and (2) they allow for the interpretation of factors (discriminant functions) 
in the manner that is analogous to factor analysis. However, subsequent Monte 
Carlo research (Barcikowski & Stevens, 1975; Huberty, 1975) has shown that the 
discriminant function coefficients and the structure coefficients are abou
unstable, unless the n is fairly large (e.g., if there are 20 times more
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at is each variable's unique 
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there are variables). The most important thing to remember is that the 
discriminant function coefficients denote the unique (partial) contribution of each 
variable to the discriminant function(s), while the structure coefficients denote t
simple correlations between the variables and the function(s). If one wants to 
assign substantive "meaningful" labels to the discriminant functions (akin to the 
interpretation of factors in factor analysis), then the structure coefficients should
be used (interpreted); if one wants to learn wh
contribution to the discriminant function, use the discriminant function coefficient
(weights).  
Significance of discriminant functions. One can test the number of roots th
significantly to the discrimination between group. Only those found to be 
statistically significant should be used for interpretation; non-significant function
(roots) should be ignored.  
Summary. To summarize, when interpreting multiple discriminant functions
which arise from analyses with more than two groups and more than one 
variable, one would first test the different functions for statistical significance, and 
only consider the significant functions for further examination. Next, we would
look at the standardized b coefficients for each variable for each significant 



function. The larger the standardized b coefficient, the larger is the respective 
variable's unique contribution to the discrimination specified by the respective
discriminant function. In order to derive substantive "meaningful" labels for the
discriminant functions, one can also examine the factor structure matrix with the
correlations between the variables and the discriminant functions. Finally, we
would look at the means for the significant discriminant functions in order to 
determine between which groups the respective functions seem to discriminate.  
 
 

Assumptions  
As mentioned earlier, discri

 
 

 
 

minant function analysis is computationally very 
similar to MANOVA, and all assumptions for MANOVA mentioned in 
ANOVA/MANOVA apply. In fact, you may use the wide range of diagnostics
statistical tests of assumption that are available to examine your data for the
discriminant analysis.  
Normal distribution. It is assumed that the data (for the variables) represent a 
sample from a multivariate normal distribution. You can examine whether 
variables are normally distributed with histograms of frequency distributions. 
However, note t

 and 
 

or not 

hat violations of the normality assumption are usually not "fatal," 
u may 

re not that important; however, before accepting final 

atrix can 

he 

meaning, that the resultant significance tests etc. are still "trustworthy." Yo
use specific tests for normality in addition to graphs.  
Homogeneity of variances/covariances. It is assumed that the 
variance/covariance matrices of variables are homogeneous across groups. 
Again, minor deviations a
conclusions for an important study it is probably a good idea to review the within-
groups variances and correlation matrices. In particular a scatterplot m
be produced and can be very useful for this purpose. When in doubt, try re-
running the analyses excluding one or two groups that are of less interest. If t
overall results (interpretations) hold up, you probably do not have a problem. You 
may also use the numerous tests available to examine whether or not this 



assumption is violated in your data. However, as mentioned in 
ANOVA/MANOVA, the multivariate Box M test for homogeneity of 
variances/covariances is particularly sensitive to deviations from multivariate 
normality, and should not be taken too "seriously."  
Correlations between means and variances. The major "real" threat to the v
of significan

alidity 
ce tests occurs when the means for variables across groups are 

, the average variance across all groups. Thus, the 
ignificance tests of the relatively larger means (with the large variances) would 

be based on the relatively smaller pooled variances, resulting erroneously in 
tatistical significance. In practice, this pattern may occur if one group in the 

study contains a few extreme outliers, who have a large impact on the means, 
and also increase the variability. To guard against this problem, inspect the 
descriptive statistics, that is, the means and standard deviations or variances for 
such a correlation.  
The matrix ill-conditioning problem. Another assumption of discriminant function 
analysis is that the variables that are used to discriminate between groups are 
not completely redundant. As part of the computations involved in discriminant 
analysis, you will invert the variance/covariance matrix of the variables in the 
model. If any one of the variables is completely redundant with the other 
variables then the matrix is said to be ill-conditioned, and it cannot be inverted. 
For example, if a variable is the sum of three other variables that are also in the 
model, then the matrix is ill-conditioned.  
Tolerance values. In order to guard against matrix ill-conditioning, constantly 
check the so-called tolerance value for each variable. This tolerance value is 
computed as 1 minus R-square of the respective variable with all other variables 
included in the current model. Thus, it is the proportion of variance that is unique 
to the respective variable. You may also refer to Multiple Regression

correlated with the variances (or standard deviations). Intuitively, if there is large 
variability in a group with particularly high means on some variables, then those 
high means are not reliable. However, the overall significance tests are based on 
pooled variances, that is
s

s

 to learn 



more about multiple regression and the interpretation of the tolerance value. In 
general, when a variable is t (and, therefore, the 

atrix ill-conditioning problem is likely to occur), the tolerance value for that 
ach 0.  
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ns are always better than a priori predictions. (The trouble with 

predicting the future a priori is that one does not know what will happen; it is 
much easier to find ways to predict what we already know has happened.) 
Therefore, one should never base one's confidence regarding the correct 
classification of future observations on the same data set from which the 
discriminant functions were derived; rather, if one wants to classify cases 

 almost completely redundan
m
variable will appro
 
 

Classification  
Another major purpose to which discriminant analysis is applied is the issue of 
predictive classification of cases. Once a model has been finalized and the 
discriminant functions have been derived, how well can we predict to whic
group a particular case belongs?  
A priori and post hoc predictions. Before going into the details of different 
estimation procedures, we would like to make sure that this difference is clear. 
Obviously, if we estimate, based on some data set, the discriminant fun
that best discriminate between groups, and then use the same data to evaluate 
how accurate our prediction is, then we are very much capitalizing on chance. In
general, one will always get a worse classification when predicting cases that 
were not used for the estimation of the discriminant function. Put another way,
post hoc predictio

predictively, it is necessary to collect new data to "try out" (cross-validate) the 
utility of the discriminant functions.  
Classification functions. These are not to be confused with the discriminant 
functions. The classification functions can be used to determine to which group 
each case most likely belongs. There are as many classification functions as 



there are groups. Each function allows us to compute classification scores for 

 1, 2, 

; 

compute classification scores 

r a 
se 
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tion, 
 
ility 

oice. Those probabilities are called 
 probabilities, and can also be computed. However, to understand how 

ose probabilities are derived, let us first consider the so-called Mahalanobis 

 For 
ariables that are uncorrelated, then we could plot 

imensional scatterplot

each case for each group, by applying the formula:  
Si = ci + wi1*x1 + wi2*x2 + ... + wim*xm  
In this formula, the subscript i denotes the respective group; the subscripts
..., m denote the m variables; ci is a constant for the i'th group, wij is the weight 
for the j'th variable in the computation of the classification score for the i'th group
xj is the observed value for the respective case for the j'th variable. Si is the 
resultant classification score.  
We can use the classification functions to directly 
for some new observations.  
Classification of cases. Once we have computed the classification scores fo
case, it is easy to decide how to classify the case: in general we classify the ca
as belonging to the group for which it has the highest classification score (unless
the a priori classification probabilities are widely disparate; see below). Thus, i
we were to study high school students' post-graduation career/educational 
choices (e.g., attending college, attending a professional or trade school, or 
getting a job) based on several variables assessed one year prior to gradua
we could use the classification functions to predict what each student is most
likely to do after graduation. However, we would also like to know the probab
that the student will make the predicted ch
posterior
th
distances.  
Mahalanobis distances. You may have read about these distances in other parts 
of the manual. In general, the Mahalanobis distance is a measure of distance 
between two points in the space defined by two or more correlated variables.
example, if there are two v
points (cases) in a standard two-d ; the Mahalanobis 

s between the points would then be identical to the Euclidean distance; 
t is, re three 

distance
tha  the distance as, for example, measured by a ruler. If there a



u
d

ncorrelated variables, we could also simply use a ruler (in a 3-D plot) to 
etermine the distances between points. If there are more than 3 variables, we 

re 
onal; 
ases, 

.  
mple, we can 

e the location of the point that represents the means for all variables in 
 mu d by the variables in the model. These points are 

he Mahalanobis 
distances (of the respective case) from each of the group centroids. Again, we 
would classify the case as belonging to the group to which it is closest, that is, 
where the Mahalanobis distance is smallest.  
Posterior classification probabilities. Using the Mahalanobis distances to do the 

 a particular group is basically proportional to the Mahalanobis 
istance from that group centroid (it is not exactly proportional because we 
ssume a multivariate normal distribution around each centroid). Because we 

es for that 

 on our 

up. Some software packages will automatically compute those 
nly for cross-validation

cannot represent the distances in a plot any more. Also, when the variables a
correlated, then the axes in the plots can be thought of as being non-orthog
that is, they would not be positioned in right angles to each other. In those c
the simple Euclidean distance is not an appropriate measure, while the 
Mahalanobis distance will adequately account for the correlations
Mahalanobis distances and classification. For each group in our sa
determin
the ltivariate space define
called group centroids. For each case we can then compute t

classification, we can now derive probabilities. The probability that a case 
belongs to
d
a
compute the location of each case from our prior knowledge of the valu
case on the variables in the model, these probabilities are called posterior 
probabilities. In summary, the posterior probability is the probability, based
knowledge of the values of other variables, that the respective case belongs to a 
particular gro
probabilities for all cases (or for selected cases o  studies).  

classification probabilities. There is one additional factor that needs to be 
nsi ow ahead of time that 
re rvations in one group than in any other; thus, the a priori 
ba her. For example, if we know 

head of time that 60% of the graduates from our high school usually go to 

A priori 
co dered when classifying cases. Sometimes, we kn
the  are more obse
pro bility that a case belongs to that group is hig
a



college (20% go to a professional school, and another 20% get a job), the
should adjust our prediction accordingly: a priori, and all other things being equa
it is more likely that a student will attend college that choose either of the o
two options. You can specify different a priori probabilities, wh

n we 
l, 

ther 
ich will then be 

(and the computation of posterior 
ities) accordingly.  

p  ask him or herself whether the unequal 
m ent groups in the sample is a reflection of the true 
t r whether it is only the (random) result of the 

sampling procedure. In the former case, we would set the a priori probabilities to 
be proportional to the sizes of the groups in our sample, in the latter case we 
would specify the a priori probabilities as being equal in each group. The 
specification of different a priori probabilities can greatly affect the accuracy of 

etermine how well the current classification functions predict group membership 
f cases is the classification matrix. The classification matrix shows the number 

 classification functions 
t classification 

s "perform," one must classify (a priori) different cases, that is, cases that 
re n assification functions. You can include or exclude 
ses f uted for 
d" ca ly the classification of new cases allows 

us to assess the predictive validity of the classification functions (see also cross-

used to adjust the classification of cases 
probabil
In ractice, the researcher needs to
nu ber of cases in differ
dis ribution in the population, o

the prediction.  
Summary of the prediction. A common result that one looks at in order to 
d
o
of cases that were correctly classified (on the diagonal of the matrix) and those 
that were misclassified.  
Another word of caution. To reiterate, post hoc predicting of what has happened 
in the past is not that difficult. It is not uncommon to obtain very good 
classification if one uses the same cases from which the
were computed. In order to get an idea of how well the curren
function
we ot used to estimate the cl
ca rom the computations; thus, the classification matrix can be comp
"ol ses as well as "new" cases. On

validation); the classification of old cases only provides a useful diagnostic tool to 



identify outliers or areas where the classification function seems to be less 
adequate.  
Summary. In general Discriminant Analysis is a very useful tool (1) for detecting 
the variables that allow the researcher to discriminate between different (naturally 

 
 
 
 

 

 
 
 

 

occurring) groups, and (2) for classifying cases into different groups with a better 
than chance accuracy. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 

 

Distribution Fitting
  

 
 Purpose  General



In some one can formulate hypotheses about the specific 
tribu  interest. For example, variables whose values are 

distribution: one can think of a person's height as 

n

 research applications 
dis tion of the variable of
determined by an infinite num
distributed following the normal 

ber of independent random events will be 

being the result of very many independent factors such as numerous specific 
genetic predispositions, early childhood diseases, nutrition, etc. (see the 
animation below for an example of the normal distribution). As a result, height 
tends to be normally distributed in the U.S. population. On the other hand, if the 
values of a variable are the result of very rare events, then the variable will be 
distributed according to the Poisso  distribution (sometimes called the 

or example, industrial accidents can be thought of 
nd unlikely) events, 

d o be distributed according to the Poisson distribution. 
These and other distributions are described in greater detail in the respective 
glossary topics.  

distribution of rare events). F
as the result of the intersection of a series of unfortunate (a
an their frequency tends t

 
A
w

nother common application where distribution fitting procedures are useful is 
hen one wants to verify the assumption of normality before using some 

parametric test (see General Purpose of Nonparametric Tests). For exam
may want to use the 

ple, you 
Kolmogorov-Smirnov test for normality or the Shapiro-Wilks' 

W test to test for normality.  
 
 

Fit of the Observed Distribution  

For predictive purposes it is often desirable to understand the shape of the 
termine this underlying distribution, 

mon to fit the observed distribution to a theoretical distribution by 
underlying distribution of the population. To de
it is com



compa served in the data to the expected frequencies of 
 the ., a Chi-square goodness of fit test). In addition to 

is typ mum 

ring the frequencies ob
the oretical distribution (i.e
th e a test, some software packages also allow you to compute Maxi
Likelihood tests and Method of Matching Moments (see Fitting Distributions by 
Moments in the Process Analysis chapter) tests.  
Which Distribution to use. As described above, certain types of variables follow 
specific distributions. Variables whose values are determined by an infinite 
number of independent random events will be distributed following the normal 
distribution, whereas variables whose values are the result of an extremely ra
event would follow the

re 
 Poisson distribution. The major distributions that have 

een proposed for modeling survival or failure times are the exponentialb  (and 
near exponential) distribution, the Weibull distributionli  of extreme events, and 

the Gompertz distribution. The section on types of distributions contains a 
number of distributions generally giving a brief example of what type of data 
would most commonly follow a specific distribution as well as the probability 

stribution.  

ypes of Distributions  

. This distribution best describes all situations where a "trial" 

density functin (pdf) for each di
 
 

T
Bernoulli Distribution
is made resulting in either "success" or "failure," such as when tossing a coin, or 
when modeling the success or failure of a surgical procedure. The Bernoulli 
distribution is defined as:  
f(x) = px *(1-p)1-x,    for x ∈ {0,1}  
where  
p is the probability that a particular event (e.g., success) will occur. 
 
 
Beta Distribution. The beta distribution arises from a transformation of the F 
distribution and is typically used to model the distribution of order statistics. 

http://www.statsoft.com/textbook/stsurvan.html
http://www.statsoft.com/textbook/stsurvan.html


B
re

ecause the beta distribution is bounded on both sides, it is often used for 
presenting processes with natural lower and upper limits. For examples, refer 

to Hahn and Shapiro (1967). The beta distribution is defined as:  
f(x) = Γ(ν+ω

e the shape parameters (Shape1 and Shape2, respectively)

)/[Γ(ν)Γ(ω)] * xν-1*(1-x)ω-1,    for 0 < x < 1, ν > 0, ω > 0  
where  
Γ is the Gamma function 
ν, ω ar

 
The animation above shows the beta distribution as the two shape parameters 
change.  
 

istributions of binomial events, such as the number of males and females in a 
ndom sample of companies, or the number of defective components in 

 

x,    for x = 0,1,2,...,n  

he probability that the respective event will occur
is
is of independent trials.  

 
Cauchy Distribution. The Cauchy distribution is interesting for theoretical 
reasons. Although its mean can be taken as zero, since it is symmetrical about 
zero, the expectation, variance, higher moments, and moment generating 
function do not exist. The Cauchy distribution is defined as:  

 
Binomial Distribution. The binomial distribution is useful for describing 
d
ra
samples of 20 units taken from a production process. The binomial distribution is
defined as:  
f(x) = [n!/(x!*(n-x)!)]*px * qn-

where  
p is t
q  equal to 1-p  
n  the maximum number 

 



f(x) = 1/(θ*π

 is the location parameter (median)
 is the scale parameter 

*{1+[(x- η)/ θ]2}),    for 0 < θ  
where  
η
θ
π is the constant Pi (3.1415...) 

 
The animation above shows the changing shape of the Cauchy distribution when 

tion parameter equals 0 and the scale parameter equals 1, 2, 3, and 4.  

, 
each distributed following the standard normal distribution

the loca
 
 
Chi-square Distribution. The sum of ν independent squared random variables

, is distributed as Chi-
square with ν degrees of freedom. This distribution is most frequently used in the 
modeling of random variables (e.g., representing frequencies) in statistical 
applications. The Chi-square distribution is defined by:  

 is the degrees of freedom  
 is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

f(x) = {1/[2ν/2* Γ(ν/2)]} * [x(ν/2)-1 * e-x/2],    for ν = 1, 2, ..., 0 < x  
where  
ν
e
Γ (gamma) is the Gamma function.  

 
The above 
deg

animation shows the shape of the Chi-square distribution as the 
rees of freedom increase (1, 2, 5, 10, 25 and 50).  



 
 
Exponential Distribution. If T is the time between occurrences of rare events t
happen on the average with a rate l per unit of time, then 

hat 
T is distributed 
ential distribution is 

ly used to model the time interval between successive random events. 
amp les distributed in this manner would be the gap length 
twee ection, life-times of electronic devices, or arrivals 
custo

distribution function is defined as:  
f(x) = λ*e-λx    for 0 ≤ x < ∞, λ > 0  
where  

λ is an exponential function parameter (an alternative parameterization is scale 
parameter b=1/λ) 

alue. The extreme value distribution is often used to model extreme 
vents, such as the size of floods, gust velocities encountered by airplanes, 

in 

cale parameter 
atural logarithm, sometimes called Euler's e (2.71...) 

 
 
F Distribution. Snedecor's F distribution is most commonly used in tests of 
variance (e.g., ANOVA

exponentially with parameter λ (lambda). Thus, the expon
frequent
Ex les of variab
be n cars crossing an inters
of mers at the check-out counter in a grocery store. The exponential 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 
 
 
Extreme V
e
maxima of stock marked indices over a given year, etc.; it is also often used 
reliability testing, for example in order to represent the distribution of failure times 
for electric circuits (see Hahn and Shapiro, 1967). The extreme value (Type I) 
distribution has the probability density function:  
f(x) = 1/b * e^[-(x-a)/b] * e^{-e^[-(x-a)/b]},    for -∞ < x < ∞, b > 0  
where  
a is the location parameter 
b is the s
e is the base of the n

). The ratio of two chi-squares divided by their respective 



degrees of freedom is said to follow an F distribution. The F distribution (for x > 0) 
has the probability density function (for ν = 1, 2, ...; ω = 1, 2, ...):  
f(x) = [Γ{(ν+ω)/2}]/[Γ(ν/2)Γ(ω/2)] * (ν/ω)(ν/2) * x[(ν/2)-1] * {1+[(ν/ω)*x]}[-(ν+ω)/2],    for 0 ≤ 
x < ∞ ν=1,2,..., ω=1,2,...  
where  
ν, ω are the shape parameters, degrees of freedom
Γ is the Gamma function 

 
The animation above shows various tail areas (p-values) for an F distribution with 

mma
istribution has a mode of zero. In many instances, it is known a priori that the 
ode of the distribution of a particular random variable of interest is not equal to 

 

ribing 

mma function  

eter. 
, sometimes called Euler's e (2.71...) 

both degrees of freedom equal to 10.  
 
 
Ga  Distribution. The probability density function of the exponential 
d
m
zero (e.g., when modeling the distribution of the life-times of a product such as
an electric light bulb, or the serving time taken at a ticket booth at a baseball 
game). In those cases, the gamma distribution is more appropriate for desc
the underlying distribution. The gamma distribution is defined as:  
f(x) = {1/[bΓ(c)]}*[x/b]c-1*e-x/b    for 0 ≤ x, c > 0  
where  
Γ is the Ga
c is the Shape parameter 
b is the Scale param
e is the base of the natural logarithm



 
The animation above shows the gamma distribution as the shape parameter 
changes from 1 to 6.  
 
 
Geometric Distribution. If independent Bernoulli trials are made until a "succe
occurs, then the total number of trials required is a geometric random variable. 

ss" 

is defined as:  
..  

ility that a particular event (e.g., success) will occur. 

netely small intervals 
 to oppose destruction which 

t the commencement of these intervals" (Johnson, Kotz, Blakrishnan, 
95  
)=  c ≤ 1  
of is

The geometric distribution 
f(x) = p*(1-p)x,    for x = 1,2,.
where  
p is the probab

 
 
Gompertz Distribution. The Gompertz distribution is a theoretical distribution of 
survival times. Gompertz (1825) proposed a probability model for human 
mortality, based on the assumption that the "average exhaustion of a man's 
power to avoid death to be such that at the end of equal infi
of time he lost equal portions of his remaining power
he had a
19 , p. 25). The resultant hazard function: 
r(x Bcx,    for x ≤ 0, B > 0,
is ten used in survival analys . See Johnson, Kotz, Blakrishnan (1995) for 
additional details.  
 
 



Laplace Distribution. For interesting mathematical applications of the Laplace 
distribution see Johnson and Kotz (1995). The Laplace (or Double Exponential) 
distribution is defined as:  

x) = 1/(2b) * e[-(|x-a|/b)],    for -∞ < x < ∞  
here  

f(
w
a is the location parameter (mean) 
b is the scale parameter  
e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 
The graphic above shows the changing shape of the Laplace distribution when 

 loca ls 0 and the scale parameter equals 1, 2, 3, and 4.  

Logistic Distribution. The logistic distribution is used to model binary responses 
(e.g., Gender) and is commonly used in logistic regression

the tion parameter equa
 
 

. The logistic 
distribution is defined as:  
f(x) = (1/b) * e[-(x-a)/b] * {1+e[-(x-a)/b]}^-2,    for -∞ < x < ∞, 0 <   

 
 is the scale parameter 
 is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

b
where  
a is the location parameter (mean)
b
e

 
The graphic above shows the changing shape of the logistic distribution when the 
location parameter equals 0 and the scale parameter equals 1, 2, and 3.  



 
 
Log-normal Distribution. The log-normal distribution is often used in simulations 

rsonal incomes, age at first marriage, or tolerance to 
le from a normal distribution

of variables such as pe
poison in animals. In general, if x is a samp , then y = 

ion is ex is a sample from a log-normal distribution. Thus, the log-normal distribut
defined as:  
f(x) = 1/[xσ(2)1/2] * e-[log(x)-µ]**2/2σ**2,    for 0 < x < ∞, µ > 0, σ > 0  
where  
µ is the scale parameter 
σ is the shape parameter 
e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 
The animation above shows the log-normal distribution with mu equal to 0 and 
sigma equals .10, .30, .50, .70, and .90.  
 
 
Normal Distribution. The normal distribution (the "bell-shaped curve" which is 
symmetrical about the mean) is a theoretical function commonly used in 
inferential statistics as an approximation to sampling distributions (see also 
Elementary Concepts). In general, the normal distribution provides a good model 
for a random variable, when:  

1. There is a strong tendency for the variable to take a central value;  
2. Positive and negative deviations from this central value are equally likely;  
3. The frequency of deviations falls off rapidly as the deviations become larger.  

As an underlying mechanism that produces the normal distribution, one may think of an 
infinite number of independent random (binomial) events that bring about the values of a
particular variable. For example, there are probably a nearly infinite number of factors

 
 

that determine a person's height (thousands of genes, nutrition, diseases, etc.). Thus, 

http://www.statsoft.com/textbook/stanman.html


height can be expected to be normally distributed in the population. The normal 
distribution function is determined by the following formula:  
f(x) = 1/[(2*π)1/2*σ] * e**{-1/2*[(x-µ)/σ]2 },    for -∞ < x < ∞  
where  
µ is the mean  
σ is the standard deviation  
e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 
π is the constant Pi (3.14...) 

 
The animation above shows several tail areas of the standard normal d
(i.e., the normal distribution with a mean of 0 and a

istribution 
 standard deviation of 1). The 

mal distribution is often used in hypothesis testing.  standard nor
 
 
Pareto Distribution. The Pareto distribution is commonly used in monitoring 
production processes (see Quality Control and Process Analysis). For example, 
a machine which produces copper wire will occasionally generate a flaw at some 
point along the wire. The Pareto distribution can be used to mod

ire between successive flaws. The standard Pareto distribu
el the length of 

w tion is defined as:  
1 ≤ x, c < 0  f(x) = c/xc+1,    for 

where  
c is the shape parameter 

 
The animation above shows the Pareto distribution for the shape parameter 
equal to 1, 2, 3, 4, and 5.  

http://www.statsoft.com/textbook/stanman.html


 
 
Poisson Distribution. The Poisson distribution is also sometimes referred to as
the distribution of rare events. Examples of Poisson distributed variables are 
number of accidents per person, number of sweepstakes won per person, or the
number of catastrophic defects found in a production process. It is defined as:  
f(x) = (λ

 

 

x*e-λ

mple (and 
appropriate metaphor) for such a variable would be the distance of darts from the 

n 

)/x!,    for x = 0,1,2,..., 0 < λ  
where  
λ (lambda) is the expected value of x (the mean)  
e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 
 
 
Rayleigh Distribution. If two independent variables y1 and y2 are independent 
from each other and normally distributed with equal variance, then the variable 
x = √(y12+ y22) will follow the Rayleigh distribution. Thus, an exa

target in a dart-throwing game, where the errors in the two dimensions of the 
target plane are independent and normally distributed. The Rayleigh distributio
is defined as:  
f(x) = x/b2 * e^[-(x2/2b2)],    for 0 ≤ x < ∞, b > 0  
where  
b is the scale parameter 
e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 
The graphic above shows the changing shape of the Rayleigh distribution wh
the scale parameter equals 1, 2, and 3.  
 

en 

 



Rectangular Distribution. The rectangular distribution is useful for describing 
random variables with a constant probability density over the defined range a<b.  
f(x) = 1/(b-a),    for a<x<b 
       = 0 ,           elsewhere  
where  
a<b are constants. 
 
 
Student's t Distribution. The student's t distribution is symmetric about zero, and 
its general shape is similar to that of the standard normal distribution. It is most 
commonly used in testing hypothesis about the mean of a particular population. 
The student's t distribution is defined as (for n = 1, 2, . . .):  
f(x) = Γ[(ν+1)/2] / Γ(ν/2) * (ν*π)-1/2 * [1 + (x2/ν)-(ν+1)/2  
where  
ν is the shape parameter, degrees of freedom
Γ is the Gamma function 
π is the constant Pi (3.14 . . .) 

 
of the student's t distribution is determined by the degrees of freedom. The shape 

As shown in the animation above, its shape changes as the degrees of freedom 
increase.  
 
 
Weibull Distribution. As described earlier, the exponential distribution is often 
used as a model of time-to-failure measurements, when the failure (hazard) rate
is constant over time. When the failure probability varies over time, then the 
Weibull distribution is appropriate. Thus, the Weibull distribution is often used in 

 



reliability testing (e.g., of electronic relays, ball bearings, etc.; see Hahn and 
Shapiro, 1967). The Weibull distribution is defined as:  
f(x) = c/b*(x/b)(c-1) * e[-(x/b)^c],    for 0 ≤ x < ∞, b > 0, c > 0  
where  
b is the scale parameter 
c is the shape parameter 
e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 
The animation above shows the Weibull distribution as the shape parameter 
increases (.5, 1, 2, 3, 4, 5, and 10).  
 
 

 
 
 
 

 
 

 
 
  

 

Experimental Design (Industrial DOE) 

   
 

w  

Experiments in Science and Industry  
Experimental methods are widely used in research as well as in industrial 
settings, however, sometimes for very different purposes. The primary goal in 
scientific research is usually to show the statistical significance of an effect that a 

DOE Overvie



particular factor exerts on the dependent variable of interest (for details 
concerning the concept of statistical significance see Elementary Concepts).  
In industrial settings, the primary goal is usually to extract the maximum amount 
of unbiased information regarding the factors affecting a production process from 
as few (costly) observations as possible. While in the former application (in 
science) analysis of variance (ANOVA) techniques are used to uncover the 
interactive nature of reality, as manifested in higher-order interactions of factors, 
in industrial settings interaction effects are often regarded as a "nuisance" (they 

ant 

re 
nces, 

are often of no interest; they only complicate the process of identifying import
factors).  

Differences in techniques  
These differences in purpose have a profound effect on the techniques that a
used in the two settings. If you review a standard ANOVA text for the scie
for example the classic texts by Winer (1962) or Keppel (1982), you will find that 
they will primarily discuss designs with up to, perhaps, five factors (designs with 
more than six factors are usually impractical; see the ANOVA/MANOVA chapter). 
The focus of these discussions is how to derive valid and robust statistical 
significance tests. However, if you review standard texts on experimentation in 
industry (Box, Hunter, and Hunter, 1978; Box and Draper, 1987; Mason, Gunst, 
and Hess, 1989; Taguchi, 1987) you will find that they will primarily discuss 
designs with many factors (e.g., 16 or 32) in which interaction effects cannot be
evaluated, and the primary focus of the discussion is how to derive unbiased 
main effect (and, per

 

haps, two-way interaction) estimates with a minimum 
number of observations.  

s 
This comparison can be expanded further, however, a more detailed description 
of experimental design in industry will now be discussed and other difference
will become clear. Note that the General Linear Models and ANOVA/MANOVA 

ontain detailed discussions of typical design issues in scientific 
Model

chapters c
research; the General Linear  procedure is a very comprehensive 

A implementation of the general linear model approach to ANOVA/MANOV



(un r ations in industry 
where general ANOVA designs, as used in scientific research, can be immensely 

iva iate and multivariate ANOVA). There are of course applic

useful. You may want to read the General Linear Models and ANOVA/MANOVA 

dustry is based, 
wing paragraphs. The 

e 

chapters to gain a more general appreciation of the range of methods 
encompassed by the term Experimental Design.  

Overview  
The general ideas and principles on which experimentation in in
and the types of designs used will be discussed in the follo
following paragraphs are meant to be introductory in nature. However, it is 
assumed that you are familiar with the basic ideas of analysis of variance and th
interpretation of main effects and interactions in ANOVA. Otherwise, it is stron
recommend that you read the Introductory Overview section for 
ANOVA/MANOVA

gly 

 and the General Linear Models chapter.  

as  

d 

E
e his 

 
te 

ue, and strength of the final product. In the example 

*(6-0) design (the 2**(k-p) notation is explained below). The results of the 

General Ide
In general, every machine used in a production process allows its operators to 
adjust various settings, affecting the resultant quality of the product manufacture
by the machine. Experimentation allows the production engineer to adjust the 
settings of the machine in a systematic manner and to learn which factors have 
the greatest impact on the resultant quality. Using this information, the settings 
can be constantly improved until optimum quality is obtained. To illustrate this 
reasoning, here are a few examples:  

xample 1: Dyestuff manufacture. Box and Draper (1987, page 115) report an 
xperiment concerned with the manufacture of certain dyestuff. Quality in t

context can be described in terms of a desired (specified) hue and brightness 
and maximum fabric strength. Moreover, it is important to know what to change
in order to produce a different hue and brightness should the consumers' tas
change. Put another way, the experimenter would like to identify the factors that 
affect the brightness, h
described by Box and Draper, there are 6 different factors that are evaluated in a 
2*

http://www.statsoft.com/textbook/stvarcom.html


experiment show that the three most important factors determining fabric 
strength are the Polysulfide index, Time, and Temperature (see Box and Draper, 

6). One can summarize the expected effect (predicted means) for 
lot. 

1987, page 11
the variable of interest (i.e., fabric strength in this case) in a so- called cube-p
This plot shows the expected (predicted) mean fabric strength for the respective 
low and high settings for each of the three variables (factors).  

 
Example 1.1: Screening designs. In the previous example, 6 different factors 
were simultaneously evaluated. It is not uncommon, that there are very many 
(e.g., 100) different factors that may potentially be important. Special de
(e.g., Plackett-Burman designs, see Plackett and Burman, 1946) have been 
developed to screen such large numbers of fac

signs 

tors in an efficient manner, that is, 
ervations necessary. For example, you can design 

); 

t 

rating pressure. Each factor was set at three different 
leve **(3-0) experimental design (the 3**(k-p) notation 

with the least number of obs
and analyze an experiment with 127 factors and only 128 runs (observations
still, you will be able to estimate the main effects for each factor, and thus, you 
can quickly identify which ones are important and most likely to yield 
improvements in the process under study.  
Example 2: 3**3 design. Montgomery (1976, page 204) describes an experimen
conducted in order identify the factors that contribute to the loss of soft drink 
syrup due to frothing during the filling of five- gallon metal containers. Three 
factors where considered: (a) the nozzle configuration, (b) the operator of the 
machine, and (c) the ope

ls, resulting in a complete 3
is explained below).  



 
Mo
tha

re e  taken for each combination of factor settings, 
t s co pletely replicated once.  

xample 3: Maximizing yield of a chemical reaction. The yield of many chemical 
actions is a function of time and temperature. Unfortunately, these two 

ords, 

usually 

ov
is, 

er,
the

 tw
 3*

o m
*(3

ea
-0)

su
 de

rem
sig

e
n w

nts
a

 w re
m

E
re
variables often do not affect the resultant yield in a linear fashion. In other w
it is not so that "the longer the time, the greater the yield" and "the higher the 
temperature, the greater the yield." Rather, both of these variables are 
related in a curvilinear fashion to the resultant yield.  

 
Thus, in this example your goal as experimenter would be to optimize the yield 

es: time and temperature.  

nd 
 study 

d 

surface that is created by the two variabl
Example 4: Testing the effectiveness of four fuel additives. Latin square designs 
are useful when the factors of interest are measured at more than two levels, a
the nature of the problem suggests some blocking. For example, imagine a
of 4 fuel additives on the reduction in oxides of nitrogen (see Box, Hunter, an
Hunter, 1978, page 263). You may have 4 drivers and 4 cars at your disposal. 



You are not particularly interested in any effects of particular cars or drivers on 
the resultant oxide reduction; however, you do not want the results for the fuel 
additives to be biased by the particular driver or car. Latin square designs allow
you to estimate the main effects of all factors in the design in an unbiased 
manner. With regard to the example, the arrangement of treatment levels in a 
Latin square design assures that the variability among drivers or cars does 
affect the estimation of the effect due to different fuel additives.  
Example 5: Improving surface uniformity in the manufacture of polysilicon wafer
The manufacture of reliable microprocessors requires very high consistency in 
the manufacturing process. Note that in this instance, it is equally, if not more 
important to control the variability of certain product characteristics than it is to 
control the average for a characteristic. For example, with regard to the average 
surface thickness of the polysilicon layer, the manufacturing process may be 
perfectly under control; yet, if the variability of the surface thickness o

 

not 

s. 

n a wafer 
 (1989) 

l 
e 

rs is 

r (or 

fluctuates widely, the resultant microchips will not be reliable. Phadke
describes how different characteristics of the manufacturing process (such as 
deposition temperature, deposition pressure, nitrogen flow, etc.) affect the 
variability of the polysilicon surface thickness on wafers. However, no theoretica
model exists that would allow the engineer to predict how these factors affect th
uniformness of wafers. Therefore, systematic experimentation with the facto
required to optimize the process. This is a typical example where Taguchi robust 
design methods would be applied.  
Example 6: Mixture designs. Cornell (1990, page 9) reports an example of a 
typical (simple) mixture problem. Specifically, a study was conducted to 
determine the optimum texture of fish patties as a result of the relative 
proportions of different types of fish (Mullet, Sheepshead, and Croaker) that 
made up the patties. Unlike in non-mixture experiments, the total sum of the 
proportions must be equal to a constant, for example, to 100%. The results of 
such experiments are usually graphically represented in so-called triangula
ternary) graphs.  



 
In general, the overall constraint -- that the three components must sum to a 

 the triangular shape of the graph (see above).  
am l o d mixture designs. It is particularly common in mixture 
sig  amounts of components are further constrained (in 
di s t that they must sum to, for example, 100%). For 
am anted to design the best-tasting fruit punch consisting of 
mi u e five fruits. Since the resulting mixture is supposed to be a 
uit punch, pure blends consisting of the pure juice of only one fruit are 
ecessarily excluded. Additional constraints may be placed on the "universe" of 

the 
s, etc.). Such so-called 

ons present numerous problems, which, however, 
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mixtures due to cost constraints or other considerations, so that one particular 
fruit cannot, for example, account for more than 30% of the mixtures (otherwise 
the fruit punch would be too expensive, the shelf-life would be compromised, 
punch could not be produced in large enough quantitie
constrained experimental regi
can be addressed.  

 



In ge h on ions, one seeks to design an experiment that can 
m amount of information about the respective 
of the fruit punch) in the experimental region of 

T

gard to the first question, there are different considerations that enter into the 
ortly. In the most general terms, 
 in an unbiased (or least biased) 
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ompo nominator Synthesis  

here ds for analyzing designs with random effects 
ethods for sis of Variance

neral, under t ose c dit
potentially extract the maximu
response function (e.g., taste 
interest.  

Computational Problems  
here are basically two general issues to which Experimental Design is 

addressed:  

1. How to design an optimal experiment, and  
2. How to analyze the results of an experiment.  

With re
different types of designs, and they will be discussed sh
the goal is always to allow the experimenter to evaluate
way, the consequences of changing the settings of a particular factor, that is, regardless of
how other factors were set. In more technical terms, you attempt to generate desi
where main effects are unconfounded among themselves, and in some cases, eve
unconfounded with the interaction of factors.  

C
T
(see 

nents of Variance, De
 are several statistical metho

AnalyM ). The Variance Components and Mixed 
Model ANOVA/ANCOVA chapter discusses numerous options for estimating 
variance components for random effects, and for performing approximate F tests 
b d on synthes error terms.  

Summary  
xperimental methods are finding increasing use in manufacturing to optimize 

ically, the goal of these methods is to identify the 

ctor) 
ral 

t 

ase ized 

E
the production process. Specif
optimum settings for the different factors that affect the production process. In the 
discussion so far, the major classes of designs that are typically used in industrial 
experimentation have been introduced: 2**(k-p) (two-level, multi-factor) designs, 
screening designs for large numbers of factors, 3**(k-p) (three-level, multi-fa
designs (mixed designs with 2 and 3 level factors are also supported), cent
composite (or response surface) designs, Latin square designs, Taguchi robus
design analysis, mixture designs, and special procedures for constructing 



experiments in constrained experimental regions. Interestingly, many of these 
experimental techniques have "made their way" from the production plant
management, and successful implementations have been reported in profit 
planning in business, cash-flow o timization in banking, etc. (e.g., see 

 into 

p Yokyama 
and Taguchi, 1975).  
These techniques will now be described in greater detail in the following sections:  

  

 

ocess may 
et a little higher or a little lower, the amount of solvent in a dyestuff 

, to 

n
ber 

tudy 10 factors you would 
= 1,024 runs in the experiment. Because each run may require time-
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is 
k-

p) experiments can be found, for example, in Bayne and Rubin (1986), Box and 

2**(k-p) Fractional Factorial Designs at 2 Levels  

Basic Idea  
In many cases, it is sufficient to consider the factors affecting the production 
process at two levels. For example, the temperature for a chemical pr
either be s
manufacturing process can either be slightly increased or decreased, etc. The 
experimenter would like to determine whether any of these changes affect the 
results of the production process. The most intuitive approach to study those 
factors would be to vary the factors of interest in a full factorial design, that is
try all possible combinations of settings. This would work fine, except that the 

umber of necessary runs in the experiment (observations) will increase 
geometrically. For example, if you want to study 7 factors, the necessary num
of runs in the experiment would be 2**7 = 128. To s
need 2**10 
consuming and costly setting and resetting of machinery, it is often not feasible to
require that many different production runs for the experiment. In these 
conditions, fractional factorials are used that "sacrifice" interaction effects so tha
main effects may still be computed correctly.  

Generating the Design  
A technical description of how fractional factorial designs are constructed 
beyond the scope of this introduction. Detailed accounts of how to design 2**(



Draper (1987), Box, Hunter, and Hunter (1978), Montgomery (1991), Daniel 
(1976), Deming and Morgan (1993), Mason, Gunst, and Hess (1989), or Ryan
(1989), to name only a few of the many text books on this subject. In general, it 
will successively "use" the highest-order 

 

interactions to generate new factors. For
example, consider the following design that includes 11 factors but requires o
16 runs (observations).  

Design: 2**(11-7), Resolution III 

 
nly 

Run A B C D E F G H I J K

1 
2 

1 
1 

1 
1 

1 
1 

1 
-1 

1 
1 

1 
-1 

1 
-1 

1 
-1 

1 
-1 

1
1

1
1

3 
4 

1 
1 

1 
1 

-1 
-1 

1 
-1 

-1 
-1 

-1 
1 

-1 
1 

1 
-1 

-1

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 

1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 
1 
1 

-1 
-1 

-1 
1 
1 

-1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 
1 

-1 
1 

-1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 
1 

-1 
-1 
1 

-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1

1
1

-1
-1
-1
-1
1
1

-1
-1
1
1

 
1 

1
1

-1
-1

 
 
Reading the design. The design displayed above should be interpreted as 
follows. Each column contains +1's or -1's to indicate the setting of the respective 

 
provided 

grees 

factor (high or low, respectively). So for example, in the first run of the 
experiment, set all factors A through K to the plus setting (e.g., a little higher than 
before); in the second run, set factors A, B, and C to the positive setting, factor D
to the negative setting, and so on. Note that there are numerous options 
to display (and save) the design using notation other than ±1 to denote factor 
settings. For example, you may use actual values of factors (e.g., 90 de
Celsius and 100 degrees Celsius) or text labels (Low temperature, High 
temperature).  



Randomizing the runs. Because many other things may change from production 
run to production run, it is always a good practice to randomize the order in which 
the systematic runs of the designs are performed.  

The Concept of Design Resolution  
 

 

The design above is described as a 2**(11-7) design of resolution III (three). This
means that you study overall k = 11 factors (the first number in parentheses); 
however, p = 7 of those factors (the second number in parentheses) were
generated from the interactions of a full 2**[(11-7) = 4] factorial design. As a 
result, the design does not give full resolution; that is, there are certain interaction 
effects that are confounded with (identical to) other effects. In general, a de
of resolution R is one where no l-way 

sign 
interactions are confounded with any other

interaction of order less than R-l. In the current example, R is equal to 3. Here
no l = 1 level interactions (i.e., main effects) are confounded with any other 
interaction of order le

 
, 

ss than R-l = 3-1 = 2. Thus, main effects in this design are 
confounded with two- way interactions; and consequently, all higher-order 

d 

n is 
n of order less than R-l = 4-2 = 2. Thus, the 

h each other.  

 of 
 

teractions

interactions are equally confounded. If you had included 64 runs, and generate
a 2**(11-5) design, the resultant resolution would have been R = IV (four). You 
would have concluded that no l=1-way interaction (main effect) is confounded 
with any other interaction of order less than R-l = 4-1 = 3. In this design then, 
main effects are not confounded with two-way interactions, but only with three-
way interactions. What about the two-way interactions? No l=2-way interactio
confounded with any other interactio
two-way interactions in that design are confounded wit

Plackett-Burman (Hadamard Matrix) Designs for Screening  
When one needs to screen a large number of factors to identify those that may 
be important (i.e., those that are related to the dependent variable of interest), 
one would like to employ a design that allows one to test the largest number
factor main effects with the least number of observations, that is to construct a
resolution III design with as few runs as possible. One way to design such 
experiments is to confound all in  with "new" main effects. Such designs 



are also sometimes called saturated designs, because all information in those 
designs is used to e o degrees of freedom to 
estimat the error te  for  A A. Be use th dded factors are created 

liasin b ow n o the interactions of a full 
sign, thes ig s alw will 2 ., 4, 8, 16, 32, and 
kett and 19 owe  orial design can be 

 in a n s where the number 
s a multip r than a power of 2. These designs are also 
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ew" fact
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rs with 
**k runs (e.g
full fact

sometimes called Hadamard matrix designs. Of course, you do not have to use 
all available factors in those designs, and, in fact, sometimes you want to 
generate a saturated design for one more factor than you are expecting to test
This will allow you to estimate the random error variability, and test for the 
statistical significance of the parameter estimates.  

Enhancing Design Resolution via Foldover  
One way in which a resolution III design can be enhanced and turned into a 
resolution IV design is via foldover (e.g., see Box and Draper, 1987, Deming and 
Morgan, 1993): Suppose you have a 7-factor design in 8 runs:  

Design: 2**(7-4) design 
Run A B C D E F G 
1 
2 
3 
4 
5 
6 
7 

1 
1 
1 
1 

-1 
-1 
-1 

1 
1 

-1 
-1 
1 
1 

-1 

1 
-1 
1 

-1 
1 

-1 
1 

1 
1 

-1 
-1 
-1 
-1 
1 

1 
-1 
1 

-1 
-1 
1 

-1 

1 
-1 
-1 
1 
1 

-1
-1

1 
-1 
-1 
1 

-1 

8 -1 -1 -1 1 1 1 -1 
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Run 

  
A 

  
B 

  
C 

  
D 

  
E 

  
F 

  
G 

New: 
H 

1 
2 
3 

 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 

1 
-1 
1 

-1 
1 

-1 
1 

-1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 
1 
1 

-1 
-1 

1
-1
1

-1
-1
1

-1
1

-1
1

-1
1
1

-1
1

-1

1 
-1 
-1 
1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 
1 

-1 
-1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
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Thus, e stand -1, -1, -1, 1, 1, 1, -1; the new run number 9 

 o  all signs reversed: 1, 1, 1, -1, -1, -1, 
t the design, we also have gained an 

 (fact  for the first eight runs, and -1's for 
v n ote that the resultant design is 

olution IV (see also Box and Draper, 1987, page 
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(the first run
1. In addition 
8'th factor
the folded-o e

f the "fo
o enhan
or H), w
r portion

lded-ov
cing the
hich co
 of the 

er" port
 resolu
ntains 
ew de

ion) has
tion of 
all +1's
sign. N

actually a 2**(8-4) design of res
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Aliases of Interactions: Design Generators  
To return to the example of the resolution R = III design, now that you know that 
main effects are confounded with two-way interactions, you may ask the 
question, "Which interaction is confounded with which main effect?"  
  
  

actor 

Fractional Design Generators 
2**(11-7) design 

(Factors are denoted by numbers)
Alias 

  
F

  5 
  6 
  7 
  8 
  9 
10 
11 

  234 
  134 
  124 
1234 
    12 
    13 

   123 



 
 
Design generators. The design generators shown above are the "key" to how 
factors 5 through 11 were generated by assigning them to particular interactions 

l to the 234 interaction, and so on. Remember that the design is of 
h 

11 (eleven) is identical to the 13 (factor 1 by 
ich these equivalencies are often 

ney, 1945).  
To su arize, w e  o e fewer observations (runs) in your 

th factorial 2**k design, you "sacrifice" 
ec  them to the levels of factors. The resulting design 

r a fu  a ion orial.  
e t y marize the design generators is in 

, if, for example, factor 5 in a fractional factorial design 
123 (factor 1 by factor 2 by factor 3) interaction, then it follows 

for the 123 interaction by the coded values for 

of the first 4 factors of the full factorial 2**4 design. Specifically, factor 5 is 
identical to the 123 (factor 1 by factor 2 by factor 3) interaction. Factor 6 is 
identica
resolution III (three), and you expect some main effects to be confounded wit
some two-way interactions; indeed, factor 10 (ten) is identical to the 12 (factor 1 
by factor 2) interaction, and factor 
factor 3) interaction. Another way in wh
expressed is by saying that the main effect for factor 10 (ten) is an alias for the 
interaction of 1 by 2. (The term alias was first used by Fin

mm h never you want t includ
experiment 
interaction eff
is no longe
The fundam n
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ts and
ll facto

tal iden

 be req
 assign
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tity. Ano

uired by

 fract
her wa

 the full 

al fact
to sum

a simple equation. Namely
is identical to the 
that multiplying the coded values 
factor 5 will always result in +1 (if all factor levels are coded ±1); or:  
I = 1235  
where I stands for +1 (using the standard notation as, for example, found in Box 
and Draper, 1987). Thus, we also know that factor 1 is confounded with the 235 
interaction, factor 2 with the 135, interaction, and factor 3 with the 125 
interaction, because, in each instance their product must be equal to 1. The 
confounding of two-way interactions is also defined by this equation, because the 
12 interaction multiplied by the 35 interaction must yield 1, and hence, they are 



identical or confounded. Therefore, one can summarize all confounding in a 
d ign th suc fundamental identity uation.

Blocking  
In some production proc es, ts ar oduced atural nks loc
Y u wa  to ma ure t the block o not b our es s of main 
effects. For example, you may have a k to prod specia mic t th

e of  kiln is ited hat  can t produ ll runs ur e ime
nce n that  you ed t reak  the ex ent in cks we
 do t want un positive settings of all factors in one b  and
ati etting the o r. O rwis ny inci al differences between 

rs 
want to distribute the runs over the blocks so that any 

differences between blocks (i.e., the blocking factor) do not bias your results for 
the fa r effec his is accomplished by treating the blocking factor 

y, you "lose" another interaction 
 bloc a t design will be of lower resolution. 

r, these ntage of being statistically more 
us y  and control the variability in the 

roduction process that is due to differences between blocks.  
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R
It is sometimes desirable to replicate the design, that is, to run each com
of factor levels in the design more than once. This will allow you to later estimate 
the so-called pure error in the experiment. The analysis of experiments is furthe
discussed below; however, it should be clear that, when replicating the design
one can compute the variability of measurements within each unique 
combination of factor levels. This variability will give a
error in the measu
measurement instrument, etc.), because the replicated observations are taken 
under identical conditions (settings of factor levels). Such an estimate of the pu



error can be used to evaluate the size and statistical significance of the va
that can be attributed to the manipulated factors.  
Partial replications. When it is not possible or feasible to replicate each unique 
combination of factor levels (i.e., the full des

riability 

ign), one can still gain an estimate of 
pure error by replicating only some of the runs in the experiment. However, one 
must be careful to consider the possible bias that may be introduced by 
selectively replicating only some runs. If one only replicates those runs that are 
most easily repeated (e.g., gathers information at the points where it is 
"cheapest"), one may inadvertently only choose those combinations of factor 
levels that happen to produce very little (or very much) random variability -- 
causing one to underestimate (or overestimate) the true amount of pure error. 
Thus, one should carefully consider, typically based on your knowledge about the 

s 

t of 
r. It 

c  
cts 

ent 
 

center-
point runs (or center points), since they are, in a sense, in the center of the 

process that is being studied, which runs should be replicated, that is, which run
will yield a good (unbiased) estimate of pure error.  

Adding Center Points  
Designs with factors that are set at two levels implicitly assume that the effec
the factors on the dependent variable of interest (e.g., fabric Strength) is linea
is impossible to test whether or not there is a non-linear (e.g., quadratic) 
omponent in the relationship between a factor A and a dependent variable, if A

is only evaluated at two points (.i.e., at the low and high settings). If one suspe
that the relationship between the factors in the design and the depend
variable is rather curve-linear, then one should include one or more runs where
all (continuous) factors are set at their midpoint. Such runs are called 

design (see graph).  



 
Later in the analysis (see below), one can compare the measurements for the 
dependent variable at the center point with the average for the rest of the design. 
This provides a check for curvature (see Box and Draper, 1987): If the mean for 

m 

 variance. Next, one needs to determine exactly which of the factors 
significantly affected the dependent variable of interest. For example, in the study 

of the 

e strength of the fabric. Note that to simplify matters, only 
main effects are shown below.  
ANOVA; Var.:STRENGTH; R-sqr = .60614; Adj:.56469 (fabrico.sta)

the dependent variable at the center of the design is significantly different fro
the overall mean at all other points of the design, then one has good reason to 
believe that the simple assumption that the factors are linearly related to the 
dependent variable, does not hold.  

Analyzing the Results of a 2**(k-p) Experiment  
Analysis of

reported by Box and Draper (1987, page 115), it is desired to learn which 
factors involved in the manufacture of dyestuffs affected the strength of the 
fabric. In this example, factors 1 (Polysulfide), 4 (Time), and 6 (Temperature) 
significantly affected th

  2**(6-0) design; MS Residual = 3.62509 
DV: STRENGTH 

  SS df MS F p 
(1)POLYSUFD 
(2)REFLUX 
(3)MOLES 
(4)TIME 
(5)SOLVENT 
(6)TEMPERTR 
Error 
Total SS 

48.8252 
7.9102 
.1702 

142.5039 
2.7639 

115.8314 
206.6302 
524.6348 

1 
1 
1 
1 
1 
1 

57 
63 

48.8252
7.9102
.1702

142.5039
2.7639

115.8314
3.6251

 

13.46867
2.18206

.04694
39.31044

.76244
31.95269

 
 

.000536

.145132

.829252

.000000

.386230

.000001
 
 



Pure error and lack of fit. If the experimental design is at least partially replica
then one can estimate the error variability for the experiment from the va
of the replicated runs. Since those measurement

ted, 
riability 

s were taken under identical 
conditions, that is, at identical settings of the factor levels, the estimate of the 

l 
s

error variability from those runs is independent of whether or not the "true" mode
is linear or non-linear in nature, or includes higher-order interaction . The error 

estimated represents pure error, that is, it is entirely due to 
n 

ce, 

hat 

t

variability so 
unreliabilities in the measurement of the dependent variable. If available, one ca
use the estimate of pure error to test the significance of the residual varian
that is, all remaining variability that cannot be accounted for by the factors and 
their interactions that are currently in the model. If, in fact, the residual variability 
is significantly larger than the pure error variability, then one can conclude t
there is still some statistically significant variability left that is attributable to 
differences between the groups, and hence, that there is an overall lack of fit of 
he current model.  

ANOVA; Var.:STRENGTH; R-sqr = .58547; Adj:.56475 (fabrico.sta)

  2**(3-0) design; MS Pure Error = 3.594844 
DV: STRENGTH 

  SS df MS F p 
(1)POLYSUFD 
(2)TIME 
(3)TEMPERTR 
Lack of Fit 
Pure Error 
Total SS 

48.8252 
142.5039 
115.8314 
16.1631 

201.3113 
524.6348 

1 
1 
1 
4 

56 
63 

48.8252
142.5039
115.8314

4.0408
3.5948

 

13.58200
39.64120
32.22154
1.12405

 
 

.000517

.000000

.000001

.354464
 
 

For example, the table above shows the results for the three factors that were 

rs Polysulfide, Time, 
Temperature significantly affected resultant fabric strength in an additive 

interactions

previously identified as most important in their effect on fabric strength; all other 
factors where ignored in the analysis. As you can see in the row with the label 
Lack of Fit, when the residual variability for this model (i.e., after removing the 
three main effects) is compared against the pure error estimated from the within-
group variability, the resulting F test is not statistically significant. Therefore, this 

he conclusion that, indeed, factoresult additionally supports t
and 
manner (i.e., there are no ). Or, put another way, all differences 



between the means obtained in the different experimental conditions c
sufficiently explained by the 

an be 
simple additive model for those three variables.  

effect estimates. Now, look at how these factors affected the 
s
Parameter or 
trength of the fabrics.  

  Effect Std.Err. t (57) p 
Mean/Interc. 
(1)POLYSUFD 
(2)REFLUX 
(3)MOLES 
4)TIME 
)SOLVENT 

(6)TEMPERTR 

11.12344 
1.74688 

.70313 

.10313 
2.98438 
-.41562 
2.69062 

.237996 

.475992 

.475992 

.475992 

.475992 

.475992 

.475992 

46.73794
3.66997
1.47718

.21665
6.26980
-.87318
5.65267

.000000

.000536

.145132

.829252

.000000

.386230

.000001

(
(5

 
 
The numbers above are the effect or parameter estimates. With the exception 
the overall Mean/Intercept, these estimates are the deviations of the mean of the 
negative settings from the mean of the positive settings for the respective fac
For example, if you change the setting of factor Time from low to high, then you 
can expect an improvement in Strength by 2.98; if you set the value for 
Polysulfd to its high setting, you can expect a further improvement by 1.75, and
so on.  
As you can see, the same three factors that were statistically significant show th
largest parameter estimates; thus the settings of these three factors we
important for the resultant strength of the fabric.  
For analyses including 

of 

tor. 

factor 
 

e 
re most 

interactions, the interpretation of the effect parameters is 

nce 
 and 

a bit more complicated. Specifically, the two-way interaction parameters are 
defined as half the difference between the main effects of one factor at the two 
levels of a second factor (see Mason, Gunst, and Hess, 1989, page 127); 
likewise, the three-way interaction parameters are defined as half the differe
between the two-factor interaction effects at the two levels of a third factor,
so on.  



Regression coefficients. One can also look at the parameters in the multiple 
regression model (see Multiple Regression). To continue this example, consider 
the following prediction equation:  
Strength = const + b1 *x1 +... + b6 *x6  
Here x1 through x6 stand for the 6 factors in the analysis. The Effect Estimates 
shown earlier also contains these parameter estimates:  

    
Coeff. 

Std.Err. 
Coeff. 

-95.% 
Cnf.Limt

+95.%
Cnf.Limt

Mean/Interc. 
(1)POLYSUFD 
(2)REFLUX 
(3)MOLES 
(4)TIME 
(5)SOLVENT 

11.12344 
.87344 
.35156 
.05156 

1.49219 
-.20781 

 

.237996 

.237996 

.237996 

.237996 

.237996 

.237996 
 

10.64686
.39686

-.12502
-.42502
1.01561
-.68439

11.60002
1.35002

.82814

.52814
1.96877

.26877
(6)TEMPERTR 1.34531 .237996 .86873 1.82189

 
 

ctually, these parameters contain little "new" information, as they simp
one-half of the parameter values (except for the Mean/Intercept) shown earli
This makes sense since now, the coefficient can be interpreted as the deviation 

f the high-setting for the respective factors from the center. However, note that 
this is only the case if the factor values (i.e., their levels) are coded as -1 and
respectively. Otherwise, the scaling of the factor values will affect the magnitud
of the parameter estimates. In the example data reported by Box an

A ly are 
er. 

o
 +1, 

e 
d Draper 

ded on 
v
(1987, page 115), the settings or values for the different factors were recor
ery different scales:  

data file: FABRICO.STA [ 64 cases with 9 variables ] 
2**(6-0) Design, Box & Draper, p. 117 

  P IME SOLVENT TEMPERTR STRENGTH HUE BRIGTHNSOLYSUFD REFLUX MOLES T

1 
2 
3
4
5
6
7
8
9

10

 
 
 
 
 
 
 
 

6
7
6
7

 

 

 
 

2
2

4
4

4
4

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

120 
120 
120 
120 
120 
120 
120 
120 
120 
120 

  3.4 
  9.7 
  7.4 
10.6 
  6.5 
  7.9 
10.3 
  9.5 
14.3 
10.5 

15.0 
  5.0 
23.0 
  8.0 
20.0 
  9.0 
13.0 
  5.0 
23.0 
  1.0 

36.0 
35.0 
37.0 
34.0 
30.0 
32.0 
28.0 
38.0 
40.0 
32.0 

6 
7 

 
 
 
 

6 
7 
6 
7 

150
150

 
 

170 
170
150
150 
170
170 
150 
150

 
 

 

 

1.8
1.8

 
 

1.8
1.8
2.4
2.4
2.4
2.4
1.8
1.8

 
 

 

 

4 
4 

2
2
2
2
2
2
3
3

 
 

4 
4 

 
 

6 
6 



11
12 
13 
14 
15 
. . 

. 

 6
7
6
7

.

 
 

 

6
6

 

30 
30 
30 
30 
30 
. . . 

120 
120 
120 
120 
120 
. . . 

  7.8 
17.2 
  9.4 
12.1 
  9.5 
. . . 

11.0 
  5.0 
15.0 
  8.0 
15.0 
. . . 

32.0 
28.0 
34.0 
26.0 
30.0 
. . . 

 
 
 
 

6 
 . . .

170 
170
150
150 
170
. . 

 
 

 
 

1.8
1.8
2.4
2.4
2.4
. . .

 

 

 

3
3
3
3
3
.

6 
6 

 
 

6 
. . 

Shown below are the regression coefficient estimates based on the uncoded 
riginal factor values:  

Regressn       

o

  Coeff. Std.Err. t (57) p 
Mean/Interc. 
(1)POLYSUFD 
(2)REFLUX 
(3)MOLES 
(4)TIME 
(5)SOLVENT 
(6)TEMPERTR 

-46.0641 
1.7469 
.0352 
.1719 
.2487 

-.0346 
.2691 

8.109341 
.475992 
.023800 
.793320 
.039666 
.039666 
.047599 

-5.68037
3.66997
1.47718

.21665
6.26980
-.87318
5.65267

.000000

.000536

.145132

.829252

.000000

.386230

.000001

 
 
Because the metric for the different factors is no longer compatible, the
magnitudes of the regression coefficients are not compatible either. This is why it
is usually more informative to look at the ANOVA parameter estimates (for the 
coded values of the factor levels), as shown before. However, the regression 
coefficients can be useful when one wants to mak

 
 

e predictions for the dependent 

 

 

variable, based on the original metric of the factors.  

Graph Options  
Diagnostic plots of residuals. To start with, before accepting a particular "model"
that includes a particular number of effects (e.g., main effects for Polysulfide, 
Time, and Temperature in the current example), one should always examine the
distribution of the residual values. These are computed as the difference 
between the predicted values (as predicted by the current model) and the 
observed values. You can compute the histogram for these residual values, as 
well as probability plots (as shown below).  



 
The parameter estimates and ANOVA table are based on the assumption that 
the residuals are normally distributed (see also Elementary Concepts). The 
histogram provides one way to check (visually) whether this assumption holds. 
The so-called normal probability plot is another common tool to assess how 
closely a set of observed values (residuals in this case) follows a theo
distribution. In this plot the actual residual values are plotted along the horiz
X-axis; the vertical Y-axis shows the expected normal values for the respective 
values, after they were rank-ordered. If all values fall onto a straight line, 
one can be satisfied that the residuals follow the normal distribution.  
Pareto chart of effects. The 

retical 
ontal 

then 

Pareto chart of effects is often an effective tool for 
communicating the results of an experiment, in particular to laymen.  

 
In this graph, the ANOVA effect estimates are sorted from the largest absolut
value to the smallest absolute value. The magnitude of each effect is repre
by a column, and often, a line going across the columns indicates how larg

e 
sented 
e an 

effect has to be (i.e., how long a column must be) to be statistically significant.  



Normal probability plot of effects. Another useful, albeit more technical summar
graph, is the normal probability plot of the estimates. As in the normal probability 
plot of the residuals, first the effect estimates are rank ordered, 

y 

and then a 
normal z score is computed based on the assumption that the estimates are 
normally distributed. This z score is plotted on the Y-axis; the observed estimates 
are plotted on the X-axis (as shown below).  

 
Square and cube plots. These plots are often used to summarize predicted 
values for the dependent variable, given the respective high and low setting of 
the factors. The square plot (see below) will show the predicted values (and, 
optionally, their confidence intervals) for two factors at a time. The cube plot will
show the predicted values (and, optionally, confidence intervals) for three facto
at a time.  

 
rs 

 
Interaction plots. A general graph for showing the means is the standa
interaction plot, where the means are indicated by points connected by lines. 

rd 



This plot (see below) is particularly useful when there are significant interaction 
effects in the model.  

 
Surface and contour plots. When the factors in the design are continuous in 
nature, it is often also useful to look at surface and contour plots of the 
dependent variable as a function of the factors.  

 
These types of plots will further be discussed later in this section, in the context 
of 3**(k-p), and central composit

Summary  
e and response surface designs.  

esig  "workhorse" of industrial experiments. The impact of a 
rge number f t  on the production process can simultaneously be 
sessed wit e iv efficiency (i.e., with few experimental runs). The logic of 
ese types o x r ents is straightforward (each factor has only two settings).  

2**(k-p) d ns are the
la
as
th

 o
h r
f e

fac
lat
pe

ors
e 
im



Disadvantage .  is also their major flaw. As 

perature factor (which was significantly related to 

s The simplicity of these designs
mentioned before, underlying the use of two-level factors is the belief that the 
resultant changes in the dependent variable (e.g., fabric strength) are basically 
linear in nature. This is often not the case, and many variables are related to 
quality characteristics in a non-linear fashion. In the example above, if you were 
to continuously increase the tem
fabric strength), you would of course eventually hit a "peak," and from there on 
the fabric strength would decrease as the temperature increases. While this 
types of curvature in the relationship between the factors in the design and the 
dependent variable can be detected if the design included center point runs, one 
cannot fit explicit nonlinear (e.g., quadratic) models with 2**(k-p) designs 
(however, central composite designs will do exactly that).  
Another problem of fractional designs is the implicit assumption that higher-order 
interactions do not matter; but sometimes they do, for example, when some other 
factors are set to a particular level, temperature may be negatively related to 
fabric strength. Again, in fractional factorial designs, higher-order interactions 

 detection.  (greater than two-way) particularly will escape
 
 

 

strial experimentation 

 needed to investigate the effects of varying 11 factors, 
acturing process. Let us call the number of factors 

w
 the 

data collection effort, the engineer might decide to forego investigation of higher-

2**(k-p) Maximally Unconfounded and Minimum 
Aberration Designs  

Basic Idea  

2**(k-p) fractional factorial designs are often used in indu
because of the economy of data collection that they provide. For example, 
suppose an engineer
each with 2 levels, on a manuf
k, which would be 11 for this example. An experiment using a full factorial design, 

here the effects of every combination of levels of each factor are studied, would 
require 2**(k) experimental runs, or 2048 runs for this example. To minimize



order interaction effects of the 11 factors, and focus instead on identifying the 
main effects of the 11 factors and any low-order interaction effects that could be 

aller, more reasonable number of 
 another, more theoretical reason for not conducting 
periments. In general, it is not logical to be 

tion effects of the experimental 
ar effects, such as quadratic or cubic 

 be estimated if only 2 levels of each factor are employed. 

ental 
11-5) fractional factorial experiment would be 

designed e, a k-p = 6 way full 
pe p factors being 

"generated" by the levels of selected higher order interactions

estimated from an experiment using a sm
experimental runs. There is
huge, full factorial 2 level ex
concerned with identifying higher-order interac
factors, while ignoring lower-order nonline
effects, which cannot
So althrough practical considerations often lead to the need to design 
experiments with a reasonably small number of experimental runs, there is a 
logical justification for such experiments.  
The alternative to the 2**(k) full factorial design is the 2**(k-p) fractional factorial 
design, which requires only a "fraction" of the data collection effort required for 
full factorial designs. For our example with k=11 factors, if only 64 experim
runs can be conducted, a 2**(

with 2**6 = 64 experimental runs. In essenc
factorial ex riment is designed, with the levels of the 

 of the other 6 
factors. Fractional factorials "sacrifice" higher order interaction effects so that 
lower order effects may still be computed correctly. However, different criteria 
can be used in choosing the higher order interactions to be used as generators, 
with different criteria sometimes leading to different "best" designs.  

s" or blocks. To make 
ot bias your estimates of the effects for the k factors, 

, 
s, 

2**(k-p) fractional factorial designs can also include blocking factors. In some 
production processes, units are produced in natural "chunk
sure that these blocks do n
blocking factors can be added as additional factors in the design. Consequently
you may "sacrifice" additional interaction effects to generate the blocking factor
but these designs often have the advantage of being statistically more powerful, 
because they allow you to estimate and control the variability in the production 
process that is due to differences between blocks.  



Design Criteria  

Many of the concepts discussed in this overview are also addressed in the 
Overview of 2**(k-p) Fractional factorial designs. However, a technical 
description of how fractional factorial designs are constructed is beyond the 

w. Detailed accounts of how to design 2**(k-
 

yan 

scope of either introductory overvie
p) experiments can be found, for example, in Bayne and Rubin (1986), Box and
Draper (1987), Box, Hunter, and Hunter (1978), Montgomery (1991), Daniel 
(1976), Deming and Morgan (1993), Mason, Gunst, and Hess (1989), or R
(1989), to name only a few of the many text books on this subject.  
In general, the 2**(k-p) maximally unconfounded and minimum aberration 
designs techniques will successively select which higher-order interactions to use 
as generators for the p factors. For example, consider the following design that 

y 16 runs (observations).  includes 11 factors but requires onl
Design: 2**(11-7), Resolution III 

Run A B C D E F G H I J K

1 
2 
3 
4 

 
 

7 
8 
9 

1 
1 
1 
1 
1 
1 
1 
1 

-1 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 

1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
1 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

-1 

1 
-1 
1 

-1 
-1 
1 

-1 
1 

-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
-1 

1
1
1
1

-1
-1
-1
-1
-1

1
1

-1
-1
1
1

-1
-1
-1

5
6

 
 

1 
-1 

-1 
1 

 
 

-1 
1 

-1 
1 

-1 

1 
1 

-1 
-1

1
-1

1
1

10 
11 

-1 
-1 

1 
1 

1 
-1 

-1 
1 

-1 
1 

-1 
-1 

1 
1 

1 
-1 

1 
1 

-1
-1

-1
1

12 
13 

-1
-1

14 
15 
16 

-1 
-1 
-1 

-1 
-1 
-1 

1 
-1
-1

1 

 

1 
1 

-1 

1 
1 

-1 

-

-1

1 
-1 

-1 
-1 

1 
1 

-1 
1 

-1
1

1 
1 
 

-1 
-1 
1 

1
1
1

-1
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the experiment, all factors A through K are set to the higher level, and in the 
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second run, factors A, B, and C are set to the higher level, but factor D is s
the lower level, and so on. Notice that the settings for each experimental run fo
factor E can be produced by multiplying the respective settings for factors A, B
and C. The A x B x C interaction effect therefore cannot be estimated 
independently of the factor E effect in this design because these two effects ar
confounded. Likewise, the settings for factor F can be produced by multiply
the respective settings for factors B

et to 
r 
, 

e 
ing 

, C, and D. We say that ABC and BCD are 

 
eans that 

the generators for factors E and F, respectively.  
The maximum resolution design criterion. In the Scrollsheet shown above, the
design is described as a 2**(11-7) design of resolution III (three). This m
you study overall k = 11 factors, but p = 7 of those factors were generated from 
the interactions of a full 2**[(11-7) = 4] factorial design. As a result, the de
does not give full resolution; that is, there are certain interaction effects that are 
confounded with (identical to) other effects. In general, a design of resolution R i
one where no l-way interac

sign 

s 
tions are confounded with any other interaction of 

y 

l  

 used 
 as high 

r and 2-factor 
h main effects, i.e, no l = 2-way 

 

order less than R - l. In the current example, R is equal to 3. Here, no l = 1-wa
interactions (i.e., main effects) are confounded with any other interaction of order 
ess than R - l = 3 -1 = 2. Thus, main effects in this design are unconfounded with
each other, but are confounded with two-factor interactions; and consequently, 
with other higher-order interactions. One obvious, but nevertheless very 
important overall design criterion is that the higher-order interactions to be
as generators should be chosen such that the resolution of the design is
as possible.  
The maximum unconfounding design criterion. Maximizing the resolution of a 
design, however, does not by itself ensure that the selected generators produce 
the "best" design. Consider, for example, two different resolution IV designs. In 
both designs, main effects would be unconfounded with each othe
interactions would be unconfounded wit
interactions are confounded with any other interaction of order less than R - l = 4
- 2 = 2. The two designs might be different, however, with regard to the degree of 



confounding for the 2-factor interactions. For resolution IV designs, the "crucial 
order," in which confounding of effects first appears, is for 2-factor interactions. I
one design, n

n 
one of the "crucial order," 2-factor interactions might be 

arely resolution IV" design. This suggests that even 
though the maximum resolution design criterion should be the primary criterion, a 
subsidiary criterion might be that generators should be chosen such that the 
maximum number of interactions of less than or equal to the crucial order, given 
the resolution, are unconfounded with all other interactions of the crucial order. 
This is called the maximum unconfounding design criterion, and is one of the 
optional, subsidiary design criterion to use in a search for a 2**(k-p) design.  
The minimum aberration design criterion. The miniminum aberration design 
criterion is another optional, subsidiary criterion to use in a search for a 2**(k-p) 

g 

, the criterion apparently operates by choosing generators that 
founded interactions of the crucial 

 

 
e 

 

unconfounded with all other 2-factor interactions, while in the other design, 
virtually all of the 2-factor interactions might be unconfounded with all of the other 
2-factor interactions. The second "almost resolution V" design would be 
preferable to the first "just b

design. In some respects, this criterion is similar to the maximum unconfoundin
design criterion. Technically, the minimum aberration design is defined as the 
design of maximum resolution "which minimizes the number of words in the 
defining relation that are of minimum length" (Fries & Hunter, 1980). Less 
technically
produce the smallest number of pairs of con
order. For example, the minimum aberration resolution IV design would have the
minimum number of pairs of confounded 2-factor interactions.  
To illustrate the difference between the maximum unconfounding and minimum
aberration criteria, consider the maximally unconfounded 2**(9-4) design and th
minimum aberration 2**(9-4) design, as for example, listed in Box, Hunter, and
Hunter (1978). If you compare these two designs, you will find that in the 
maximally unconfounded design, 15 of the 36 2-factor interactions are 
unconfounded with any other 2-factor interactions, while in the minimum 
aberration design, only 8 of the 36 2-factor interactions are unconfounded with 

http://www.statsoft.com/textbook/stanman.html


any other 2-factor interactions. The minimum aberration design, however, 
produces 18 pairs of confounded interactions, while the maximally unconfounded 

ortunately, the choice of whether to use the maximum unconfounding criterion 
r the minimum aberration criterion makes no difference in the design which is 

 
un, & Wu, 1993). For designs with more than 11 factors, the two 
ad to the selection of very different designs, and for lack of better 

 

 

f 
. Things to consider in designing any 2**(k-p) 

into 
her the number of runs will allow a design of the required resolution 

design produces 21 pairs of confounded interactions. So, the two criteria lead to 
the selection of generators producing different "best" designs.  
F
o
selected (except for, perhaps, relabeling of the factors) when there are 11 or 
fewer factors, with the single exception of the 2**(9-4) design described above
(see Chen, S
criteria can le
advice, we suggest using both criteria, comparing the designs that are produced,
and choosing the design that best suits your needs. We will add, editorially, that 
maximizing the number of totally unconfounded effects often makes more sense
than minimizing the number of pairs of confounded effects.  

Summary  

2**(k-p) fractional factorial designs are probably the most frequently used type o
design in industrial experimentation
fractional factorial experiment include the number of factors to be investigated, 
the number of experimental runs, and whether there will be blocks of 
experimental runs. Beyond these basic considerations, one should also take 
account whet
and degree of confounding for the crucial order of interactions, given the 
resolution.  
 
 

 
l 

iable 

3**(k-p), Box-Behnken, and Mixed 2 and 3 Level Factoria
Designs  

Overview  
In some cases, factors that have more than 2 levels have to be examined. For 
example, if one suspects that the effect of the factors on the dependent var



of interest is not simply linear, then, as discussed earlier (see 2**(k-p) designs), 
one needs at least 3 levels in order to test for the linear and quadratic effects 
(and interactions) for those factors. Also, sometimes some factors may be 
categorical in nature, with more than 2 categories. For example, you may ha
three different machines that produce a particular part.  

Designing 3**(k-p) Experiments  
The general mechanism of generating fract

ve 

ional factorial designs at 3 levels 
ilar to that described in the context of 2**(k-p) (3**(k-p) designs) is very sim

designs. Specifically, one starts with a full factorial design, and then uses the 
interactions of the full design to construct "new" factors (or blocks) by making 
their factor levels identical to those for the respective interaction terms (i.e., by 
making the new factors aliases of the respective interactions).  
For example, consider the following simple 3**(3-1) factorial design:  

) a onal factorial 
9 runs 

3**(3-1
design, 

 fr
1 bl

cti
ock , 

Standard 
Run 

  
A 

 
B 

  
C 

1
2
3

 
 
 

0 
0 
0 

0 
1 
2 

0 
2 
1 

4 
5 
6 
7 
8 
9 

1 
1 
1 
2 
2 
2 

0 
1 
2 
0 
1 
2 

2 
1 
0 
1 
0 
2 

As in the case of 2**(k-p) designs, the design is constructed by starting with the 
full 3-1=2 factorial design; those factors are listed in the first two columns (factors
A and B). Factor C is constructed

 
 from the interaction AB of the first two factors. 

 
ple, 

Specifically, the values for factor C are computed as  
C = 3 - mod3 (A+B)  
Here, mod3(x) stands for the so-called modulo-3 operator, which will first find a 
number y that is less than or equal to x, and that is evenly divisible by 3, and then
compute the difference (remainder) between number y and x. For exam
mod3(0) is equal to 0, mod3(1) is equal to 1, mod3(3) is equal to 0, mod3(5) is 



equal to 2 (3 is the largest number that is less than or equal to 5, and that is 
evenly divisible by 3; finally, 5-3=2), and so on.  
Fundamental identity. If you apply this function to the sum of columns A and B 

 third column C. Similar to the case of 2**(k-p) 
e 2**(k-p) designs

shown
design

 ab
s (

ove, you will obtain the
se  for a discussion of the fundamental identity in the 

context of 2**(k-p) designs), this confounding of interactions with "new" main 

 (A+B+C)  

4 factors 

effects can be summarized in an expression:  
0 = mod3

If you look back at the 3**(3-1) design shown earlier, you will see that, indeed, if 
you add the numbers in the three columns they will all sum to either 0, 3, or 6, 
that is, values that are evenly divisible by 3 (and hence: mod (A+B+C)=0). Thus, 3

one could write as a shortcut notation ABC=0, in order to summarize the 
confounding of factors in the fractional 3**(k-p) design.  
Some of the designs will have fundamental identities that contain the number 2 
as a multiplier; e.g.,  
0 = mod3 (B+C*2+D+E*2+F)  
This notation can be interpreted exactly as before, that is, the modulo3 of the sum 
B+2*C+D+2*E+F must be equal to 0. The next example shows such an identity.  

An Example 3**(4-1) Design in 9 Blocks  
Here is the summary for a 4-factor 3-level fractional factorial design in 9 blocks, 
that requires only 27 runs.  
SUMMARY: 3**(4-1) fractional factorial 
Design generators: ABCD 
Block generators: AB,AC2 
Number of factors (independent variables): 4 
Number of runs (cases, experiments): 27 
Number of blocks: 9 
This design will allow you to test for linear and quadratic main effects for 
in 27 observations, which can be gathered in 9 blocks of 3 observations each. 
The fundamental identity or design generator for the design is ABCD, thus the 



modulo3 of the sum of the factor levels across the four factors is equal to 0. T
fundamental identity also allows you to determine the confounding of factors 
nteractions

he 
and 

i  in the design (see McLean and Anderson, 1984, for details).
Unconfounded Effects (experi3.sta) 

  

List of uncorrelated factors and interactions 
3**(4-1) fractional factorial design, 9 blocks, 27 runs

EXPERIM. 
DESIGN 

Unconf. Effects 
(excl. blocks) 

Unconfounded if 
blocks included? 

1 (1)A     (L) Yes
2 
3 
4 
5 
6 
7 
8 

     A    (Q) 
(2)B     (L) 
     B    (Q) 
(3)C     (L) 
     C    (Q) 
(4)D     (L) 
     D    (Q) 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

 

As you can see, in this 3**(4-1) design the main effects are not confounded with 

igns  
) designs, Plackett and Burman (1946) developed highly 

ntal runs. The equivalent in the case of 3**(k-p) designs 
are the so-called Box-Behnken designs (Box and Behnken, 1960; see also Box 
and Draper, 1984). These designs do not have simple design generators (they 
are constructed by combining two-level factorial designs with incomplete block 
designs), and have complex confounding of interaction. However, the designs 
are economical and therefore particularly useful when it is expensive to perform 
the necessary experimental runs.  

Analyzing the 3**(k-p) Design  

each other, even when the experiment is run in 9 blocks.  

Box-Behnken Des
In the case of 2**(k-p
fractionalized designs to screen the maximum number of (main) effects in the 
least number of experime

The analysis of these types of designs proceeds basically in the same way as 
was described in the context of 2**(k-p) designs. However, for each effect, one 
can now test for the linear effect and the quadratic (non-linear effect). For 
example, when studying the yield of chemical process, then temperature may b
related in a non-linear fashion, 

e 
that is, the maximum yield may be attained when 



the temperature is set at the medium level. Thus, non-linearity often occurs whe
a process performs near its optimum.  

ANOVA Parameter Estimates  
To estimate the ANOVA parameters, the factors levels for the factors in the 
analysis are internally recoded so that one can test the linear and q

n 

uadratic 
components in the relationship between the factors and the dependent variable. 

0 

be 

Thus, regardless of the original metric of factor settings (e.g., 100 degrees C, 11
degrees C, 120 degrees C), you can always recode those values to -1, 0, and +1 
to perform the computations. The resultant ANOVA parameter estimates can 
interpreted analogously to the parameter estimates for 2**(k-p) designs.  
For example, consider the following ANOVA results:  
Factor Effect Std.Err. t (69) p 
Mean/Interc. 
BLOCKS(1) 
BLOCKS(2) 
(1)TEMPERAT (L) 
TEMPERAT     (Q) 
(2)TIME (L) 
TIME     (Q) 
(3)SPEED (L) 
SPEED     (Q) 

103.6942 
.8028 

-1.2307 
-.3245 
-.5111 
.0017 
.0045 

-10.3073 
-3.7915 

.390591
1.360542
1.291511
.977778
.809946
.977778
.809946
.977778
.809946

265.4805
.5901

-.9529
-.3319
-.6311
.0018
.0056

-10.5415
-4.6812

0.000000
.557055
.343952
.740991
.530091
.998589
.995541
.000000
.000014

     by 2
     by 2Q

 
 

3.9256 
.4384 
.4747 

-2.7499 

1.540235
1.371941
1.371941
.995575

2.5487
.3195
.3460

-2.7621

.013041

.750297

.730403

.007353

 1L
 1L

L 
 

     1Q b
     1Q b

y 2L
y 2Q

Main-
(mark
betwe
factors

e ct imates. By default, the Effect estimate for the linear effects 
e  L next to the factor name) can be interpreted as the difference 
e the ge response at the low and high settings for the respective 

he timate for the quadratic (non-linear) effect (marked by the Q next 
 the factor name) can be interpreted as the difference between the average 
sponse at the center (medium) settings and the combined high and low 

I
l e difference between the 
linear main effect of one factor at the high and low settings of another. 
Analogously, the interactions

ffe
d by t
n 
. T

est
he
 avera
 es

to
re
settings for the respective factors.  
nteraction effect estimates. As in the case of 2**(k-p) designs, the linear-by-
inear interaction effect can be interpreted as half th

 by the quadratic components can be interpreted as 



half the difference between the quadratic main effect of one factor at the 
respective settings of another; that is, either the high or low setting (quadratic by 
linear interaction), or the medium or high and low settings combined (quadratic 
by quadratic interaction).  
In practice, and from the standpoint of "interpretability of results," one would 
usually try to avoid quadratic interactions. For example, a quadratic-by-quadratic 
A-by-B interaction indicates that the non- linear effect of factor A is modified in a 
nonlinear fashion by the setting of B. This means that there is a fairly complex 

rforming 
n log transformation) of the 

 
o e

 

The same diagnostic plots (e.g., of residuals) are available for 3**(k-p) designs 

interaction between factors present in the data that will make it difficult to 
understand and optimize the respective process. Sometimes, pe

onlinear transformations (e.g., performing a 
dependent variable values can remedy the problem.  
Centered and non-centered polynomials. As mentioned above, the interpretation

f the eff ct estimates applies only when you use the default parameterization of 
the model. In that case, you would code the quadratic factor interactions so that
they become maximally "untangled" from the linear main effects.  

Graphical Presentation of Results  

as were described in the context of 2**(k-p) designs. Thus, before interpreting t
final results, one should always 

he 
first look at the distribution of the residuals for the 

 
uted.  

Pl volves categorical factors (e.g., type of 
e, specific operator of machine, and some distinct setting of the machine), 

final fitted model. The ANOVA assumes that the residuals (errors) are normally
distrib

ot of means. When an interaction in
machin
then the best way to understand interactions is
interaction plot of means.  

 to look at the respective 



 
Surface plot. When the factors in an interaction are contin
may want to look at the surface plot that shows the response surface
the fitted model. Note that this graph also contains the pred

uous in nature, you 
 applied by 

iction equation (in 
ors), that produces the respective response 

cifically, 

 

e not necessarily orthogonal with respect to all main effects. This 
eral algorithm

terms of the original metric of fact
surface.  

Designs for Factors at 2 and 3 Levels  
You can also generate standard designs with 2 and 3 level factors. Spe
you can generate the standard designs as enumerated by Connor and Young for 
the US National Bureau of Standards (see McLean and Anderson, 1984). The
technical details of the method used to generate these designs are beyond the 
scope of this introduction. However, in general the technique is, in a sense, a 
combination of the procedures described in the context of 2**(k-p) and 3**(k-p) 
designs. It should be noted however, that, while all of these designs are very 
efficient, they ar
is, however, not a problem, if one uses a gen  for estimating the 

he same lines as 

ANOVA parameters and sums of squares, that does not require orthogonality of 
the design.  
The design and analysis of these experiments proceeds along t
discussed in the context of 2**(k-p) a d 3**(k- ) expen p riments.  

 
 

 



Central Composite and Non-Factorial Response Surface 
Designs  

Overview  
The 2**(k-p) and 3**(k-p) designs all require that the levels of the factors are set 
at, for example, 2 or 3 levels. In many instances, such designs are not feasible, 
because, for example, some factor combinations are constrained in some way 
(e.g., factors A and B cannot be set at their high levels simultaneously). Also, for 
reasons related to efficiency, which will be discussed shortly, it is often desirable 
to explore the experimental region of interest at particular points that cannot be 
represented by a factorial design.  
The designs (and how to analyze them) discussed in this section all pertain to the 

s, following the general model equation:  

dent 
at include (1) main effects for factors x1 , ..., xk, (2) their interactions 

(x *x2, x1*x3, ... ,xk-1*xk), and (3) their quadratic components (x1**2, ..., xk**2). No 

There are some considerations concerning design efficiency and biases, which 
have led to standard designs that are ordinarily used when attempting to fit these 
response surfaces, and those standard designs will be discussed shortly (e.g., 
see Box, Hunter, and Hunter, 1978; Box and Draper, 1987; Khuri and Cornell, 
1987; Mason, Gunst, and Hess, 1989; Montgomery, 1991). But, as will be 
discussed later, in the context of constrained surface designs

estimation (fitting) of response surface
y = b0 +b1 *x1 +...+bk *xk + b12 *x1 *x2 +b13 *x1 *x3 +...+bk-1,k *xk-1 *xk + b11 *x1² 
+...+bkk *xk²  
Put into words, one is fitting a model to the observed values of the depen
variable y, th

1

assumptions are made concerning the "levels" of the factors, and you can 
analyze any set of continuous values for the factors.  

 and D- and A-
optimal designs, these standard designs can sometimes not be used for practical 
reasons. However, the central composite design analysis options do not make 
any assumptions about the structure of your data file, that is, the number of 
distinct factor values, or their combinations across the runs of the experiment, 



and, hence, these options can be used to analyze any type of design, to fit to the 
ata the general model described above.  

Design Considerations  

Orthogon

d

al designs. One desirable characteristic of any design is that the main 
ffect and interaction estimates of interest are independent of each other. For 
xample, suppose you had a two- factor experiments, with both factors at two 

f four runs:  

e
e
levels. Your design consists o

  A B 
Run 1 1 1 
Run 2 
Run 3 
Run 4 

1 
-1 
-1 

1 
-1 
-1 

 
 
For the first two runs, both factors A and B are set at their high levels (+1). In the 
last two runs, both are set at their low levels (-1). Suppose you wanted to 
estimate the independent contributions of factors A and B to the prediction of th
dependent variable of interest. Clearly this is a silly design, because there is no
way to estimate the A main effect and the B main effect. One can only estima
one effect -- the difference between Runs 1+2 vs. Runs 3+4 -- which represents
the combined effect of A and B.  
The point here

e 
 

te 
 

 is that, in order to assess the independent contributions of the two 
 the 

matrix (with as many columns as there are main effect and interaction 
one wants to estimate) should be orthogonal (this term was first 

used by Yates, 1933). For example, if the four runs in the design are arranged as 
fo s

  A B 

factors, the factor levels in the four runs must be set so that the "columns" in
design (under A and B in the illustration above) are independent of each other. 
Another way to express this requirement is to say that the columns of the design 

parameters that 

llow :  

Run 1 
Run 2 

1 
1 

1 
-1 

Run 3 -1 1 



Run 4 -1 -1 

 

then the A and B columns are orthogonal. Now you can estimate the A main 
effect by c

 

omparing the high level for A within each level of B, with the low level 
me way.  

ften 
 some runs or 

other constraints, where the columns of the design matrix are not completely 
orthogonal. In general, the rule here is that the more orthogonal the columns are, 

 for choosing standard central composite designs is to find designs 

nt, in 
d) 

x and 
4; see also Deming and Morgan, 1993, Chapter 13), it 

e 

ints, and their covariance over the runs. (Note that it is 

for A within each level of B; the B main effect can be estimated in the sa
Technically, two columns in a design matrix are orthogonal if the sum of the 
products of their elements within each row is equal to zero. In practice, one o
encounters situations, for example due to loss of some data in

the better the design, that is, the more independent information can be extracted 
from the design regarding the respective effects of interest. Therefore, one 
consideration
that are orthogonal or near-orthogonal.  
Rotatable designs. The second consideration is related to the first requireme
that it also has to do with how best to extract the maximum amount of (unbiase
information from the design, or specifically, from the experimental region of 
interest. Without going into details (see Box, Hunter, and Hunter, 1978; Bo
Draper, 1987, Chapters 1
can be shown that the standard error for the prediction of dependent variable 
values is proportional to:  
(1 + f(x)' * (X'X)¨¹ * f(x))**½  
where f(x) stands for the (coded) factor effects for the respective model (f(x) is a 
vector, f(x)' is the transpose of that vector), and X is the design matrix for the 
experiment, that is, the matrix of coded factor effects for all runs; X'X**-1 is th
inverse of the crossproduct matrix. Deming and Morgan (1993) refer to this 
expression as the normalized uncertainty; this function is also related to the 
variance function as defined by Box and Draper (1987). The amount of 
uncertainty in the prediction of dependent variable values depends on the 
variability of the design po



in
th

versely proportional to the determinant of X'X; this issue is further discussed in 
e section on D- and A-optimal designs).  

ts the 
e least amount 

y for the prediction of future values. It follows, that the amount of 
3) 

ee 

The point here is that, again, one would like to choose a design that extrac
most information regarding the dependent variable, and leaves th
of uncertaint
information (or normalized information according to Deming and Morgan, 199
is the inverse of the normalized uncertainty.  
For the simple 4-run orthogonal experiment shown earlier, the information 
function is equal to  
Ix = 4/(1 + x1² + x2²)  
where x1 and x2 stand for the factor settings for factors A and B, respectively (s
Box and Draper, 1987).  

 
Ins hows that it is constant on 
circ ny kind of rotation of the original design 

n 

hip between a factor and the dependent 
 

pection of this function in a plot (see above) s
les centered at the origin. Thus a

points will generate the same amount of information, that is, generate the same 
information function. Therefore, the 2-by-2 orthogonal design in 4 runs show
earlier is said to be rotatable.  
As pointed out before, in order to estimate the second order, quadratic, or non-
linear component of the relations
variable, one needs at least 3 levels for the respective factors. What does the
information function look like for a simple 3-by-3 factorial design, for the second-
order quadratic model as shown at the beginning of this section?  



 
As it turns out (see Box and Draper, 1987 and Montgomery, 1991; refer als
the manual), this function looks more complex, contains "pockets" of high-den
information at the edges (which are probably of little particular interest to the
experimenter), and clearly it is not constant on circles around the origin. 
Therefore, it is not rotatable, meaning different rotations of the design points w
extract different amounts of information from the experimental region.  
Star-points and rotatable second-order designs. It can be shown that by addin
so-called star- points to the simple (square or cube) 2-level factorial design 

oints, one can achieve rotatable, and often orthogonal or nearly orthogonal 
designs. For example, adding to the simple 2-by-2 orthogonal design shown 

o to 
sity 

 

ill 

g 

p

earlier the following points, will produce a rotatable design.  
  A B 

Run 1 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 
Run 7 
Run 8 
Run 9 
Run 10 

 1 
 1 
-1 
-1 
-1.414 
 1.414 
 0 
 0 
 0 
 0 

 1 
-1 
 1 
-1 
 0 
 0 
-1.414 
 1.414 
 0 
 0 

 
 
The first four runs in this design are the previous 2-by-2 factorial design points (or 
square points or cube points); runs 5 through 8 are the so-called star points or 
axial points, and runs 9 and 10 are center points.  



 
he information function for this design for the second-order (quT adratic) model is 

the circles around the origin.  

 -- 
l 

rotatable, that is, it is constant on 

Alpha for Rotatability and Orthogonality  
The two design characteristics discussed so far -- orthogonality and rotatability
depend on the number of center points in the design and on the so-called axia
distance  (alpha), which is the distance of the star points from the center of the 

, design (i.e., 1.414 in the design shown above). It can be shown (e.g., see Box
Hunter, and Hunter, 1978; Box and Draper, 1987, Khuri and Cornell, 1987; 
Montgomery, 1991) that a design is rotatable if:  

= ( nc )¼  
where nc stands for the number of cube points in the design (i.e., points in th
factorial portion of the design).  
A central composite design is orthogonal, if one chooses the axial distance so 
that:  

e 

= {[( nc + ns + n0 )½ - nc½]² * nc/4}¼  
where 
nc  is the number of cube points in the design 
ns  is the number of star points in the design 
n0  is the number of center points in the design 
T ld first 

n0

o make a design both (approximately) orthogonal and rotatable, one wou
choose the axial distance for rotatability, and then add center points (see Kkuri 
and Cornell, 1987), so that:  

 4*nc½ + 4 - 2k  



where k stands for the number of factors in the design.  
Finally, if blocking is involved, Box and Draper (1987) give the following formula 
for computing the axial distance to achieve orthogonal blocking, and in most 
cases also reasonable information function contours, that is, contours that are 
close to spherical:  

= [k*(l+ns0/ns)/(1+nc0/nc)]½  

) 
e portion of the design, which is augmented with center points 

 
ally of resolution

where 
ns0  is the number of center points in the star portion of the design 
ns   is the number of non-center star points in the design 
nc0  is the number of center points in the cube portion of the design 
nc   is the number of non-center cube points in the design 

Available Standard Designs  
The standard central composite designs are usually constructed from a 2**(k-p
design for the cub
and star points. Box and Draper (1987) list a number of such designs.  
Small composite designs. In the standard designs, the cube portion of the design
is typic  V (or higher). This is, however, not necessary, and in 

ary to 
se 

ructed 

cases when the experimental runs are expensive, or when it is not necess
perform a statistically powerful test of model adequacy, then one could choo
for the cube portion designs of resolution III. For example, it could be const
from highly fractionalized Plackett-Burman designs. Hartley (1959) describe
such designs.  

Analyzing Central Composite Designs  
The analysis of central composite designs proceeds in much the same way as fo
the analysis of 

d 

r 
3**(k-p) designs. You fit to the data the general model describ

above; for example, for two variables you would fit the model:  
y = b

ed 

0 + b1*x1 + b2*x2 + b12*x1*x2 + b11*x12 + b22*x22  

The Fitted Response Surface  



The shape of the fitted overall response can best be summarized in graphs and 
you can generate both contour plots and response surface plots (see examples 
below) for the fitted model.  

 
Categorized Response Surfaces  
You can fit 3D surfaces to your data, categorized by some other variable. For 

n 4 times, it may be example, if you replicated a standard central composite desig
very informative to see how similar the surfaces are when fitted to each 
replication.  

 
This would give you a graphical indication of the reliability of the results and 

here (e.g., in which region of the surface) deviations occur. w



 
Clearly, the third replication produced a different surface. In replications 1, 2, and 
4, the fitted surfaces are very similar to each other. Thus, one should investigat
what could have caused this noticeable difference in the third replication of the 
design.  

e 

 
 

 
Latin Square Designs  

Overview  
Latin square designs (the term Latin square was first used by Euler, 1782) are
used when the factors of interest h

 
ave more than two levels and you know ahead 

of time that there are no (or only negligible) interactions between factors. For 
example, if you wanted to examine the effect of 4 fuel additives on reduction in 
oxides of nitrogen and had 4 cars and 4 drivers at your disposal, then you could 

 

 

of course run a full 4 x 4 x 4 factorial design, resulting in 64 experimental runs. 
However, you are not really interested in any (minor) interactions between the 
fuel additives and drivers, fuel additives and cars, or cars and drivers. You are
mostly interested in estimating main effects, in particular the one for the fuel 
additives factor. At the same time, you want to make sure that the main effects



for drivers and cars do not affect (bias) your estimate of the main effect for the 
fuel additive.  
If you labeled the additives with the letters A, B, C, and D, the Latin square
design that would allow you to derive unconfounded main effects estimates co
be summarized as follows (see also Box, Hunter, and Hunter, 1978, page

  Car 

 
uld 

 263):  

Driver 1 2 3 4 
1 A B D C 
2 
3 
4 

D 
B 
C 

C 
D 
A 

A 
C 
B 

B 
A 
D 

 

Latin Square Designs  
The example shown above is actually only one of the three possible 
arrangements in effect estimates. These "arrangements" are also called Latin 

y 

s first 

square. The example above constitutes a 4 x 4 Latin square; and rather than 
requiring the 64 runs of the complete factorial, you can complete the study in onl
16 runs.  
Greco-Latin square. A nice feature of Latin Squares is that they can be 
superimposed to form what are called Greco-Latin squares (this term wa
used by Fisher and Yates, 1934). For example, the following two 3 x 3 Latin 
squares can be superimposed to form a Greco-Latin square:  

 
In the resultant Greco-Latin square design, you can evaluate the main effects of 

ur 3-level factors (row factor, column factor, Roman letters, Greek letters) in 
nly 9 runs.  

Hyper-Greco Latin square. For some numbers of levels, there are more than two 
re three possible 

s for 4-level Latin squares. If all three of them are superimposed, 

fo
o

possible Latin square arrangements. For example, there a
arrangement
you get a Hyper-Greco Latin square design. In that design you can estimate the 
main effects of all five 4-level factors with only 16 runs in the experiment.  



Analyzing the Design  
Analyzing Latin square designs is straightforward. Also, plots of means can be
produced to aid in the interpretation of results.  

Very Large Designs, Random Effects, Unbalanced Nesting  

Note that there are several other statistical methods that can also analyze th
types of designs; see the section on 

 

ese 
rianceMethods for Analysis of Va  for details. 

mponents and Mixed Model ANOVA/ANCOVAIn particular the Variance Co  
d 

 

ctors

chapter discusses very efficient methods for analyzing designs with unbalance
nesting (when the nested factors have different numbers of levels within the
levels of the factors in which they are nested), very large nested designs (e.g., 
with more than 200 levels overall), or hierarchically nested designs (with or 
without random fa ).  
 
 

 
a u hi Methods: Robust Design Experiments  

v   

Applications. Taguchi methods have become increasingly popular in recent 
 of sizable quality improvements that resulted 

mentations of these methods (see, for example, Phadke, 1989; Noori, 

methods are becoming more widely known, critical appraisals are also beginning 

T
Ov

g
er

c
iew

years. The documented examples
from imple
1989) have added to the curiosity among American manufacturers. In fact, some 
of the leading manufacturers in this country have begun to use these methods 
with usually great success. For example, AT&T is using these methods in the 
manufacture of very large scale integrated (VLSI) circuits; also, Ford Motor 
Company has gained significant quality improvements due to these methods 
(American Supplier Institute, 1984 to 1988). However, as the details of these 

to appear (for example, Bhote, 1988; Tribus and Szonyi, 1989).  



Overview. Taguchi robust design methods are set apart from traditional quality 
control procedures (see Quality Control and Process Analysis) and industrial 
experimentation in various respects. Of particular importance are:  

1. The concept of quality loss functions,  
2. The use of signal-to-noise (S/N) ratios, and  
3. The use of orthogonal arrays.  

These basic aspects of robust design methods will be discussed in the following sections. 
Several books have recently been published on these methods, for example, Peace 

a ).  

q ple definition of what constitutes quality; 
e middle of a busy intersection -- putting 

is not of high quality. 

de 

cific ideal point 
of highest quality; for example, a perfect car with no quality problems. It is 

 tolerances you do not have a problem. Put 
oss is zero; once you move 

, 

(1993), Phadke (1989), Ross (1988), and Roy (1990), to name a few, and it is 
recommended that you refer to those books for further specialized discussions. 
Introductory overviews of Taguchi's ideas about quality and quality improvement can 
lso be found in Barker (1986), Garvin (1987), Kackar (1986), and Noori (1989

Quality and Loss Functions  

What is quality. Taguchi's analysis begins with the question of how to define 
uality. It is not easy to formulate a sim

however, when your new car stalls in th
yourself and other motorists at risk -- you know that your car 
Put another way, the definition of the inverse of quality is rather straightforward: it 
is the total loss to you and society due to functional variations and harmful si
effects associated with the respective product. Thus, as an operational definition, 
you can measure quality in terms of this loss, and the greater the quality loss the 
lower the quality.  
Discontinuous (step-shaped) loss function. You can formulate hypotheses about 
the general nature and shape of the loss function. Assume a spe

customary in statistical process control (SPC; see also Process Analysis) to 
define tolerances around the nominal ideal point of the production process. 
According to the traditional view implied by common SPC methods, as long as 
you are within the manufacturing
another way, within the tolerance limits the quality l
outside the tolerances, the quality loss is declared to be unacceptable. Thus
according to traditional views, the quality loss function is a discontinuous step 



function: as long as you are within the tolerance limits, quality loss is negligible; 
when you step outside those tolerances, quality loss becomes unacceptable.  

quality loss? Return to the "perfect automobile" example. Is there 
car that, within one year after purchase, has nothing 

 and 

an be. The point here is that it is not realistic 
sume that, as you move away from the nominal specification in your 

 the quality loss is zero as long as you stay within the set 
r 

t a 
s, but rather a quadratic 

e in your new car is annoying, but you 

 loss is a quadratic function of 
the deviation from a nominal value, then the goal of your quality improvement 

ize the squared deviations or variance of the product 
around nominal (ideal) specifications, rather than the number of units within 

s).  

Signal-to-Noise (S/N) Ratios  

ss 
function is probably quadratic in nature, you still do not know precisely how to 

n.  
quality should always 

ls provided by the user. When 

Quadratic loss function. Is the step function implied by common SPC methods a 
good model of 
a difference between a 
wrong with it, and a car where minor rattles develop, a few fixtures fall off,
the clock in the dashboard breaks (all in-warranty repairs, mind you...)? If you 
ever bought a new car of the latter kind, you know very well how annoying those 
admittedly minor quality problems c
to as
production process,
tolerance limits. Rather, if you are not exactly "on target," then loss will result, fo
example in terms of customer satisfaction. Moreover, this loss is probably no
linear function of the deviation from nominal specification
function (inverted U). A rattle in one plac
would probably not get too upset about it; add two more rattles, and you might 
declare the car "junk." Gradual deviations from the nominal specifications do not 
produce proportional increments in loss, but rather squared increments.  
Conclusion: Controlling variability. If, in fact, quality

efforts should be to minim

specification limits (as is done in traditional SPC procedure

Measuring quality loss. Even though you have concluded that the quality lo

measure quality loss. However, you know that whatever measure you decide 
upon should reflect the quadratic nature of the functio
Signal, noise, and control factors. The product of ideal 
respond in exactly the same manner to the signa



you turn the key in the ignition of your car you expect that the starter motor turns 
and the engine starts. In the ideal-quality car, the starting process would alw
proceed in exactly the same manner -- for example, after three turns of the 
starter motor the engine comes to life. If, in response to the same signal 

ays 

(turning 
ss 

e 
engine may sometimes start only after 

p
mance in response to noise factors while 

zing the variability in response to signal factors.  
actors are those that are not under the control of the operator of a 
t. In the car example, those factors include temperature changes, different 
s of gasoline, engine wear, etc. Signal factors are those factors that are 

et or controlled by the operator of the product to make use of its intended 
nctions (turning the ignition key to start the car).  

 the best settings of 
factors under your control that are involved in the production process, in order to 
maximize the S/N ratio; thus, the factors in the experiment represent control 

t s
. The conclusion of the previous paragraph is that quality can be 

tive product's response to noise factors and 
ors. The ideal product will only respond to the operator's signals and 
ffected by random noise factors (weather, temperature, humidity, etc.). 

herefore, the goal of your quality improvement effort can be stated as 
ttempting to maximize the signal-to-noise (S/N) ratio for the respective product. 

the ignition key) there is random variability in this process, then you have le
than ideal quality. For example, due to such uncontrollable factors as extrem
cold, humidity, engine wear, etc. the 
turning over 20 times and finally not start at all. This example illustrates the key 

rinciple in measuring quality according to Taguchi: You want to minimize the 
variability in the product's perfor
maximi
N
pro
qu

ois
d

ali

e f
uc
tie

s
fu
Finally, the goal of your quality improvement effort is to find

fac
S/N
quantified in terms of the respec
sign
will

or
 ra

al
 be

.  
tios

 fact
 una

T
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The S/N ratios described in the following paragraphs have been proposed by 
Taguchi (1987).  



Smaller-the-better. In cases where you want to minimize the occurrences of 
some undesirable product characteristics, you would compute the following S/N 

o

10 [(1/n) * 
rati :  
Eta = -10 * log (yi2)]     for i = 1 to no. vars     see outer arrays  

 is the resultant S/N ratio; n is the number of observations on the 
t product, and y is the respective characteristic. For example, the 

 flaws in the paint on an automobile could be measured as the y 
ariable and analyzed via this S/N ratio. The effect of the signal factors is zero, 
ince zero flaws is the only intended or desired state of the paint on the car. Note 

 

uared 
r  flaws, and the smaller (i.e., more negative) the S/N ratio. Thus, 

 this ratio will increase quality.  
e-best. Here, you have a fixed signal value (nominal value), and the 

ariance around this value can be considered the result of noise factors:  
ta = 10 * log10 (Mean2/Variance)  

 

e to specification as possible to ensure high quality.  

Here, 
par
num

Eta
lar 
r of

icu
be

v
s
how this S/N ratio is an expression of the assumed quadratic nature of the loss
function. The factor 10 ensures that this ratio measures the inverse of "bad 
quality;" the more flaws in the paint, the greater is the sum of the sq
numbe  of
max
Nom

imi
ina

zing
l-th

v
E
This signal-to-noise ratio could be used whenever ideal quality is equated with a
particular nominal value. For example, the size of piston rings for an automobile 
engine must be as clos
Larger-the-better. Examples of this type of engineering problem are fuel 
economy (miles per gallon) of an automobile, strength of concrete, resistance of 
shielding materials, etc. The following S/N ratio should be used:  
Eta = -10 * log10 [(1/n) * (1/yi2)]     for i = 1 to no. vars     see outer arrays  
Signed target. This type of S/N ratio is appropriate when the quality characteristic 
of interest has an ideal value of 0 (zero), and both positive and negative values 
the quality characteristic may occur. For example, the dc offset voltage of a 
differential operational amplifier may be positive or negative (see Phadke, 1989). 
The following S/N ratio should be used for thes

of 

e types of problems:  
Eta = -10 * log10(s2)     for i = 1 to no. vars     see outer arrays



where s2 stands for the variance of the quality characteristic across the measuremen
(variables).  
Fraction defective. This S/N ratio is useful for minimizing scrap, minimizing the 
percent of patients who

ts 

 develop side-effects to a drug, etc. Taguchi also refers to 
the resultant Eta values as Omegas; note that this S/N ratio is identical to the 
familiar logit transformation (see also Nonlinear Estimation):  
Eta = -10 * log10[p/(1-p)]  
where 
p is the proportion defective 

nt, good, 
case, you would attempt to maximize the 

tion 

ulated designs 
(arrays) that allow for the maximum number of main effects to be estimated in an 
unbiased (orthogonal) manner, with a minimum number of runs in the 
experiment. Latin square designs

Ordered categories (the accumulation analysis). In some cases, measurements 
on a quality characteristic can only be obtained in terms of categorical 
judgments. For example, consumers may rate a product as excelle
average, or below average. In that 
number of excellent or good ratings. Typically, the results of an accumula
analysis are summarized graphically in a stacked bar plot.  

Orthogonal Arrays  
The third aspect of Taguchi robust design methods is the one most similar to 
traditional techniques. Taguchi has developed a system of tab

, 2**(k-p) designs (Plackett-Burman designs, in 
particular), and Box-Behnken designs main are also aimed at accomplishing this 
goal. In fact, many of the standard orthogonal arrays tabulated by Taguchi are 
identical to fractional two-level factorials, Plackett-Burman designs, Box-Behnken 
designs, Latin square, Greco-Latin squares, etc.  

nalyses of robust design experiments amount to a standard ANOVA of the 
ay or higher-order interactions

Analyzing Designs  
Most a
respective S/N ratios, ignoring two-w . However, 
when estimating error variances, one customarily pools together main effects of 
negligible size.  



Analyzing S/N ratios in standard designs. It should be noted at this point that, of
course, all of the designs discussed up to this point (e.g., 

 
2**(k-p), 3**(k-p), mix

2 and 3 level factorials, 
ed 

Latin squares, central composite designs) can 
analyze S/N r

be used to 
atios that you computed. In fact, the many additional diagnostic 

atic 

e Eta 
/N ratio) 

Verific ediction purposes, you can compute the expected 
of settings of factors (ignoring factors 

that were pooled into the error term). These predicted S/N ratios can then be 
used in a verification experiment, where the engineer actually sets the machine 
accordingly and compares the resultant observed S/N ratio with the predicted 
S/ ratio om  ex im If major deviations occur, one must conclude that 

e simple main effect model is not appropriate.  
 those cases, Taguchi (1987) recommends transforming the dependent 

ditivity of factors, that is, to "make" the main effects 
also discusses in detail methods for 

 categorical data, ANOVA is not appropriate. Rather, you 
produce a cumulative rvations in a particular category. 
For e h lev roportion of the number of 
defectives. Thus, this graph provides valuable information concerning the 

ution o dif en c .  

y  
m e, w guc termine 

ol factors that can be set by the designer or engineer. Those 

plots and other options available for those designs (e.g., estimation of quadr
components, etc.) may prove very useful when analyzing the variability (S/N 
ratios) in the production process.  
Plot of means. A visual summary of the experiment is the plot of the averag
(S/N ratio) by factor levels. In this plot, the optimum setting (i.e., largest S
for each factor can easily be identified.  

ation experiments. For pr
S/N ratio given a user-defined combination 

N  fr  the per ent. 
th
In
variable to accomplish ad
model fit. Phadke (1989, Chapter 6) 
achieving additivity of factors.  

Accumulation Analysis  
When analyzing ordered

plot of the number of obse
ac el of each factor, you plot the cumulative p

distrib f the categorical counts across the fer t fa tor settings

Summar
To briefly su
the design or

mariz
 contr

hen using Ta hi methods you first need to de

http://www.statsoft.com/textbook/stmulreg.html
http://www.statsoft.com/textbook/stmulreg.html


a
d

re the factors in the experiment for which you will try different levels. Next, you 
ecide to select an appropriate orthogonal array for the experiment. Next, you 

 
tify 

need to decide on how to measure the quality characteristic of interest. 
Remember that most S/N ratios require that multiple measurements are taken in 
each run of the experiment; for example, the variability around the nominal value
cannot otherwise be assessed. Finally, you conduct the experiment and iden
the factors that most strongly affect the chosen S/N ratio, and you reset your 
machine or production process accordingly.  
 
 

 
Mixture Designs and Triangular Surfaces  

Overview  
S

r 
 

d 

re that 
can 
 

F

pecial issues arise when analyzing mixtures of components that must sum to a 
constant. For example, if you wanted to optimize the taste of a fruit-punch, 
consisting of the juices of 5 fruits, then the sum of the proportions of all juices in 
each mixture must be 100%. Thus, the task of optimizing mixtures commonly 
occurs in food-processing, refining, or the manufacturing of chemicals. A numbe
of designs have been developed to address specifically the analysis and
modeling of mixtures (see, for example, Cornell, 1990a, 1990b; Cornell an
Khuri, 1987; Deming and Morgan, 1993; Montgomery, 1991).  

Triangular Coordinates  

The common manner in which mixture proportions can be summarized is via 
triangular (ternary) graphs. For example, suppose you have a mixtu
consists of 3 components A, B, and C. Any mixture of the three components 
be summarized by a point in the triangular coordinate system defined by the
three variables.  

or example, take the following 6 different mixtures of the 3 components.  
A B C 

1 
0 

0 
1 

0 
0 

0 0 1 



0.5 
0.5 
 

0.5 
0 
0.5 

0 
0.5 
0.5 0

 
 

 is 1.0, so the values for the components in each 
 3D 

s 
to 

t values (proportions) for each mixture.  

The sum for each mixture
mixture can be interpreted as proportions. If you graph these data in a regular
scatterplot, it becomes apparent that the points form a triangle in the 3D space. 
Only the points inside the triangle where the sum of the component values i
equal to 1 are valid mixtures. Therefore, one can simply plot only the triangle 
summarize the componen

 
To read-off the coordinates of a point in the triangular graph, you would simply 
"drop" a line from each respective vertex to the side of the triangle below.  

 
At the vertex for the particular factor, there is a pure blend, that is, one that only 
contains the respective component. Thus, the coordinates for the vertex point is 

ever else the mixtures are scaled) for the respective 1 (or 100%, or how



component, and 0 (zero) for all other components. At the side opposite to th
respective vertex, the value for the respective component is 0 (zero), and .5 (or 
50%, etc.) for the other com

e 

ponents.  

Triangular Surfaces and Contours  
e 

pendent 
e that the 

ace from the triangular plane, 
or it can be indicated in a contour plot where the contours of constant height are 
plotted on the 2D triangle.  

One can now add to the triangle a fourth dimension, that is perpendicular to th
first three. Using that dimension, one could plot the values for a de
variable, or function (surface) that was fit to the dependent variable. Not
response surface can either be shown in 3D, where the predicted response 
(Taste rating) is indicated by the distance of the surf

 
It should be mentioned at this point that you can produce categorized ternary 
graphs. These are very useful, because they allow you to fit to a dependent 
variable (e.g., Taste) a response surface, for different levels of a fourth 
component.  

The Canonical Form of Mixture Polynomials  
Fitting a response surface to mixture data is, in principle, done in the same 
manner as fitting surfaces to, for example, data from central composite designs. 

ssue that mixture data are constrained, that is, the sum of 
all component values must be constant.  
However, there is the i

Consider the simple case of two factors A and B. One may want to fit the simple 
linear model:  



y = b0 + bA*xA + bB*xB  
Here y stands for the dependent variable values, bA and bB stand for the 
regression coefficients, xA and xB stand for the values of the factors. Suppose 

s 

that xA and xB must sum to 1; you can multiple b0 by 1=(xA + xB):  
y = (b0*xA + b0*xB) + bA*xA + bB*xB  
or:  
y = b'A*xA + b'B*xB  
where b'A = b0 + bA and b'B = b0 + bB. Thus, the estimation of this model come
down to fitting a no- intercept multiple regression model. (See also Multiple 
Regression, for details concerning multiple regression.)  

ommon Models for Mixture Data  
he quadratic and cubic model can be similarly simplified (as illustrated for the 

e customarily fit 
or those 

 Cornell, 1990, for additional details).  

3 + b123*x1*x2*x3  

+ 

 

igns are enhanced with additional interior points.  

C
T
simple linear model above), yielding four standard models that ar
to the mixture data. Here are the formulas for the 3-variable case f
models (see
Linear model: 
y = b1*x1 + b2*x2 + b3*x3  
Quadratic model: 
y = b1*x1 + b2*x2 + b3*x3 + b12*x1*x2 + b13*x1*x3 + b23*x2*x3  
Special cubic model: 
y = b1*x1 + b2*x2 + b3*x3 + b12*x1*x2 + b13*x1*x3 + b23*x2*x
Full cubic model: 
y = b1*x1 + b2*x2 + b3*x3 + b12*x1*x2 + b13*x1*x3 + b23*x2*x3 + d12*x1*x2*(x1 - x2) 
d13*x1*x3*(x1 - x3) + d23*x2*x3*(x2 - x3) + b123*x1*x2*x3  
(Note that the dij's are also parameters of the model.)  

Standard Designs for Mixture Experiments  
Two different types of standard designs are commonly used for experiments with
mixtures. Both of them will evaluate the triangular response surface at the 
vertices (i.e., the corners of the triangle) and the centroids (sides of the triangle). 
Sometimes, those des



Simplex-lattice designs. In this arrangement of design points, m+1 equally 

d. The resulting design is called a 
ll 

i

spaced proportions are tested for each factor or component in the model:  
xi = 0, 1/m, 2/m, ..., 1     i = 1,2,...,q  
and all combinations of factor levels are teste
{q,m} simplex lattice design. For example, a {q=3, m=2} simplex lattice design wi
nclude the following mixtures:  

A B C 
1 
0 
0 
.5 

0 
1 
0 
.5 
0 
5 

0 
0 
1 
0 
.5 
.5 

.5 
0 .

 
 
A {q=3,m=3} simplex lattice design will include the points:  
A B C 
1 
0 
0 

1/3 
1/3 

0 
1 
0 

2/3
0 

0 
0 
1 
0 

2/3 
0 

2/3 
1/3 
1/3 

2/3 
0 

2/3 
0

1/3

0 1/3 
 
 

 

2/3 
1/3 

1/3 
1/3 

 
 
Simplex-
Sc

cent ns. An alternative arrangement of settings introduced by 
heffé (1963  so-called simplex-centroid design. Here the design points 

correspond to all permutations of the pure blends (e.g., 1 0 0; 0 1 0; 0 0 1), the 
ermutations of the binary blends (½ ½ 0; ½ 0 ½; 0 ½ ½), the permutations of the 
lends involving three components, and so on. For example, for 3 factors the 

roid desig
) is the

p
b
simplex centroid design consists of the points:  
A B C 
1 0 0 
0 
0 

1 
0 

0 
1 



1/2 
1/2 
0 

1/3 

1/2 
0 

1/2 
1/3 

0 
1/2 
1/2 
1/3 

 
 
Adding interior points. These designs are sometimes augmented with interior
points (see Khuri and Cornell, 1987, page 343; Mason, Gunst, He

 
ss; 1989; page 

230). For example, for 3 factors one could add the interior points:  
A B C 

2/3 
1/6 
1/6 

1/6 
2/3 
1/6 

1/6 
1/6 
2/3 

 
 
If you plot these points in a scatterplot with triangular coordinates; one can se
how these designs evenly cover the experimental region defined by the triangle. 

Lower Constraints  
The designs described above all require vertex points, that is, pure blends 
consisting of only one ingredient. In practice, those points may often not be valid, 
that is, pure blends cannot be produced because of cost or other constraints. For 
example, suppose you wanted to study the effect of a food- additive on the taste 

e 
 

of the fruit-punch. The additional ingredient may only be varied within small limits, 
for example, it may not exceed a certain percentage of the total. Clearly, a fruit 
punch that is a pure blend, consisting only of the additive, would not be a fruit 
punch at all, or worse, may be toxic. These types of constraints are very common 
in many applications of mixture experiments.  
Let us consider a 3-component example, where component A is constrained so 
that xA .3. The total of the 3-component mixture must be equal to 1. This 
constraint can be visualized in a triangular graph by a line at the triangular 
coordinate for xA=.3, that is, a line that is parallel to the triangle's edge opposite 
to the A vertex point.  



 
One can now construct the design as before, except that one side of the triangle 
is defined by the constraint. Later, in the analysis, one can review the parameter 
estimates for the so-called pseudo-components, treating the constrained triangle 
as if it were a full triangle.  
Multiple constraints. Multiple lower constraints can be treated analogously, that 
is, you can construct the sub-triangle within the full triangle, and then place the 
design points in that sub-triangle according to the chosen design.  

Upper and Lower Constraints  
en the case in 

standard simplex-lattice and simplex-
When there are both upper and lower constraints (as is oft
experiments involving mixtures), then the 
centroid designs can no longer be constructed, because the subregion defined 
by the constraints is no longer a triangle. There is a general algorithm for finding 
the vertex and centroid points for such constrained designs.  

 
Note that you can still analyze such designs by fitting the standard models to the 
data.  



Analyzing Mixture Experiments  
The analysis of mixture experiments amounts to a multiple regression with the 
intercept set to zero. As explained earlier, the mixture constraint -- that the sum 

ing multiple of all components must be constant -- can be accommodated by fitt
regression models that do not include an intercept term. If you are not familiar 
with multiple regression, you may want to review at this point Multiple 
Regression.  
The specific models that are usually considered were described earlier. To 
summarize, one fits to the dependent variable response surfaces of incre
complexity, that is, starting with the linear model, then the quadratic model, 
special cubic model, and full cubic model. Shown below is a table with the 

asing 

e  t or parameters in each model, for a selected number of 
o t  also Table 4, Cornell, 1990):  
M e of Polynomial)

numb r of erms 
comp nen s (see

  odel (Degre

N
C

o. of 
omp. 

  
Linear 

  
Quadr. 

Special 
Cubic 

Full 
Cubic

2 
3 
4 

2 
3 
4 

  3 
  6 
10 

  -- 
  7 
14 

  -- 
  10
  20

5 
6 
7 
8 

5 15 

8 
6 

25 
41 
63 
92 

  35
  56
  84
120 

6 
7 
8 

21 
2
3

 
 

Anal
To decide 

ysis of Va
which of the models of increasing complexity provides

riance  
 a sufficiently 

usually compares the models in a hierarchical, 
onsider a 3- component mixture to which the full 

cubic model was fitted.  
ANOVA; Var.:DV (mixt4.sta) 

good fit to the observed data, one 
stepwise fashion. For example, c

  3 Factor mixture design; Mixture total=1., 14 Runs 
Sequential fit of models of increasing complexity 

  
Model 

SS 
Effect 

df 
Effect 

MS 
Effect

SS 
Error

df 
Error

MS
Error

  
F 

  
p 

  
R-sqr 

R-sqr 
Adj. 

Linear 44.755 2 22.378 46.872 11 4.2611 5.2516 .0251 .4884 .3954 



Quadratic 
Special Cubic 

ubic 
Total Adjusted 

30.558 
.719 

8.229 
91.627 

3 
1 
3 
 

10.186
.719

2.743
7.048

16.314
15.596
7. 67

 

8
7
4
 

2.0393
2.2279
1.8417

 

4.9949
.3225

1.4893
 

.0307

.5878

.3452
 

.8220 

.8298 

.9196 
  

.7107 

.6839 

.7387 
  

C
13

3

 
 
First, the linear model was fit to the data. Even though this model has 3 
parameters, one for each component, this model has only 2 degrees of freedom. 
This is because of the overall mixture constraint, that the sum of all component 
values is constant. The simultaneous test for all parameters of this model is 
statistically significant (F(2,11)=5.25; p<.05). The addition of the 3 quadratic 
model parameters (b12*x1*x2, b13*x1*x3, b23*x2*x3) further significantly improves 
the fit of the model (F(3,8)=4.99; p<.05). However, adding the parameters for the 
special cubic and cubic models does not significantly improve the fit of the 

us one could conclude that the quadratic model provides an adequate 
ta (of course, pending further examination of the residuals for outliers, 

quare. The R-square value can be interpreted as the proportion of variability 
round the mean for the dependent variable, that can be accounted for by the 

counted for by the independent variables; for more 

osite 

surface. Th
fit to th
etc.).  

e da

R-s
a
respective model. (Note that for non- intercept models, some multiple regression 
programs will only compute the R-square value pertaining to the proportion of 
variance around 0 (zero) ac
information, see Kvalseth, 1985; Okunade, Chang, and Evans, 1993.)  
Pure error and lack of fit. The usefulness of the estimate of pure error for 
assessing the overall lack of fit was discussed in the context of central comp
designs. If some runs in the design were replicated, then one can compute an 
estimate of error variability based only on the variability between replicated run
This variability provides a good indication of the unreliability in the 
measurements, independent of the model that was fit to the data, since it is 
based on identical factor settings (or blends in this case). One can test the 
residual variability after fitting the current model against this estimate of pure 
error. If this

s. 

 test is statistically significant, that is, if the residual variability is 



significantly larger than the pure error variability, then one can conclude that, 
most likely, there are additional significant differences between blends that 
cannot be accounted for by the current model. Thus, there may be an overall 
of fit of the current model. In that case, try a more complex model, perhaps by 
only adding individual terms of the next higher-o

lack 

rder model (e.g., only the 
 linear model).  

 the sum of the components must be constant. Hence, independent 
statistical significance tests for the linear components cannot be performed.  

omponents  
 scale-independent comparisons of the parameter estimates, during 

 so-called 
so Cornell, 1993, Chapter 3):  

, 
imits) for all components in the 

design, and Total is the mixture total.  
ue of lower constraints was also discussed earlier in this section. If the 

standard simplex-lattice or simplex-centroid design (see above), then 
tra sformation amounts to a rescaling of factors so as to form a sub-triangle 

ub-simplex) as defined by the lower constraints. However, you can compute 
e parameter estimates based on the original (untransformed) metric of the 

s for 
dict dependent variable values), then the 

parameters for the untransformed components are often more convenient to use. 
e results dialog for mixture experiments contains options to make 

b13*x1*x3 to the

Parameter Estimates  
Usually, after fitting a particular model, one would next review the parameter 
estimates. Remember that the linear terms in mixture models are constrained, 
that is,

Pseu
To allo

do
w 

-C
for

the analysis, the component settings are customarily recoded to
pseudo-components so that (see al
x'i = (xi-Li)/(Total-L)  
Here, x'i stands for the i'th pseudo-component, xi stands for the original 
component value, Li stands for the lower constraint (limit) for the i'th component
L stands for the sum of all lower constraints (l

The
design is a 

 iss

this n
(s
th
components in the experiment. If you want to use the fitted parameter value
prediction purposes (i.e., to pre

Note that th



predictions for the dependent variable for user-defined values of the components, 
 their original metric.  

raph Options  

urface plots or contour plots, which, optionally, can also include the 
respective fitted function.  

in

G
Surface and contour plots. The respective fitted model can be visualized in 
triangular s

 
Note that the fitted function displayed in the surface and contour plots always 
pertains to the parameter estimates for the pseudo-components.  
Categorized surface plots. If your design involves replications (and the 
replications are coded in your data file), then you can use 3D Ternary Plots to 
look at the respective fit, replication by replication.  

 
Of course, if you have other categorical variables in your study (e.g., operator o
experimenter; machine, etc.) you can also categorize the 3D surface plot by 
those variables.  

r 



Trace plots. One aid for interpreting the triangular response surface is the so-
called trace plot. Suppose you looked at the contour plot of the response surface 
for three components. Then, determine a reference blend for two of the 
components, for example, hold the values for A and B at 1/3 each. Keeping t
relative proportions of A and B constant (i.e., equal proportions in this case), yo
can then plot the estimated response (values for the dependent variable) for 
different values of C.  

he 
u 

 
If the reference blend for A and B is 1:1, then the resulting line or response trac
is the axis for factor C; that is, the line from the C vertex point connecting with the 

e 

opposite side of the triangle at a right angle. However, trace plots for other 
can also be produced. Typically, the trace plot contains the 

e 
, 

he 
s

ess of fitting the surface) assumes that the 
 and one should carefully review the residuals 

reference blends 
traces for all components, given the current reference blend.  
Residual plots. Finally, it is important, after deciding on a model, to review th
prediction residuals, in order to identify outliers or regions of misfit-fit. In addition
one should review the standard normal probability plot of residuals and t
catterplot of observed versus predicted values. Remember that the multiple 

regression analysis (i.e., the proc
residuals are normally distributed,
for any apparent outliers.  
 
 

 
 Surfaces and Mixtures  Designs for Constrained



Overview  
As mentioned in the context of mixture designs, it often happens in real-wor
studies that the experimental region of interest is constrained, that is, that not a
factors settings can be combined with all settings for the other factors in the 
study. There is an 

ld 
ll 

algorithm suggested by Piepel (1988) and Snee (1985)
finding the vertices and centroids for such constrained regions.  

Designs for Constrained Experimental Regions  
When in an experiment with many factors, there are constraints concerning
possible values of those factors and their combinations, it is not clear how to 
proceed. A reasonable approach is to include in the experiments runs at the 
extreme vertex points and centroid points of the constrained region, which

 for 

 the 

 should 
ion (e.g., see usually provide good coverage of the constrained experimental reg

Piepel, 1988; Snee, 1975). In fact, the mixture designs reviewed in the previous 

ists of 
a

l 

section provide examples for such designs, since they are typically constructed 
to include the vertex and centroid points of the constrained region that cons

 triangle (simplex).  

Linear Constraints  
One general way in which one can summarize most constraints that occur in rea
world experimentation is in terms of a linear equation (see Piepel, 1988):  
A1x1 + A2x2 + ... + Aqxq + A0 0  
Here, A0, .., Aq are the parameters for the linear constraint on the q factors, and 
x ,.., x  s1 q

can accommodate even very complex constra
tands for the factor values (levels) for the q factors. This general formula 

ints. For example, suppose that in 
 m t always be set at least twice as high a two-factor experiment the first factor us

as the second, that is, x1 2*x2. This simple constraint can be rewritten as x -2*x2 1

0. The ratio constraint 2*x1 /x2  1 can be rewritten as 2*x1 - x2 0, and so on.  
The problem of multiple upper and lower constraints on the component values in
mixtures was discussed earlier, in the context of 

 
mixture experiments. For 

example, suppose in a three-component mixture of fruit juices, the upper and 
lower constraints on the components are (see example 3.2, in Cornell 1993):  



40% Watermelon (x1) 80% 
10% Pineapple (x2) 50% 
10% Orange (x3) 30% 
These constraints can be rewritten as linear constraints into the form:  
Watermelon: 
  

x1-40 0 
-x1+80 0 

Pineapple: 
  

x2-10 0 
-x2+50 0 

Orange: 
  

x3-10 0 
-x3+30 0 

 
 
Thus, the problem of finding design points for mixture experiments with 
components with multiple upper and lower constraints is only a special case of 
general linear constraints.  

The Piepel & Snee Algorithm  
For the special case of constrained mixtures, algorithms such as the XV
algorithm (see, for example, Cornell, 1990) are often used to find the vertex an
centroid points of the constrained region (inside the triangle of three compon
tetrahedron

ERT 
d 

ents, 
 of four components, etc.). The general algorithm proposed by Piepel 

e new 

redundant, that is, define lines or planes in the experimental region that are now 
entirely outside the valid region. After all constraints have been processed, it will 

(1988) and Snee (1979) for finding vertices and centroids can be applied to 
mixtures as well as non-mixtures. The general approach of this algorithm is 
described in detail by Snee (1979).  
Specifically, it will consider one-by-one each constraint, written as a linear 
equation as described above. Each constraint represents a line (or plane) 
through the experimental region. For each successive constraint you will 
evaluate whether or not the current (new) constraint crosses into the current valid 
region of the design. If so, new vertices will be computed which define th
valid experimental region, updated for the most recent constraint. It will then 
check whether or not any of the previously processed constraints have become 



then compute the centroids for the sides of the constrained region (of the order 
requested by the user). For the two-dimensional (two-factor) case, one can easily 
recreate this process by simply drawing lines through the experimental region, 
one for each constraint; what is left is the valid experimental region.  

 
For more information, see Piepel (1988) or Snee (1979).  

Choosing Points for the Experiment  
Once the vertices and centroids have been computed, you may face the problem 

un 

non-

 

of having to select a subset of points for the experiment. If each experimental r
is costly, then it may not be feasible to simply run all vertex and centroid points. 
In particular, when there are many factors and constraints, then the number of 
centroids can quickly get very large.  
If you are screening a large number of factors, and are not interested in 
linear effects, then choosing the vertex points only will usually yield good 
coverage of the experimental region. To increase statistical power (to increase



the degrees of freedom for the ANOVA error term), you may also want to include 
a few runs with the factors set at the overall centroid of the constrained region.  

f different models that you might fit once the 
ign

If you are considering a number o
data have been collected, then you may want to use the D- and A-optimal des  

 
 

options. Those options will help you select the design points that will extract the
maximum amount of information from the constrained experimental region, given
your models.  

Analyzing Designs for Constrained Surfaces and Mixtures  
As mentioned in the section on central composite designs and mixture designs, 

ple, Cornell (1990, page 68) describes an experiment of three 
seat 

:  

once the constrained design points have been chosen for the final experiment, 
and the data for the dependent variables of interest have been collected, the 
analysis of these designs can proceed in the standard manner.  
For exam
plasticizers, and their effect on resultant vinyl thickness (for automobile 
covers). The constraints for the three plasticizers components x1, x2, and x3 are
.409 x1 .849 
.000 x2 .252 
.151 x3 .274 
 
(Note that these values are already rescaled, so that the total for each mixture 
must be equal to 1.) The vertex and centroid points generated are:  

x1 x2 x3

.8490 

.7260 

.4740 

.5970 

.0000 

.0000 

.2520 

.2520 

.1510 

.2740 

.2740 

.1510 
.6615 
.7875 
.6000 
.5355 
.7230 

.1260 

.0000 

.1260 

.2520 

.1260 

.2125 

.2125 

.2740 

.2125 

.1510 

 
 



 
 
 

 
Constructing D- and A-Optimal Designs  

Overview  
In the sections on standard factorial designs (see 2**(k-p) Fractional Factorial 
Designs and 3**(k-p), Box Behnken, and Mixed 2 and 3 Level Factorial Designs ) 
and Central Composite Designs, the property of orthogonality of factor effects 

 when the factor level settings for two factors in an was discussed. In short,
experiment are uncorrelated, that is, when they are varied independently of each 
other, then they are said to be orthogonal to each other. (If you are familiar with 
matrix and vector algebra, two column vectors X1 and X2 in the design matrix are 
orthogonal if X1'*X2= 0). Intuitively, it should be clear that one can extract the 
maximum amount of information regarding a dependent variable from the 
experimental region (the region defined by the settings of the factor levels), if all 
factor effects are orthogonal to each other. Conversely, suppose one ran a four-
run experiment for two factors as follows:  

  x1 x2

Run 1 
Run 2 
Run 3 
Run 4 

 1 
 1 
-1 
-1 

 1 
 1 
-1 
-1 

 
 



Now the columns of factor settings for X1 and X2 are identical to each other (
correlation is 1), and there is no way in the results to distinguish between the 
main effect for X

their 

 
ts 

omputed by the Designs for constrained surface and mixtures

1 and X2.  
The D- and A-optimal design procedures provide various options to select from a
list of valid (candidate) points (i.e., combinations of factor settings) those poin
that will extract the maximum amount of information from the experimental 
region, given the respective model that you expect to fit to the data. You need to 
supply the list of candidate points, for example the vertex and centroid points 
c  option, specify 

e type of model you expect to fit to the data, and the number of runs for the 
a design with the desired number of cases, that 
y between the columns of the design matrix as 

nd 

th
experiment. It will then construct 
will provide as much orthogonalit
possible.  
The reasoning behind D- and A-optimality is discussed, for example, in Box a
Draper (1987, Chapter 14). The different algorithms used for searching for 

y of the different algorithms 
optimal designs are described in Dykstra (1971), Galil and Kiefer (1980), and 
Mitchell (1974a, 1974b). A detailed comparison stud
is discussed in Cook and Nachtsheim (1980).  

Basic Ideas  
A technical discussion of the reasoning (and limitations) of D- and A-optimal 
designs is beyond the scope of this introduction. However, the general ideas are 
fairly straight-forward. Consider again the simple two-factor experiment in four 
runs.  

  x1 x2

Run 1 
Run 2 
Run 3 
Run 4 

 1 
 1 
-1 
-1 

 1 
 1 
-1 
-1 

 
 
As mentioned above, this design, of course, does not allow one to test, 
independently, the statistical significance of the two variables' contribution to the 



prediction of the dependent variable. If you computed the correlation matr
the two variables, they would correlate at 1:  
  x

ix for 

1 x2

x1 1.0 
  x2 1.0

1.0 
.0   1

 
 
Normally, one would run this experiment so that the two factors are varied 
independently of each other:  

  x1 x2

Run 1 
Run 2 
Run 3 
Run 4 

 1 
 1 
-1 
-1 

 1 
-1 
 1 
-1 

 
 
Now the two variables are uncorrelated, that is, the correlation matrix for the tw
factors is:  
  x

o 

1 x2

x1 
x2

1.0 
0.0  

0.0 
1.0   

 

 

 

e 
t 

nd 

 
Another term that is customarily used in this context is that the two factors are
orthogonal. Technically, if the sum of the products of the elements of two 
columns (vectors) in the design (design matrix) is equal to 0 (zero), then the two
columns are orthogonal.  
The determinant of the design matrix. The determinant D of a square matrix (lik
the 2-by-2 correlation matrices shown above) is a specific numerical value, tha
reflects the amount of independence or redundancy between the columns a



rows of the matrix. For the 2-by-2 case, it is simply computed as the product of 
the diagonal elements minus the off-diagonal elements of the matrix (for larger 
matrices the computations are more complex). For example, for the two matrices 

t 
 

ore 

s 

 

re is 

vertical lines (|..|) indicate the 

ally, the 

shown above, the determinant D is:  
D1 = 
  

|1.0 1.0| 
|1.0 1.0| 

= 1*1 - 1*1 = 0 
  

D2 = 
  

|1.0 0.0| 
|0.0 1.0| 

= 1*1 - 0*0 = 1 
  

 
 
Thus, the determinant for the first matrix computed from completely redundant 
factor settings is equal to 0. The determinant for the second matrix, when the 
factors are orthogonal, is equal to 1.  
D-optimal designs. This basic relationship extends to larger design matrices, tha
is, the more redundant the vectors (columns) of the design matrix, the closer to 0
(zero) is the determinant of the correlation matrix for those vectors; the m
independent the columns, the larger is the determinant of that matrix. Thus, 
finding a design matrix that maximizes the determinant D of this matrix mean
finding a design where the factor effects are maximally independent of each 
other. This criterion for selecting a design is called the D-optimality criterion.  
Matrix notation. Actually, the computations are commonly not performed on the
correlation matrix of vectors, but on the simple cross-product matrix. In matrix 
notation, if the design matrix is denoted by X, then the quantity of interest he
the determinant of X'X (X- transposed times X). Thus, the search for D-optimal 
designs aims to maximize |X'X|, where the 
determinant.  
A-optimal designs. Looking back at the computations for the determinant, 
another way to look at the issue of independence is to maximize the diagonal 
elements of the X'X matrix, while minimizing the off-diagonal elements. The so-
called trace criterion or A-optimality criterion expresses this idea. Technic
A-criterion is defined as:  



A = trace(X'X)-1  
where trace stands for the sum of the diagonal elements (of the (X'X)-1 matrix).
The information function. It should be mentioned at this point that D-optimal 
designs minimize the expected prediction error for the dependent variable, t
is, those designs will maximize the precision of prediction, and thus the 
information (which is defined as the inverse of the error) that is extracted from the
experimental region of interest.  

Measuring Design Efficiency  
A number of standard measures have been proposed to su

  

hat 

 

mmarize the 

he 

 

d 

f you chose to recode the 
sign (i.e., the factor settings for the design points in the 

r effects in the design, N is the number of 

efficiency of a design.  
D-efficiency. This measure is related to the D-optimality criterion:  
D-efficiency = 100 * (|X'X|1/p/N)  
Here, p is the number of factor effects in the design (columns in X), and N is t
number of requested runs. This measure can be interpreted as the relative 
number of runs (in percent) that would be required by an orthogonal design to
achieve the same value of the determinant |X'X|. However, remember that an 
orthogonal design may not be possible in many cases, that is, it is only a 
theoretical "yard-stick." Therefore, you should use this measure rather as a 
relative indicator of efficiency, to compare other designs of the same size, an
constructed from the same design points candidate list. Also note that this 
measure is only meaningful (and will only be reported) i
factor settings in the de
candidate list), so that they have a minimum of -1 and a maximum of +1.  
A-efficiency. This measure is related to the A-optimality criterion:  
A-efficiency = 100 * p/trace(N*(X'X)-1)  
Here, p stands for the number of facto
requested runs, and trace stands for the sum of the diagonal elements (of 
(N*(X'X)-1) ). This measure can be interpreted as the relative number of runs (in 
percent) that would be required by an orthogonal design to achieve the same 
value of the trace of (X'X)-1. However, again you should use this measure as a 



relative indicator of efficiency, to compare other designs of the same size a
constructed from the same design points candidate list; also this measure is on

eaningful if you chose to recode the factor settings in the design to the
range.  

nd 
ly 

m  -1 to +1 

G-efficiency. This measure is computed as:  
G-efficiency = 100 * square root(p/N)/ M  
Again, p stands for the number of factor effects in the design and N is the 
number of requested runs; M (sigmaM) stands for the maximum stan
for prediction across the list of candidate points. This measure is related to
so-called G- optimality criterion; G-optimal designs are defined as tho
minimize the maximum value of the standard error of the predicted response.  

Constructing Optimal Designs  
he optimal design facilities will "search for" optimal designs, given a li

"candidate points." Put another way, given 

dard error 
 the 

se that will 

T st of 
a list of points that specifies which 

 
r
c ut rather 

ys e ch strategies to find the best 
the respective optimality criterion).  

1980). 
T

 design 

is algorithm is due to Dykstra (1971). Starting 

the requested number of points 
. Th ethod is the fastest of the ones discussed. Also, by 

regions of the design are valid or feasible, and given a user-specified number of
uns for the final experiment, it will select points to optimize the respective 
riterion. This "searching for" the best design is not an exact method, b

an algorithmic procedure that emplo  certain s ar
design (according to 
The search procedures or algorithms that have been proposed are described 
below (for a review and detailed comparison, see Cook and Nachtsheim, 

hey are reviewed here in the order of speed, that is, the Sequential or Dykstra 
method is the fastest method, but often most likely to fail, that is, to yield a
that is not optimal (e.g., only locally optimal; this issue will be discussed shortly).  
Sequential or Dykstra method. Th
with an empty design, it will search through the candidate list of points, and 
choose in each step the one that maximizes the chosen criterion. There are no 
iterations involved, they will simply pick 
sequentially us, this m



default, this method is used to construct the initial designs for the remaining 
methods.  
Simple exchange (Wynn-Mitchell) method. This algorithm is usually attributed to 

d Miller (1970) and Wynn (1972). The method starts with an initial 

idate points. The 
or added is sequential, that is, at each step the 

ontributes least with respect to the chosen optimality criterion (D or A) 
 dropped from the design; then the algorithm chooses a point from the 
andidate list so as to optimize the respective criterion. The algorithm stops when 
o further improvement is achieved with additional exchanges.  
ETMAX algorithm (exchange with excursions). This algorithm, due to Mitchell 
974b), is probably the best known and most widely used optimal design search 

lgorithm. Like the simple exchange method, first an initial design is constructed 
y default, via the sequential search algorithm described above). The search 

change as described above. However, if the respective 
criterion ( ns. 

ecifically, the algorithm will add or subtract more than one point at a time, so 
ch, the number of points in the design may vary between 

es 

sen criterion (D 

Mitchell an
design of the requested size (by default constructed via the sequential search 
algorithm described above). In each iteration, one point (run) in the design will be 

her added from the list of canddropped from the design and anot
choice of points to be dropped 
point that c
is
c
n
D
(1
a
(b
begins with a simple ex

D or A) does not improve, the algorithm will undertake excursio
Sp
that, during the sear
ND+ Nexcursion and ND- Nexcursion, where ND is the requested design size, and 
Nexcursion refers to the maximum allowable excursion, as specified by the user. 
The iterations will stop when the chosen criterion (D or A) no longer improv
within the maximum excursion.  
Modified Fedorov (simultaneous switching). This algorithm represents a 
modification (Cook and Nachtsheim, 1980) of the basic Fedorov algorithm 
described below. It also begins with an initial design of the requested size (by 
default constructed via the sequential search algorithm). In each iteration, the 
algorithm will exchange each point in the design with one chosen from the 
candidate list, so as to optimize the design according to the cho



or A). Unlike the simple exchange algorithm described above, the exchange is
not sequential, but simultaneous. Thus, in each iteration each point in the d
is compared with each point in the candidate list, and the exchange is made for 
the pair that optimizes the design. The algorithm terminates when there are no 
further improvements in the respective optimality criterion.  
Fedorov (simultaneous switching). This is the original simultaneous switching
method proposed by Fedorov (see Cook and Nachtsheim, 198

 
esign 

 
0). The difference 

d e clear that there are usually no exact solutions to 
e optimal design problem. Specifically, the determinant of the X'X matrix (and 
ace of its inverse) are complex functions of the list of candidate points. In 

 chosen 

esign 

ant to try a number of different initial designs and 

between this procedure and the one described above (modified Fedorov) is that 
in each iteration only a single exchange is performed, that is, in each iteration all 
possible pairs of points in the design and those in the candidate list are 
evaluated. The algorithm will then exchange the pair that optimizes the design 
(with regard to the chosen criterion). Thus, it is easy to see that this algorithm 
potentially can be somewhat slow, since in each iteration ND*NC comparisons are 
performed, in order to exchange a single point.  

General Recommendations  
If you think about the basic strategies represented by the different algorithms 

escribed above, it should b
th
tr
particular, there are usually several "local minima" with regard to the
optimality criterion; for example, at any point during the search a design may 
appear optimal unless you simultaneously discard half of the points in the d
and choose certain other points from the candidate list; but, if you only exchange 
individual points or only a few points (via DETMAX), then no improvement 
occurs.  
Therefore, it is import
algorithms. If after repeating the optimization several times with random starts 
the same, or very similar, final optimal design results, then you can be 
reasonably sure that you are not "caught" in a local minimum or maximum.  



Also, the methods described above vary greatly with regard to their ability to get
"trapped" in local minima or maxima. As a general rule, the slower the algorithm
(i.e., the further down on the list of algorithms described above), the more likely is
the algorithm to yield a truly optimal design. However, note that the modified 
Fedorov algorithm will practically perform

 
 

 

 just as well as the unmodified algorithm 
n, we 

 time as 
r 

e the 
 However, in difficult design situations, for example, when 

cannot compute the inverse of 

is 

(see Cook and Nachtsheim, 1980); therefore, if time is not a consideratio
recommend the modified Fedorov algorithm as the best method to use.  
D-optimality and A-optimality. For computational reasons (see Galil and Kiefer, 
1980), updating the trace of a matrix (for the A-optimality criterion) is much 
slower than updating the determinant (for D-optimality). Thus, when you choose 
the A-optimality criterion, the computations may require significantly more
compared to the D-optimality criterion. Since in practice, there are many othe
factors that will affect the quality of an experiment (e.g., the measurement 
reliability for the dependent variable), we generally recommend that you us
D optimality criterion.
there appear to be many local maxima for the D criterion, and repeated trials 
yield very different results, you may want to run several optimization trials using 
the A criterion to learn more about the different types of designs that are 
possible.  

Avoiding Matrix Singularity  
It may happen during the search process that it 
the X'X matrix (for A-optimality), or that the determinant of the matrix becomes 
almost 0 (zero). At that point, the search can usually not continue. To avoid th
situation, perform the optimization based on an augmented X'X matrix:  
X'Xaugmented = X'X + *(X0'X0/N0)  

here Xw te 0 stands for the design matrix constructed from the list of all N0 candida
points, and (alpha) is a user-defined small constant. Thus, you can turn off th
feature by setting 

is 
to 0 (zero).  

Repairing" Designs  "



The optimal design features can be used to "repair" designs. For example, 
suppose you ran an orthogonal design, but some data were lost (e.g., due to 

ot 

d to 
that list all the points that you have already run, and instruct it to always force 
those points into the final design (and never to drop them out; you can mark 
points in the candidate list for such forced inclusion). It will then only consider to 
exclude those points from the design that you did not actually run. In this manner 
you can, for example, find the best single run to add to an existing experiment, 
that would optimize the respective criterion.  

Constrained Experimental Regions and Optimal Design  
A typical application of the optimal design features is to situations when the 

 
ined 

 submitted as the candidate list 

 
 of runs.  

equipment malfunction), and now some effects of interest can no longer be 
estimated. You could of course make up the lost runs, but suppose you do n
have the resources to redo them all. In that case, you can set up the list of 
candidate points from among all valid points for the experimental region, ad

experimental region of interest is constrained. As described earlier in this section,
there are facilities for finding vertex and centroid points for linearly constra
regions and mixtures. Those points can then be
for constructing an optimal design of a particular size for a particular model. 
Thus, these two facilities combined provide a very powerful tool to cope with the 
difficult design situation when the design region of interest is subject to complex
constraints, and one wants to fit particular models with the least number
 
 

 
Special Topics  
The following sections introduce several analysis techniques. The sections 
describe Response/desirability profiling, conducting Residual analyses, and
performing 

 
Box-Cox transformations of the dependent variable.  

See also ANOVA/MANOVA, Methods for Analysis of Variance, and Variance 
Components and Mixed Model ANOVA/ANCOVA.  

Profiling Predicted Responses and Response Desirability  



Basic Idea. A typical problem in product development is to find a set of 
conditions, or levels of the input variables, that produces the most desirable 
product in terms of its characteristics, or responses on the output variables. The 
procedures used to solve this problem generally involve two steps: (1) predicting 

 (2) 

) 

O 

of the responses on the Y's. The solution must take into 
fact th X's that maximize one response may not 

 different respon .  
Wh ly f ) designs

responses on the dependent, or Y variables, by fitting the observed responses 
using an equation based on the levels of the independent, or X variables, and
finding the levels of the X variables which simultaneously produce the most 
desirable predicted responses on the Y variables. Derringer and Suich (1980
give, as an example of these procedures, the problem of finding the most 
desirable tire tread compound. There are a number of Y variables, such as PIC
Abrasion Index, 200 percent modulus, elongation at break, and hardness. The 
characteristics of the product in terms of the response variables depend on the 
ingredients, the X variables, such as hydrated silica level, silane coupling agent 
level, and sulfur. The problem is to select the levels for the X's which will 
maximize the desirability 
account the 
maximize a

at the levels for the 
se

en ana zing 2**(k-p) (two-level actorial , 2-level screening designs, 
2**(k-p) m n um aberration designsaximally unconfounded a d minim , 3**(k-p) and 
Box Behnken designs, Mixed  designs 2 and 3 level , central composite designs, 
and mixtu  re designs,  profiling allows you to inspect the 
response surface produced by fitting the observed responses using an equation 
based on levels of the independent variables.  
Prediction Pr h sults of any of the designs listed 

bove, a separate prediction equation for each dependent variable (containing 
ifferent coefficients but the same terms) is fitted to the observed responses on 

 dependent variable. Once these equations are constructed, 

Respo

en yo

nse/des

u analy

irability

ze the reofiles. W
a
d
the respective
predicted values for the dependent variables can be computed at any 
combination of levels of the predictor variables. A prediction profile for a 
dependent variable consists of a series of graphs, one for each independent 



variable, of the predicted values for the dependent variable at different levels of 
one independent variable, holding the levels of the other independent varia
constant at specified values, called current values. If appropriate current valu
for the independent variables have been selected, inspecting the prediction 
profile can show which levels of the predi

bles 
es 

ctor variables produce the most 
riable.  

 
e set 

dependent variables used during the experiment, to see if there 

not 
e of 

rability. Different dependent variables might have different kinds 
res. 

be more 
desirable--lower "fillingness" scores and higher "taste" scores are both more 

ip 
 of the 

ints in the 

 

desirable predicted response on the dependent va
One might be interested in inspecting the predicted values for the dependent
variables only at the actual levels at which the independent variables wer
during the experiment. Alternatively, one also might be interested in inspecting 
the predicted values for the dependent variables at levels other than the actual 
levels of the in
might be intermediate levels of the independent variables that could produce 
even more desirable responses. Also, returning to the Derringer and Suich 
(1980) example, for some response variables, the most desirable values may 
necessarily be the most extreme values, for example, the most desirable valu
elongation may fall within a narrow range of the possible values.  
Response Desi
of relationships between scores on the variable and the desirability of the sco
Less filling beer may be more desirable, but better tasting beer can also 

desirable. The relationship between predicted responses on a dependent 
variable and the desirability of responses is called the desirability function. 
Derringer and Suich (1980) developed a procedure for specifying the relationsh
between predicted responses on a dependent variable and the desirability
responses, a procedure that provides for up to three "inflection" po
function. Returning to the tire tread compound example described above, their 
procedure involved transforming scores on each of the four tire tread compound
outcome variables into desirability scores that could range from 0.0 for 
undesirable to 1.0 for very desirable. For example, their desirability function for 
hardness of the tire tread compound was defined by assigning a desirability 



value of 0.0 to hardness scores below 60 or above 75, a desirability value of 1.0 
to mid-point hardness scores of 67.5, a desirability value that increased linearly 
from 0.0 up to 1.0 for hardness scores between 60 and 67.5 and a desirability
value that decreased linearly from 1.0 down to 0.0 for hardness scores between 
67.5 and 75.0. More generally, they suggested that procedures for defining 
desirability functions should accommodate curvature in the "falloff" of desirability 
between inflection points in the functions.  

 

icted values of the dependent variables at different 
, 

d that 

ility of 

 
 the reciprocal of the number of values). Derringer and Suich's 

 
 to 

n to 
t 

tic 

f the 
 

After transforming the pred
combinations of levels of the predictor variables into individual desirability scores
the overall desirability of the outcomes at different combinations of levels of the 
predictor variables can be computed. Derringer and Suich (1980) suggeste
overall desirability be computed as the geometric mean of the individual 
desirabilities (which makes intuitive sense, because if the individual desirab
any outcome is 0.0, or unacceptable, the overall desirability will be 0.0, or 
unacceptable, no matter how desirable the other individual outcomes are--the 
geometric mean takes the product of all of the values, and raises the product to
the power of
procedure provides a straightforward way for transforming predicted values for 
multiple dependent variables into a single overall desirability score. The problem
of simultaneously optimization of several response variables then boils down
selecting the levels of the predictor variables that maximize the overall 
desirability of the responses on the dependent variables.  
Summary. When one is developing a product whose characteristics are know
depend on the "ingredients" of which it is constituted, producing the best produc
possible requires determining the effects of the ingredients on each characteris
of the product, and then finding the balance of ingredients that optimizes the 
overall desirability of the product. In data analytic terms, the procedure that is 
followed to maximize product desirability is to (1) find adequate models (i.e., 
prediction equations) to predict characteristics of the product as a function o
levels of the independent variables, and (2) determine the optimum levels of the



independent variables for overall product quality. These two steps, if followed 
faithfully, will likely lead to greater success in product improvement than the 
fabled, but statistically dubious technique of hoping for accidental breakthroughs 

e 

a le 
f  in 

t 

a , homogeneity of variances and covariances, and 
of residuals. All of these properties of the residuals for a 

ependent variable can be inspected using Residuals analysis.  

iables  

hey are 

duce 

e model, as a function of the value of lambda, where 
ed to define a tr ependent variable,  

and discoveries that radically improve product quality.  

Residuals Analysis  

Basic Idea. Extended residuals analysis is a collection of methods for inspecting 
different residual and predicted values, and thus to examine the adequacy of th
prediction model, the need for transformations of the variables in the model, and 
the existence of outliers in the data.  
Residuals are the deviations of the observed values on the dependent v riab
rom the predicted values, given the current model. The ANOVA models used
analyzing responses on the dependent variable make certain assumptions abou
the distributions of residual (but not predicted) values on the dependent variable. 
These assumptions can be summarized by saying that the ANOVA model 

ssumes normality, linearity
independence 
d

Box-Cox Transformations of Dependent Var
Basic Idea. It is assumed in analysis of variance that the variances in the 
different groups (experimental conditions) are homogeneous, and that t
uncorrelated with the means. If the distribution of values within each 
experimental condition is skewed, and the means are correlated with the 
standard deviations, then one can often apply an appropriate power 
transformation to the dependent variable to stabilize the variances, and to re
or eliminate the correlation between the means and standard deviations. The 
Box-Cox transformation is useful for selecting an appropriate (power) 
transformation of the dependent variable.  
Selecting the Box-Cox transformation option will produce a plot of the Residual 
Sum of Squares, given th
lambda is us ansformation of the d



y' = ( y**(lambda) - 1 ) / ( g**(lambda-
 1) * lambda) if lambda 0

y' = g * na

in which 
depende
Residua

tural log bda = 0

g is the geometric mean of the dependent variable and all values of the 
nt variab e no gativ he v  of da for which the 
l Sum of ares is a minimum is the maximum likelihood estimate for 

is parameter. It produces the variance stabilizing transformation of the 
 

ould 

(y) 

le ar
Squ

if lam

e. Tn-ne alue lamb

th
dependent variable that reduces or eliminates the correlation between the group
means and standard deviations.  
In practice, it is not important that you use the exact estimated value of lambda 
for transforming the dependent variable. Rather, as a rule of thumb, one sh
consider the following transformations: 
Approximate Suggested 

lambda transorfmation of y 
-1    
-0.5 
 0    
 0.5 
 1    

Reciprocal 
Reciprocal square root 
Natural logarithm 
Square root 
None 

 
 
For additional in  re this family of transformations, see Box and 

4), Box per (1987), and Maddala (1977).  
formation garding 

Cox (196
 
 

and Dra
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Principal Components and Factor Analysis 

  
 

r 

erefore, factor analysis is applied as a data 

tistical 

General Purpose  
The main applications of factor analytic techniques are: (1) to reduce the numbe
of variables and (2) to detect structure in the relationships between variables, 
that is to classify variables. Th
reduction or structure detection method (the term factor analysis was first 
introduced by Thurstone, 1931). The topics listed below will describe the 
principles of factor analysis, and how it can be applied towards these two 
purposes. We will assume that you are familiar with the basic logic of sta
reasoning as described in Elementary Concepts. Moreover, we will also assume
that you are familiar with the concepts of variance and correlation; if not, we 

dvise that you read the 

 

a sic StatisticsBa  chapter at this point.  
n 

h
 and 

 
 

tor analysis, as an alternative to traditional oblique 
 Wherry (1984).  

ry factor analysis Structural Equation Modeling (SEPATH)

There are many excellent books on factor analysis. For example, a hands-o
ow-to approach can be found in Stevens (1986); more detailed technical 

descriptions are provided in Cooley and Lohnes (1971); Harman (1976); Kim
Mueller, (1978a, 1978b); Lawley and Maxwell (1971); Lindeman, Merenda, and
Gold (1980); Morrison (1967); or Mulaik (1972). The interpretation of secondary
factors in hierarchical fac
rotational str
Confirmato

ategies, is explained in detail by
.  allows you 

ecific hypoth out the factor structure for a set of variables, in one 
l samples (e  can compare factor structures across samples).  
ndence ana rrespon nalysis

to test sp
or severa
Correspo

eses ab
.g., you
lysis. Co dence a  is a descriptive/exploratory 

e designed to analyze two-way and multi-way tables containing some 
 of correspo between s and columns. The results provide 

formation which is similar in nature to those produced by factor analysis 
chniques, and they allow one to explore the structure of categorical variables 

techniqu
measure ndence  the row
in
te
included in the table. For more information regarding these methods, refer to 
Correspondence Analysis.  



 
 

Basic Idea of Factor Analysis as a Data Reduction Method  
Suppose we conducted a (rather "silly") study in which we measure 100 people's 

ies, we want to research, for example, the effect 
of different nutritional food supplements on height, would we continue to use both 
measures? Probably not; height is one characteristic of a person, regardless of 
how it is measured.  
Let us now extrapolate from this "silly" study to something that one might actually 
do as a researcher. Suppose we want to measure people's satisfaction with their 
lives. We design a satisfaction questionnaire with various items; among other 
things we ask our subjects how satisfied they are with their hobbies (item 1) and 
how intensely they are pursuing a hobby (item 2). Most likely, the responses to 

height in inches and centimeters. Thus, we would have two variables that 
measure height. If in future stud

the two items are highly correlated with each other. (If you are not familiar with 
the correlation coefficient, we recommend that you read the description in Basic 
Statistics - Correlations) Given a high correlation between the two items, we can 
conclude that they are quite redundant.  
Combining Two Variables into a Single Factor. One can summarize the 
correlation between two variables in a scatterplot. A regression line can then be 
fitted that represents the "best" summary of the linear relationship between the 
variables. If we could define a variable that would approximate the regression 
line in such a plot, then that variable would capture most of the "essence" of the 
two items. Subjects' single scores on that new factor, represented by the 
regression line, could then be used in future data analyses to represent that 
essence of the two items. In a sense we have reduced the two variables to one 
factor. Note that the new factor is actually a linear combination of the two 
variables.  
Principal Components Analysis. The example described above, combining two 
correlated variables into one factor, illustrates the basic idea of factor analysis, or 



of principal components analysis to be precise (we will return to this later). If we 
extend the two-variable example to multiple variables, then the computations 
become more involved, but the basic principle of expressing two or more 
variables by a single factor remains the same.  

e 

n). 
nce 

in a 

o 
e can think of them as defining a "space," just as two variables 

ariables, we could plot a three- 
l scatterplot, and again we could fit a plane through the data.  

Extracting Principal Components. We do not want to go into the details about th
computational aspects of principal components analysis here, which can be 
found elsewhere (references were provided at the beginning of this sectio
However, basically, the extraction of principal components amounts to a varia
maximizing (varimax) rotation of the original variable space. For example, 
scatterplot we can think of the regression line as the original X axis, rotated so 
that it approximates the regression line. This type of rotation is called variance 
maximizing because the criterion for (goal of) the rotation is to maximize the 
variance (variability) of the "new" variable (factor), while minimizing the variance 
around the new variable (see Rotational Strategies).  
Generalizing to the Case of Multiple Variables. When there are more than tw
variables, w
defined a pla
dimensiona

ne. Thus, when we have three v
, 

 
With more than three variables it becomes impossible to illustrate the points in a 

var c
Mul l
maxim omponents 

scatterplot, however, the logic of rotating the axes so as to maximize the 
ian e of the new factor remains the same.  

e orthogonal factors. After we have ftip ound the line on which the variance is 
al, there remains some variability around this line. In principal c



analysis, after the first factor has been extracted, that is, after the first line has 
been drawn through the data, we continue and define another line that 
maximizes the remaining variability, and so on. In this manner, consecutive 
factors are extracted. Because each consecutive factor is defined to maximiz
the variability that is not captured by the preceding factor, consecutive factors
independent of each other. Put another way, consecutive factors are 
uncorrelated or orthogonal to each other.  
How many Fa

e 
 are 

ctors to Extract? Remember that, so far, we are considering 
rincipal components analysis as a data reduction method, that is, as a method 
r reducing the number of variables. The question then is, how many factors do 

cutive factors, they account for 

wing the Results of a Principal Components Analysis 

e, th

be 
 Suppose that in the satisfaction study introduced 

p
fo
we want to extract? Note that as we extract conse
less and less variability. The decision of when to stop extracting factors basically 
depends on when there is only very little "random" variability left. The nature of 
this decision is arbitrary; however, various guidelines have been developed, and 
they are reviewed in Revie
under Eigenvalues and the Number-of- Factors Problem.  
Reviewing the Results of a Principal Components Analysis. Without further ado, 
let us now look at some of the standard results from a principal components 
analysis. To reiterate, we are extracting factors that account for less and less 
variance. To simplify matters, one usually starts with the correlation matrix, 
where the variances of all variables are equal to 1.0. Therefor e total variance 
in that matrix is equal to the number of variables. For example, if we have 10 
variables each with a variance of 1 then the total variability that can potentially 
extracted is equal to 10 times 1.
earlier we included 10 items to measure different aspects of satisfaction at home 
and at work. The variance accounted for by successive factors would be 
summarized as follows:  
STATISTICA 
FACTOR 
ANALYSIS 

Eigenvalues (factor.sta) 
Extraction: Principal components 

  
  

Value 
  

Eigenval 
% total 

Variance 
Cumul.

Eigenval
Cumul.

%



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6.118369 
1.800682 
.472888 
.407996 
.317222 
.293300 
.195808 
.170431 
.137970 
.085334 

61.18369 
18.00682 
4.72888 
4.07996 
3.17222 
2.93300 
1.95808 
1.70431 
1.37970 

.85334 

6.11837
7.91905
8.39194
8.79993
9.11716
9.41046
9.60626
9.77670
9.91467

10.00000

61.1837
79.1905
83.9194
87.9993
91.1716
94.1046
96.0626
97.7670
99.1467

100.0000

 
 
Eigenvalues 

 the second column (Eigenvalue) above, we find the variance on the new 
ctors that were successively extracted. In the third column, these values are 
xpressed as a percent of the total variance (in this example, 10). As we can 
ee, factor 1 accounts for 61 percent of the variance, factor 2 for 18 percent, and 
o on. As expected, the sum of the eigenvalues is equal to the number of 
ariables. The third column contains the cumulative variance extracted. The 
ariances extracted by the factors are called the eigenvalues. This name derives 
om the computational issues involved.  
igenvalues and the Number-of-Factors Problem 
ow that we have a measure of how much variance each successive factor 
xtracts, we can return to the question of how many factors to retain. As 
entioned earlier, by its nature this is an arbitrary decision. However, there are 

ome guidelines that are commonly used, and that, in practice, seem to yield the 
est results.  
he Kaiser criterion. First, we can retain only factors with eigenvalues greater 
an 1. In essence this is like saying that, unless a factor extracts at least as 
uch as the equivalent of one original variable, we drop it. This criterion was 

roposed by Kaiser (1960), and is probably the one most widely used. In our 
xample above, using this criterion, we would retain 2 factors (principal 
omponents).  
he scree test. A graphical method is the scree test first proposed by Cattell 
966). We can plot the eigenvalues shown above in a simple line plot.  
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Cattell suggests to find the place where the smooth decrease of eigenvalues 
a h

d

 ker, 

en 

 
ree test) sometimes retains too few; 

owever, both do quite well under normal conditions, that is, when there are 
latively few factors and many cases. In practice, an additional important aspect 

is the extent to which a solution is interpretable. Therefore, one usually examines 
re or fewer factors, and chooses the one that makes the 

t 
r 

ppears to level off to the rig t of the plot. To the right of this point, presumably, 
one finds only "factorial scree" -- "scree" is the geological term referring to the 

ebris which collects on the lower part of a rocky slope. According to this 
criterion, we would probably retain 2 or 3 factors in our example.  
Which criterion to use. Both criteria have been studied in detail (Browne, 1968; 
Cattell & Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; Tuc
Koopman & Linn, 1969). Theoretically, one can evaluate those criteria by 
generating random data based on a particular number of factors. One can th
see whether the number of factors is accurately detected by those criteria. Using 
this general technique, the first method (Kaiser criterion) sometimes retains too
many factors, while the second technique (sc
h
re

several solutions with mo
best "sense." We will discuss this issue in the context of factor rotations below.  
Principal Factors Analysis 
Before we continue to examine the different aspects of the typical output from a 
principal components analysis, let us now introduce principal factors analysis. Le
us return to our satisfaction questionnaire example to conceive of anothe
"mental model" for factor analysis. We can think of subjects' responses as being 
dependent on two components. First, there are some underlying common 



factors, such as the "satisfaction-with-hobbies" factor we looked at before. Each 
item measures some part of this common aspect of satisfaction. Second, each 
item also captures a unique aspect of satisfaction that is not addressed by an
other item.  
Communalities. If this model is correct, then we should not expect that the factors 
will extra

y 

ct all variance from our items; rather, only that proportion that is due to 
 

 
f al 

s for 

s 
ils about 

stimate; 
 

 
or analytic models is that in principal 

i ros 
a e 

the common factors and shared by several items. In the language of factor
analysis, the proportion of variance of a particular item that is due to common
actors (shared with other items) is called communality. Therefore, an addition

task facing us when applying this model is to estimate the communalitie
each variable, that is, the proportion of variance that each item has in common 
with other items. The proportion of variance that is unique to each item is then 
the respective item's total variance minus the communality. A common starting 
point is to use the squared multiple correlation of an item with all other items a
an estimate of the communality (refer to Multiple Regression for deta
multiple regression). Some authors have suggested various iterative "post-
solution improvements" to the initial multiple regression communality e
for example, the so-called MINRES method (minimum residual factor method;
Harman & Jones, 1966) will try various modifications to the factor loadings with 
the goal to minimize the residual (unexplained) sums of squares.  
Principal factors vs. principal components. The defining characteristic then that
distinguishes between the two fact
components analysis we assume that all variability in an item should be used in 
the analysis, while in principal factors analysis we only use the variability in an 
tem that it has in common with the other items. A detailed discussion of the p
nd cons of each approach is beyond the scope of this introduction (refer to th

general references provided in Principal components and Factor Analysis - 
Introductory Overview). In most cases, these two methods usually yield very 
similar results. However, principal components analysis is often preferred as a 
method for data reduction, while principal factors analysis is often preferred when 



the goal of the analysis is to detect structure (see Factor Analysis as a 
Classification Method).  
 
 

Factor Analysis as a Classification Method  
Let us now return to the interpretation of the standard results from a fact
analysis. We will henceforth use the term fac

or 
tor analysis generically to 

begin 
 of a 

ining 

encompass both principal components and principal factors analysis. Let us 
assume that we are at the point in our analysis where we basically know how 
many factors to extract. We may now want to know the meaning of the factors, 
that is, whether and how we can interpret them in a meaningful manner. To 
illustrate how this can be accomplished, let us work "backwards," that is, 
with a meaningful structure and then see how it is reflected in the results
factor analysis. Let us return to our satisfaction example; shown below is the 
correlation matrix for items pertaining to satisfaction at work and items perta
to satisfaction at home.  
STATISTICA 
FACTOR 
ANALYSIS 

Correlations (factor.sta) 
Casewise deletion of MD 

n=100 
Variable WORK_1 WORK_2 WORK_3 HOME_1 HOME_2 HOME_3 
WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

1.00 
.65 
.65 
.14 
.15 
.14 

.65 
1.00 

.73 

.14 

.18 

.24 

.65

.73
1.00

.16

.24

.25

.14

.14

.16
1.00

.66

.59

.15

.18

.24

.66
1.00

.73

.14 

.24 

.25 

.59 

.73 
1.00 

 
The work satisfaction items are highly correlated amongst themselves, and the 
home satisfaction items are highly intercorrelated amongst themselves. The 
correlations across these two types of items (work satisfaction items with home 
satisfaction items) is comparatively small. It thus seems that there are two 
relatively independent factors reflected in the correlation matrix, one related 
satisfaction at work, the other related to satisfaction at home.  

to 



Factor Loadings. Let us now perform a principal components analysis and look at 
the two-factor solution. Specifically, let us look at the correlations between the 
variables and the two factors (or "new" variables), as they are extracted by 
default; these correlations are also called factor loadings.  
STATISTICA 
FACTOR 
ANALYSIS 

Factor Loadings (Unrotated)
Principal components 

  
Variable Factor 1 Factor 2
WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

.654384 

.715256 

.741688 

.634120 

.706267 

.707446 

.564143

.541444

.508212
-.563123
-.572658
-.525602

Expl.Var 
Prp.Totl 

2.891313 
.481885 

1.791000
.298500

 
Apparently, the first factor is generally more highly correlated with the variables 

an the second factor. This is to be expected because, as previously described, 
ese factors are extracted successively and will account for less and less 

ariance overall.  
otating the Factor Structure. We could plot the factor loadings shown above in a 
catterplot

th
th
v
R
s . In that plot, each variable is represented as a point. In this plot we 
ould rotate the axes in any direction without changing the relative locations of 
e points to each other; however, the actual coordinates of the points, that is, 
e factor loadings would of course change. In this example, if you produce the 

lot it will be evident that if we were to rotate the axes by about 45 degrees we 
ight attain a clear pattern of loadings identifying the work satisfaction items and 
e home satisfaction items.  
otational strategies. There are various rotational strategies that have been 
roposed. The goal of all of these strategies is to obtain a clear pattern of 
adings, that is, factors that are somehow clearly marked by high loadings for 

ome variables and low loadings for others. This general pattern is also 
ometimes referred to as simple structure (a more formalized definition can be 

c
th
th
p
m
th
R
p
lo
s
s



found in most standard textbooks). Typical rotational strategies are varimax, 
, and equamax.  

e have described the idea of the varimax rotation before (see Extracting 
quartimax
W
Principal Components), and it can be applied to this problem as well. As before, 

w axes; put 
another way, we want to obtain a ctor that is as 
diverse as possible, lending itself to easier interpretation. Below is the table of 

we want to find a rotation that maximizes the variance on the ne
pattern of loadings on each fa

rotated factor loadings.  
STATISTICA 
FACTOR 
ANALYSIS 

Factor Loadings (Varimax normalized)
Extraction: Principal components 

  
Variable Factor 1 Factor 2
WORK_1 .862443 .051643
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

.890267 

.886055 

.062145 

.107230 

.140876 

.110351

.152603

.845786

.902913

.869995
Expl.Var 
Prp.Totl 

2.356684 
.392781 

2.325629
.387605

 
 

cture. Now the pattern is much clearer. As expected, 
s, the 

 We 

Interpreting the Factor Stru
the first factor is marked by high loadings on the work satisfaction item
second factor is marked by high loadings on the home satisfaction items.
would thus conclude that satisfaction, as measured by our questionnaire, is 
composed of those two aspects; hence we have arrived at a classification of the 
variables.  
Consider another example, this time with four additional Hobby/Misc variables 
added to our earlier example.  



 
In the plot of factor loadings above, 10 variables were reduced to three specific 
factors, a work factor, a home factor and a hobby/misc. factor. Note that factor 
loadings for each factor are spread out over the values of the other two factors 

 
 

en 

discussed have included in the satisfaction 
hat measured other, "miscellaneous" types of 

atisfaction. Let us assume that people's responses to those items were affected 
Factor 1) and at work (Factor 2). An 

h less-than- obvious 

but are high for its own values. For example, the factor loadings for the 
hobby/misc variables (in green) have both high and low "work" and "home" 
values, but all four of these variables have high factor loadings on the 
"hobby/misc" factor.  
Oblique Factors. Some authors (e.g., Catell & Khanna; Harman, 1976; Jennrich
& Sampson, 1966; Clarkson & Jennrich, 1988) have discussed in some detail the
concept of oblique (non-orthogonal) factors, in order to achieve more 
interpretable simple structure. Specifically, computational strategies have be
developed to rotate factors so as to best represent "clusters" of variables, without 
the constraint of orthogonality of factors. However, the oblique factors produced 
by such rotations are often not easily interpreted. To return to the example 

above, suppose we would 
questionnaire above four items t
s
about equally by their satisfaction at home (
oblique rotation will likely produce two correlated factors wit
meaning, that is, with many cross-loadings.  
Hierarchical Factor Analysis. Instead of computing loadings for often difficult to 
interpret oblique factors, you can use a strategy first proposed by Thompson 



(1951) and Schmid and Leiman (1957), which has been elaborated and 
popularized in the detailed discussions by Wherry (1959, 1975, 1984). In this 
strategy, you first identify clusters of items and rotate axes through those 
clusters; next the correlations between those (oblique) factors is computed, and 
that correlation matrix of oblique factors is further factor-analyzed to yield a set
orthogonal factors that divide the variability in the items into that due to
common variance (secondary factors), and unique variance due to the clusters of
similar variables (items) in the analysis (primary factors). To return to the 
example above, such a hierarchical analysis might yield the following factor 
loadings:  
STATISTICA 
FACTOR 
ANALYSIS 

Secondary & Primary Factor Loadings
  
  

 of 
 shared or 

 

Factor Second. 1 Primary 1 Primary 2
WORK_1 
WORK_2 

.4

.5
WORK_3 
HOME_1 
HOME_2 
HOME_3 
MISCEL_1 
MISCEL_2 
MISCEL_3 
MISCEL_4 

.565624 

.535812 

.615403 

.586405 

.780488 

.734854 

.776013 

.714183 

.656790

.117278

.079910

.065512

.466823

.464779

.439010

.455157

.115461

.630076 

.668880

.626730

.280141

.238512

.303672

.228351

83178 
70953 

.649499

.687056
.187074
.140627

 
 
Careful examination of these loadings would lead to the following conclusions:  

1. There is a general (secondary) satisfaction factor that likely affects all types of 

w 

 years, so-called confirmatory 

particular number of orthogonal or oblique factors, and then test whether the 

satisfaction measured by the 10 items;  
2. There appear to be two primary unique areas of satisfaction that can best be 

described as satisfaction with work and satisfaction with home life.  

Wherry (1984) discusses in great detail examples of such hierarchical analyses, and ho
meaningful and interpretable secondary factors can be derived.  
Confirmatory Factor Analysis. Over the past 15
methods have become increasingly popular (e.g., see Jöreskog and Sörbom, 
1979). In general, one can specify a priori, a pattern of factor loadings for a 



observed correlation matrix can be reproduced given these specifications. 
Confirmatory factor analyses can be performed via Structural Equation Modeling 
(SEPATH).  
 
 

Miscellaneous Other Issues and Statistics  
F
(o

actor Scores. We can estimate the actual values of individual cases 
bservations) for the factors. These factor scores are particularly useful when 

as identified 

r

m

 

1
 

 those variables cannot be inverted, and the factor 
ormed. In practice this happens when you are 

one wants to perform further analyses involving the factors that one h
in the factor analysis.  
Reproduced and Residual Cor elations. An additional check for the 
appropriateness of the respective number of factors that were extracted is to 
compute the correlation matrix that would result if those were indeed the only 
factors. That matrix is called the reproduced correlation matrix. To see how this 

atrix deviates from the observed correlation matrix, one can compute the 
difference between the two; that matrix is called the matrix of residual 
correlations. The residual matrix may point to "misfits," that is, to particular 
correlation coefficients that cannot be reproduced appropriately by the current
number of factors.  
Matrix Ill-conditioning. If, in the correlation matrix there are variables that are 

00% redundant, then the inverse of the matrix cannot be computed. For 
example, if a variable is the sum of two other variables selected for the analysis,
then the correlation matrix of
analysis can basically not be perf
attempting to factor analyze a set of highly intercorrelated variables, as it, for 
example, sometimes occurs in correlational research with questionnaires. Then 
you can artificially lower all correlations in the correlation matrix by adding a 
small constant to the diagonal of the matrix, and then restandardizing it. This 
procedure will usually yield a matrix that now can be inverted and thus factor-



analyzed; moreover, the factor patterns should not be affected by this proced
However, note that the resulting estimates are not exact.  
 
 

 
 
 
 
 
 
 
 
 
 
 

ure. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

General Discriminant Analysis (GDA) 
 
 

is (GDA) is called a "general" discriminant analysis 

Introductory Overview  

General Discriminant Analys
because it applies the methods of the general linear model (see also General 
Linear Models (GLM)) to the discriminant function analysis problem. A general 
overview of discriminant function analysis, and the traditional methods for fitting 
linear models with categorical dependent variables and continuous predictors, is 

Discriminant Analysisprovided in the context of . In GDA, the discriminant 

 
f General Regression Models (GRM)

function analysis problem is "recast" as a general multivariate linear model, 
where the dependent variables of interest are (dummy-) coded vectors that 
reflect the group membership of each case. The remainder of the analysis is then
performed as described in the context o , 

ntage of 

with a few additional features noted below.  
 
 

Advantages of GDA  

Specifying models for predictor variables and predictor effects. One adva
applying the general linear model to the discriminant analysis problem is t
can specify complex models for the set of predictor variables. For example, you 
can specify for a set of continuous predictor variables, a 

hat you 

sion polynomial regres
model, response surface model, factorial regression, or mixture surface 
regression (without an intercept). Thus, you could analyze a constrained mix
experimen

ture 
t (where the predictor variable values must sum to a constant), where 
ent variable of interest is categoricalthe depend  in nature. In fact, GDA does not 

icular restrictions on the type of predictor variable (categorical or 
continuous) that can be used, or the models that can be specified. However, 
when using categorical predictor variables, caution should be used (see "A note 

impose any part

http://www.statsoft.com/textbook/stmulreg.html
http://www.statsoft.com/textbook/stmulreg.html


of caution for models with categorical predictors, and other advanced techniques
below). 
Stepwise and best-subset analyses. In addition to the traditional stepw

" 

ise 
analyses for single continuous predictors provided in Discriminant Analysis, 
General Discriminant Analysis makes available the options for stepwise and 
best-subset analyses provided in General Regression Models (GRM). 
Specifically, you can request stepwise and best-subset selection of predictors or 
sets of predictors (in multiple-degree of freedom effects, involving categorical 
predictors), based on the F-to-enter and p-to-enter statistics (associated with the 

ultivariate Wilks' Lambdam  test statistic). In addition, when a cross-validation 
ample is specified, best-subset selection can also be based on the 

fter 

e 
 

s
misclassification rates for the cross-validation sample; in other words, a
estimating the discriminant functions for a given set of predictors, the 
misclassification rates for the cross-validation sample are computed, and the 
model (subset of predictors) that yields the lowest misclassification rate for th
cross-validation sample is chosen. This is a powerful technique for choosing
models that may yield good predictive validity, while avoiding overfitting of the 
data (see also Neural Networks). 
Desirability profiling of posterior classification probabilities. Another unique op
of General Discriminant Analysis (GDA) is the inclusion of 

tion 
bility Response/desira

profiler options. These options are described in some detail in the context of 
Experimental Design (DOE). In short, the predicted response values for eac
dependent variable are computed, and those values can be combined in
single desirability score. A graphical summary can then be produced to sho
"behavior" of the predicted responses and the d

h 
to a 

w the 
esirability score over the ranges 

ndent 
of values for the predictor variables. In GDA, you can profile both simple 
predicted values (like in General Regression Models) for the coded depe
variables (i.e., dummy-coded categories of the categorical dependent variable)
and you can also profile posterior prediction probabilities. This unique latter 
option allows you to evaluate how different values for the predictor variables 

, 
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affect the predicted classification of cases, and is particularly useful when 
interpreting the results for complex models that involve categorical and 
continuous predictors and their interactions.  
A note of caution for models with categorical predictors, and other advanced 
techniques. General Discriminant Analysis provides functionality that makes th
technique a general tool for 

is 
classification and data mining. However, most -- if 

not all -- textbook treatments of discriminant function analysis are limited t
simple and stepwise analyses with single degree of freedom continuous 
predictors. No "experience" (in the literature) exists regarding issues of 
robustness and effectiveness of these techniques, when they are generalized in
the manner provided in this very powerful analysis. The use of best-subset 
methods, in particular when used in conjunction with categorical predictors or
when using the misclassification rates in a cross-validation s

o 

 

 
ample for choosing 

the best subset of predictors, should be considered a heuristic search meth
rather than a statistical analysis technique. 
The use of categorical predictor variables. The use of 

od, 

categorical predictor 
variables or effects in a discriminant function analysis model may be (statisticall
questionable. For example, you can use GDA to analyze a 2 by 2 frequency 
table, by specifying one variable in the 2 by 2 table as the dependent variable, 
and the other as the predictor. Clearly, the (ab)use of GDA in this manner would
be silly (although, interestingly, in most cases you will get results that are 
generally compatible with those you would get by computing a simple 

y) 

 

 Chi-square
test for the 2 by 2 table). On the other hand, if you only consider the paramet
estimates computed by GDA as the least squares solution to a set of linear 
(prediction) equations, then the use of categorical predictors in GDA is fu
justified; moreover, it is not uncommon in applied research to be confron
a mixture of continuous and categorical predicto

er 

lly 
ted with 

rs (e.g., income or age which are 
, along with occupational status, which is categorical) for predicting a 

ndent variable. In those cases, it can be very instructive to 
consider specific models involving the categorical predictors, and possibly 

continuous
categorical depe
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interactions between categorical and continuous predictors for classifying 
observations. However, to reiterate, the use of categorical predictor variable
discriminant function analysis is not widely documented, and you should proce
cautiously before accepting the results of statistical significance tests, and be
drawing final conclusions f

s in 
ed 

fore 
rom your analyses. Also remember that there are 

alternative methods available to perform similar analyses, namely, the 
multinomial logit models available in Generalized Linear Models (GLZ), and the 
methods for analyzing multi-way frequency tables in Log-Linear.  
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General Linear Models (GLM) 
 
 

This chapter describes the use of the general linear model in a wide variety of statistical 
analyses. If you are unfamiliar with the basic methods of ANOVA and regression in 
linear models, it may be useful to first review the basic information on these topics in 
Elementary Concepts. A detailed discussion of univariate and multivariate ANOVA 
techniques can also be found in the ANOVA/MANOVA chapter.  

Basic Ideas: The General Linear Model  
The following topics summarize the historical, mathematical, and computational 

undations for the general linear model. For a basic introduction to ANOVA 
ANOVA, ANCOVA) techniques, refer to ANOVA/MANOVA

fo
(M ; for an introduction 
to multiple regression, see Multiple Regression; for an introduction to the design 
an analysis of experiments in applied (industrial) settings, see Experimental 
Design.  

Historical Background  

The roots of the general linear model surely go back to the origins of 
mathematical thought, but it is the emergence of the theory of algebraic 
invariants in the 1800's that made the general linear model, as we know it toda
possible. The theory of algebraic invariants developed from the groundbreaking 
work of 19th century mathematicians such as Gauss, Boole, Cayley, and 

ylvester. The theory seeks to identify those quantities in systems of equations 
which remain unchanged under linear tran

y, 

S
sformations of the variables in the 

y and 

ts, 
nts. 

o 

system. Stated more imaginatively (but in a way in which the originators of the 
theory would not consider an overstatement), the theory of algebraic invariants 
searches for the eternal and unchanging amongst the chaos of the transitor
the illusory. That is no small goal for any theory, mathematical or otherwise.  
The wonder of it all is the theory of algebraic invariants was successful far 
beyond the hopes of its originators. Eigenvalues, eigenvectors, determinan
matrix decomposition methods; all derive from the theory of algebraic invaria
The contributions of the theory of algebraic invariants to the development of 
statistical theory and methods are numerous, but a simple example familiar t
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even the most casual student of statistics is illustrative. The correlation betwe
two variables is unchanged by linear transformations of either or both variables. 
We probably take this property of correlation coefficients for granted, but
would data analysis be like if we did not have statistics that are invariant to the 
scaling of the variables involved? Some thought on this question should co
you that without the theory of algebraic invariants, the development of useful 
statistical techniques would be nigh impossible.  
The development of the linear regression model in the late 19th century, an
development of correlational methods shortly thereafter, are clearly direct 
outgrowths of the theo

en 

 what 

nvince 

d the 

ry of algebraic invariants. Regression and correlational 

n 
methods, in turn, serve as the basis for the general linear model. Indeed, the 
general linear model can be seen as an extension of linear multiple regressio
for a single dependent variable. Understanding the multiple regression model
fundamental to understanding the general linear model, so we will look at the 
purpose of multiple regression, the computational algorithms used t
regression proble

 is 

o solve 
ms, and how the regression model is extended in the case of 

d the general linear model. A basic introduction to multiple regression methods an
the analytic problems to which they are applied is provided in the Multiple 
Regression.  
 
 

The Purpose of Multiple Regression  

The general linear model can be seen as an extension of linear multiple 
regression for a single dependent variable, and understanding the multiple 
regression model is fundamental to understanding the general linear model. Th
general purpose of 

e 
multiple regression (the term was first used by Pearson, 

1908) is to quantify the relationship between several independent or predictor 
variables and a dependent or criterion variable. For a detailed introduction to 
multiple regression, also refer to the Multiple Regression chapter. For example, a
real estate agent might record for each lis

 
ting the size of the house (in square 



feet), the number of bedrooms, the average income in the respective 
neighborhood according to census data, and a subjective rating of appeal of t
house. Once this information has been compiled for various 

he 
houses it would be 

teresting to see whether and how these measures relate to the price for which 
 house is sold. For example, one might learn that the number of bedrooms is a 

hich a house sells in a particular neighborhood 
tliers," 

  
essionals customarily use multiple regression

in
a
better predictor of the price for w
than how "pretty" the house is (subjective rating). One may also detect "ou
for example, houses that should really sell for more, given their location and 
characteristics.
Personnel prof  procedures to 

es to contribute to the value of a job. The 
lyst then usually conducts a salary survey among comparable 

respective characteristics 
imensions) for different positions. This information can be used 

determine equitable compensation. One can determine a number of factors or 
dimensions such as "amount of responsibility" (Resp) or "number of people to 
supervise" (No_Super) that one believ
personnel ana
companies in the market, recording the salaries and 
(i.e., values on d
in a multiple regression analysis to build a regression equation of the form:
Salary = .5

  
*Resp + .8*No_Super  

t can 
tual 
 

sion line) or overpaid 
bove the regression line), or paid equitably.  
 the social and natural sciences multiple regression

Once this so-called regression equation has been determined, the analys
now easily construct a graph of the expected (predicted) salaries and the ac
salaries of job incumbents in his or her company. Thus, the analyst is able to
determine which position is underpaid (below the regres
(a
In  procedures are very widely 

sed in research. In general, multiple regressionu  allows the researcher to ask 
(and hopefully answer) the general question "what is the best predictor of ...". For

rchers might want to learn what are the best 
hich 
 

 
example, educational resea
predictors of success in high-school. Psychologists may want to determine w
personality variable best predicts social adjustment. Sociologists may want to



find out which of the multiple social indicators best predict whether or not a n
immigrant group will adapt and be absorbed into society.  
 

ew 

e 
d

pressed in terms of or as a function of a constant (b0) and a slope (b1) 

d as 
 lead us to predict 

ince, 1+.02*130=3.6). In the multiple regression

 

Computations for Solving the Multiple Regression Equation  

A one dimensional surface in a two dimensional or two-variable space is a lin
efined by the equation Y = b0 + b1X. According to this equation, the Y variable 

can be ex
times the X variable. The constant is also referred to as the intercept, and the 
slope as the regression coefficient. For example, GPA may best be predicte
1+.02*IQ. Thus, knowing that a student has an IQ of 130 would
that her GPA would be 3.6 (s  

r 

e could construct a linear equation containing all 

case, when there are multiple predictor variables, the regression surface usually 
cannot be visualized in a two dimensional space, but the computations are a 
straightforward extension of the computations in the single predictor case. Fo
example, if in addition to IQ we had additional predictors of achievement (e.g., 
Motivation, Self-discipline) w
those variables. In general then, multiple regression procedures will estimate 
linear equation of the form:  
Y = b

a 

of 

0 + b1X1 + b2X2 + ... + bkXk  
where k is the number of predictors. Note that in this equation, the regression 
coefficients (or b1 … bk coefficients) represent the independent contributions 
each in dependent variable to the prediction of the dependent variable. Anot
way to express this fact is to say that, for example, variable X

her 
 1 is correlated with

the Y variable, after controlling for all other independent variables. This type
correlation is also referred to as a 

 of 
partial correlation (this term was fi

ule, 1907). Perhaps the following example will clarify this issue. One would 
rst used by 

Y
 

le Gender into the multiple regression

probably find a significant negative correlation between hair length and height in
the population (i.e., short people have longer hair). At first this may seem odd; 
however, if we were to add the variab  
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equation, this correlation would probably disappear. This is because women
the average, have longer hair than men; they also are shorter on the average 
than men. Thus, after we remove this gender difference by entering Gender into
the equation, the relationship between hair length and height disappears 
because hair length does not make any unique contribution to the prediction of 
height, above and beyond what it shares in the prediction with variable Gend
Put another way, after controlling for the variable Gender, the 

, on 

 

er. 
partial correlation 

between hair length and height is zero.  
The regression surface (a line in simple regression, a plane or higher-
dimensional surface in multiple regression) expresses the best prediction of the 
dependent variable (Y), given the independent variables (X's). However
rarely (if ever) perfectly predictable, and usually there is substantial variation of 
the observed poin

, nature is 

ts from the fitted regression surface. The deviation of a 

near 

f the observed points from that surface are minimized. 

particular point from the nearest corresponding point on the predicted regression 
surface (its predicted value) is called the residual value. Since the goal of li
regression procedures is to fit a surface, which is a linear function of the X 
variables, as closely as possible to the observed Y variable, the residual values 
for the observed points can be used to devise a criterion for the "best fit." 
Specifically, in regression problems the surface is computed for which the sum of 
the squared deviations o
Thus, this general procedure is sometimes also referred to as least squares 
estimation. (see also the description of weighted least squares estimation).  
The actual computations involved in solving regression problems can be 
expressed compactly and conveniently using matrix notation. Suppose that there 
are n observed values of Y and n associated observed values for each of k 
different X variables. Then Yi, Xik, and ei can represent the ith observation of the 
Y variable, the ith observation of each of the X variables, and the ith unknown 
residual value, respectively. Collecting these terms into matrices we have  



 
The multiple regression model in matrix notation then can be expressed as  
Y = Xb + e  
where b is a column vector of 1 (for the intercept) + k unknown regression 
coefficients. Recall that the goal of multiple regression is to minimize the sum 
the squared residu

of 
als. Regression coefficients that satisfy this criterion are found 

h is of full rank) there is a unique solution to the 
normal equations. Premultiplying both sides of the matrix formula for the normal 

h 

 rows and 

 
conformable (i.e., multipliable) matrices, and (3) matrix inversion, which involves 
finding the matrix equivalent of a numeric reciprocal, that is, the matrix that 
satisfies  

by solving the set of normal equations  
X'Xb = X'Y  
When the X variables are linearly independent (i.e., they are nonredundant, 
yielding an X'X matrix whic

equations by the inverse of X'X gives  
(X'X)-1X'Xb = (X'X)-1X'Y  
or  
b = (X'X)-1X'Y  
This last result is very satisfying in view of its simplicity and its generality. Wit
regard to its simplicity, it expresses the solution for the regression equation in 
terms just 2 matrices (X and Y) and 3 basic matrix operations, (1) matrix 
transposition, which involves interchanging the elements in the
columns of a matrix, (2) matrix multiplication, which involves finding the sum of 
the products of the elements for each row and column combination of two

A-1AA=A  
for a matrix A.  



It took literally centuries for the ablest mathematicians and statisticians to find a 

the multiple regression

satisfactory method for solving the linear least square regression problem. But 
their efforts have paid off, for it is hard to imagine a simpler solution.  
With regard to the generality of  model, its only notable 

lelimitations are that (1) it can be used to analyze only a single dependent variab , 

not 
(2) it cannot provide a solution for the regression coefficients when the X 
variables are not linearly independent and the inverse of X'X therefore does 
exist. These restrictions, however, can be overcome, and in doing so the multiple 
regression model is transformed into the general linear model.  
 
 

Extension of Multiple Regression to the General Linear Model  
One way in which the general linear model differs from the multiple regression 
model is in terms of the number of dependent variables that can be analyzed. 
The Y vector of n observations of a single Y variable can be replaced by a Y 
matrix of n observations of m different Y b vector of 
regression coefficients for a single Y variable can be replaced by a b matrix of 
regression coefficients, with one vector of b coefficients for each of the m 

 variables. Similarly, the 

dependent variables. These substitutions yield what is sometimes called the 
multivariate regression model, but it should be emphasized that the matrix 
formulations of the multiple and multivariate regression models are identical, 
except for the number of columns in the Y and b matrices. The method for 
solving for the b coefficients is also identical, that is, m different sets of 
regression coefficients are separately found for the m different dependent 
variables in the multivariate regression model.  
The general linear model goes a step beyond the multivariate regression model 
by allowing for linear transformations or linear combinations of multiple 
dependent variables. This extension gives the general linear model important 
advantages over the multiple and the so-called multivariate regression models, 
both of which are inherently univariate (single dependent variable) methods. One 



advantage is that multivariate tests of significance can be employed when 
responses on multiple dependent variables are correlated. Separate univariate 
tests of significance for correlated dependent variables are not independen
may not be appropriate. 

t and 
Multivariate tests of significance of independent linea

combinations of multiple 
r 

dependent variables also can give insight into which 
dimensions of the response variables are, and are not, related to the predictor
variables. Another advantage is the ability to analyze effects of repeated 
measure factors. Repeated measure designs, or within-subject designs, hav
traditionally been analyzed using ANOVA techniques. Linear combinations of 
responses reflecting a repeated measure effect (for example, the dif

 

e 

ference of 
responses on a measure under differing conditions) can be constructed and 

A del differs from the 

tested for significance using either the univariate or multivariate approach to 
analyzing repeated measures in the general linear model.  

 second important way in which the general linear mo
multiple regression model is in its ability to provide a solution for the norma
equations when the X variables are not linearly independent and the inverse of 
X'X does not exist. Redundancy of the X variables may be incidental (e.g., tw
predictor variables might happen to be perfectly correlated in a small data set),
accidental (e.g., two copies of the same variable might unintentionally be used 
an analysis) or designed (e.g., indicator variables with exactly opposite values 
might be used in the analysis, as when both Male and Female predictor varia
are used in representing Gender). Findi

l 

o 
 
in 

bles 
ng the regular inverse of a non-full-rank 

matrix is reminiscent of the problem of finding the reciprocal of 0 in ordinary 
arithmetic. No such inverse or reciprocal exists because division by 0 is not 
permitted. This problem is solved in the general linear model by using a 
generalized inverse of the X'X matrix in solving the normal equations. A 
generalized inverse is any matrix that satisfies  
AA-A = A  
for a matrix A.  



A generalized inverse is unique and is the same as the regular inverse only if th
matrix A is full rank. A gener

e 
alized inverse for a non-full-rank matrix can be 

computed by the simple expedient of zeroing the elements in redundant rows 
and columns of the matrix. Suppose that an X'X matrix with r non-redundant 
columns is partitioned as  

 
where A11 is an r by r matrix of rank r. Then the regular inverse of A11 exists and 
a generalized inverse of X'X is  

 
where each 0 (null) matrix is a matrix of 0's (zeroes) and has the same 
dimensions as the corresponding A matrix.  
In practice, however, a particular generalized inverse of X'X for finding a solu
to the norm

tion 
al equations is usually computed using the sweep operator 

(Dempster, 1960). This generalized inverse, called a g2 inverse, has two 
ts in redundant rows is 

Another is that partitioning or reordering of the columns of X'X is 

d 
 to the normal equations. This can make it difficult 

to understand the nature of the relationships of the predictor variables to 
responses on the dependent variables

important properties. One is that zeroing of the elemen
unnecessary. 
unnecessary, so that the matrix can be inverted "in place."  
There are infinitely many generalized inverses of a non-full-rank X'X matrix, an
thus, infinitely many solutions

, because the regression coefficients can 
change depending on the particular generalized inverse chosen for solving the 

because of the invariance 
any results obtained using the general linear model.  

es 

ed to 

normal equations. It is not cause for dismay, however, 
properties of m
A simple example may be useful for illustrating one of the most important 
invariance properties of the use of generalized inverses in the general linear 
model. If both Male and Female predictor variables with exactly opposite valu
are used in an analysis to represent Gender, it is essentially arbitrary as to which 
predictor variable is considered to be redundant (e.g., Male can be consider



be redundant with Female, or vice versa). No matter which predictor variable is 
considered to be redundant, no matter which corresponding generalized inverse 

ion is used in solving the normal equations, and no matter which resulting regress
equation is used for computing predicted values on the dependent variables, the
predicted values and the corresponding residuals for males and females wil
unchanged. In using the general linear model, one must keep in mind that finding 
a particular arbitrary solution to the normal equations is primarily a means to the
end of accounting for responses 

 
l be 

 
on the dependent variables, and not necessarily 

an end in itself.  
 
 

Sigma-Restricted and Overparameterized Model  
Unlike the multiple regression model, which is usually applied to cases where the 
X variables are continuous, the general linear model is frequently applied to 
analyze any ANOVA or MANOVA design with categorical predictor variables, an
ANCOVA or MANCOVA design with both categorical and continuous predictor 
variables, as well as any multiple or multivariate regression design with 
continuous predictor variables. To illustrate, Gender is clearly a nominal level 
variable (anyone who attempts to rank order the sexes on any dimension does 
so at his or her own peril in today's world).

y 

 There are two basic methods by which 
 or more (non-offensive) predictor variables, and Gender can be coded into one

analyzed using the general linear model.  
Sigma-restricted model (coding of categorical predictors). Using the first metho
males and females can be assigned any two arbitrary, but distinct values on a 
single predictor variable. The values on the resulting

d, 

 predictor variable will 
females. Typically, the 

ther 

 

represent a quantitative contrast between males and 
values corresponding to group membership are chosen not arbitrarily but ra
to facilitate interpretation of the regression coefficient associated with the 
predictor variable. In one widely used strategy, cases in the two groups are 
assigned values of 1 and -1 on the predictor variable, so that if the regression
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coefficient for the variable is positive, the group coded as 1 on the predictor 
variable will have a higher predicted value (i.e., a higher group mean) on the 
dependent variable, and if the regression coefficient is negative, the group coded 

predicted value on the as -1 on the predictor variable will have a higher 
dependent variable. An additional advantage is that since each group is coded 
with a value one unit from zero, this helps in interpreting the magnitude of 
differences in predicted values between groups, because regression coefficients
reflect the units of change in the 

 
dependent variable for each unit change in the 

predictor variable. This coding strategy is aptly called the sigma-restricted 
parameterization, because the values used to represent group membership (1
and -1) sum to zero.  
Note that the sigma-restricted parameterization of 

 

categorical predictor variables 
usually leads to X'X matrices which do not require a generalized inverse f
solving the normal equations. Potentially redundant information, such as the 
characteristics of maleness and femaleness, is literally reduced to 

or 

full-rank by 
creating quantitative contrast variables representing differences in 
characteristics.  
Overparameterized model (coding of categorical predictors). The second basic 
method for recoding categorical predictors is the indicator variable approach. In 
this method a separate predictor variable is coded for each group identified by a 
categorical predictor variable. To illustrate, females might be assigned a value of 
1 and males a value of 0 on a first predictor variable identifying membership in 
the female Gender group, and males would then be assigned a value of 1 a
females a value of 0 on a second predictor variable identifying membership in th
male Gender group. Note that this method of recoding 

nd 
e 

categorical predictor 
variables will almost always lead to X'X matrices with redundant columns
thus require a generalized inverse for solving the normal equations. As such, th
method is often called the overparameterized model for representing 

, and 
is 

categorical 
predictor variables, because it results in more columns in the X'X than are 
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necessary for determining the relationships of categorical predictor variables t
responses on the 

o 
dependent variables.  

True to its description as general, the general linear model can be used to 
perform analyses with categorical predictor variables which are coded using 

Y
el and M 
pendent 

either of the two basic methods that have been described.  
 
 

Summary of Computations  

To conclude this discussion of the ways in which the general linear model 
extends and generalizes regression methods, the general linear model can be 
expressed as  

M = Xb + e  
Here Y, X, b, and e are as described for the multivariate regression mod
is an m x s matrix of coefficients defining s linear transformation of the de
variables. The normal equations are  
X'Xb = X'YM  
and a solution for the normal equations is given by  

erse if X'X contains redundant 
columns.  
Add a provision for analyzing linear combinations of multiple dependent

b = (X'X)-X'YM  
Here the inverse of X'X is a generalized inv

 
variables, add a method for dealing with redundant predictor variables and 
recoded categorical predictor variables, and the major limitations of multiple 
regression are overcome by the general linear model.  
 
 
 

 

ar 
model. In fact, the flexibility of the general linear model allows it to handle so 

Types of Analyses  
A wide variety of types of designs can be analyzed using the general line
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many different types of designs that it is difficult to develop simple typologies of 
the ways in which these designs might differ. Some general ways in which 
designs might differ can be suggested, but keep in mind that any particular 
design can be a "hybrid" in the sense that it could have combinations of features 
of a number of different types of designs.  
In the following discussion, references will be made to the design matrix X, as
well as 

 
sigma-restricted and overparameterized model coding. For an 

 to the section entitled Basic Ideas: The explanation of this terminology, refer
General Linear Model, or, for a brief summary, to the Summary of computations 
section.  
A basic discussion to univariate and multivariate ANOVA techniques can also be 
found in the ANOVA/MANOVA chapter; a discussion of mutiple regression 
methods is also provided in the Multiple Regression chapter.  
Between-Subject Designs   
Overview. The levels or values of the predictor variables in an analysis describe 
the differences between the n subjects or the n valid cases that are analyzed. 
Thus, when we speak of the between subject design (or simply the between 
design) for an analysis, we are referring to the nature, number, and arrangement 
of the predictor variables.  
Concerning the nature or type of predictor variables, between designs which 
contain only categorical predictor variables can be called ANOVA (analysis of 

ntinuous predictor 
tween designs which contain 

ous predictors are always 

variance) designs, between designs which contain only co
variables can be called regression designs, and be
both categorical and continuous predictor variables can be called ANCOVA 
(analysis of covariance) designs. Further, continu
considered to have fixed values, but the levels of categorical predictors can
considered to be fixed or to vary randomly. Designs which contain 

 be 
random 

categorical factors are called mixed-model designs (see the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter).  



Between designs may involve only a single predictor variable and therefore be 
described as simple (e.g., simple regression) or may employ numerous p
variables (e.g., 

redictor 
multiple regression).  

Concerning the arrangement of predictor variables, some between desig
employ only "main effect" or first-order terms for predictors, that is, the v
different predictor variables are independent and raised only to the first power. 
Other between designs may employ higher-order terms for predictors by
the values for the original predictor variables to a power greater than 1 (e.g., in 
polynomial regression designs), or by forming products of different predictor
variables (i.e., 

ns 
alues for 

 raising 

 
interaction terms). A common arrangement for ANOVA designs

the full-factorial design, in which every combination of levels for each of the 
 is 

categorical predictor variables is represented in the design. Designs with s
but not all combinations of levels for each of the 

ome 
categorical predictor variables 

are aptly called fractional factorial designs. Designs with a hierarchy of 
combinations of levels for the different categorical predictor variables are called 
nested designs.  

rrangement of predictor 
ypes of between 

These basic distinctions about the nature, number, and a
variables can be used in describing a variety of different t
designs. Some of the more common between designs can now be described.  
One-Way ANOVA. A design with a single categorical predictor variable is called 
a one-way ANOVA design. For example, a study of 4 different fertilizers used on 
different individual plants could be analyzed via one-way ANOVA, with four levels 
for the factor Fertilizer.  
In genera, consider a single categorical predictor variable A with 1 case in each 
of its 3 categories. Using the sigma-restricted coding of A into 2 quantitative 
contrast variables, the matrix X defining the between design is  

 



That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the 
intercept), the case in group A1 is assigned a value of 1 on X1 and a value 0 o
X

n 
and 

he X 

2, the case in group A2 is assigned a value of 0 on X1 and a value 1 on X2, 
the case in group A3 is assigned a value of -1 on X1 and a value -1 on X2. Of 
course, any additional cases in any of the 3 groups would be coded similarly. If 
there were 1 case in group A1, 2 cases in group A2, and 1 case in group A3, t
matrix would be  

 
where the first subscript for A gives the replicate number for the cases in each 
group. For brevity, replicates usually are not shown when describing ANOVA 
design matrices.  
Note that in one-way designs with an equal number of cases in each group, 
sigma-restricted coding yields X1 … Xk variables all of which have means of 0.  
Using the overparameterized model to represent A, the X matrix defining the 
between design is simply  

 
These simple examples show that the X matrix actually serves two purposes. It 
specifies (1) the coding for the levels of the original predictor varia
variables used in the analysis as well as (2) the nature, number, and 
arrangement of the X variables, that is, the between design.  
Main Effect ANOVA. Main effect ANOVA designs contain separate one-way
ANOVA designs for 2 or more 

bles on the X 

 
categorical predictors. A good example of main 

effect ANOVA would be the typical analysis performed on screening designs as 
described in the context of the Experimental Design chapter.  
Consider 2 categorical predictor variables A and B each with 2 categories. Us
the 

ing 
sigma-restricted coding, the X matrix defining the between design is  



 
Note that if there are equal numbers of cases in each group, the sum of the 

X1 and X2 columns is 0, for example, with 1 case 
-1*1)+(-1*-1)=0. Using the overparameterized model

cross-products of values for the 
in each group (1*1)+(1*-1)+( , 
the matrix X defining the between design is  

 
Comparing the two types of coding, it can be seen that the overparameterized 
coding takes almost twice as many values as the sigma-restricted coding to 
convey the same information.  
Factorial ANOVA. Factorial ANOVA designs contain X variables representing 
combinations of the levels of 2 or more categorical predictors (e.g., a stud

oys and girls in four age groups, resulting in a 2 (Gender) x
y of 

b  4 (Age Group) 
of design). In particular, full-factorial designs represent all possible combinations 

the levels of the categorical predictors. A full-factorial design with 2 categorical 
predictor variables A and B each with 2 levels each would be called a 2 x 2 full-
factorial design. Using the sigma-restricted coding, the X matrix for this de
would be  

sign 

 
Several features of this X matrix deserve comment. Note that the X1 and X2 
columns represent main effect contrasts for one variable, (i.e., A and B, 

inations of the levels of A 
and B. Note also that the values for X3 are products of the corresponding values 

respectively) collapsing across the levels of the other variable. The X3 column 
instead represents a contrast between different comb

http://www.statsoft.com/textbook/stanman.html
http://www.statsoft.com/textbook/stanman.html


for X1 and X2. Product variables such as X3 represent the multiplicative or 
nteractioni  effects of their factors, so X  would be said to represent the 2-way3  
interaction of A and B. The relationship of such product variables to the 
dependent variables indicate the interactive influences of the factors on 
responses above and beyond their independent (i.e., main effect) influences on 
responses. Thus, factorial designs provide more information about the 
relationships between categorical predictor variables and responses on the 
dependent variables than is provided by corresponding one-way or main effect 
designs.  
When many factors are being investigated, however, full-factorial designs 
ometimes require more data than reasonably can be collected to represent all 

possible combinations of levels of the factors, and high-order 
s

interactions 
between many factors can become difficult to interpret. With many factors, a
useful alternative to the full-factorial design is the fractional factorial design. As 

 

th 3 an example, consider a 2 x 2 x 2 fractional factorial design to degree 2 wi
categorical predictor variables each with 2 levels. The design would includ
main effects for each variable, and all 2-way 

e the 
interactions between the three 

variables, but would not include the 3-way interaction between all three variables
Using the 

. 
overparameterized model, the X matrix for this design is  

 
The 2-way interactions are the highest degree effects included in the design. 
These types of designs are discussed in detail the 2**(k-p) Fractional Factorial 
Designs section of the Experimental Design chapter.  
Nested ANOVA Designs. Nested designs are similar to fractional factorial 
designs in that all possible combinations of the levels of the categorical predictor 



variables are not represented in the design. In nested designs, however, the
omitted effec

 
ts are lower-order effects. Nested effects are effects in which the 

nested variables never appear as main effects. Suppose that for 2 variables A 
nd B with 3 and 2 levels, respectively, the design includes the main effect for A 

and the effect of B 
a

nested within the levels of A. The X matrix for this design
using the 

 
overparameterized model is  

 
Note that if the sigma-restricted coding were used, there would be only 2 
columns in the X matrix for the B nested within A effect instead of the 6 c
in the X matrix for this effect when the 

olumns 
overparameterized model coding is used

(i.e., columns X
 

4 through X9). The sigma-restricted coding method is overly
restrictive for 

-
nested designs, so only the overparameterized model is used to 

represent nested designs.  
Balanced ANOVA. Most of the between designs discussed in this section can be 
analyzed much more efficiently, when they are balanced, i.e., when all cells in 
the ANOVA design have equal n, when there are no missing cells in the design, 
and, if nesting is present, when the nesting is balanced so that equal numbers
levels of the factors that are nested appear in the levels of the factor(s) that th
are 

 of 
ey 

nested in. In that case, the X'X matrix (where X stands for the design matrix) 
s a diagonal matrix, and many of the computations necessary to compute the 
ANOVA results (such as 
i

matrix inversion) are greatly simplified.  
Simple Regression. Simple regression designs involve a single continuous 
predictor variable. If there were 3 cases with values on a predictor variable P of, 
say, 7, 4, and 9, and the design is for the first-order effect of P, the X matrix 
would be  



 
and using P for X1 the regression equation would be  
Y = b0 + b1P  
If the simple regression design is for a higher-order effect of P, say the quadratic 
effect, the values in the X1 column of the design matrix would be raised to th
2nd power, that is, squared  

e 

 
nd using Pa 2 for X1 the regression equation would be  

Y = b0 + b1P2  
The sigma-restricted and overparameterized coding methods do not apply to 
simple regression designs and any other design containing only continuous 
predictors (since there are no categorical predictors to code). Regardless of 
which coding method is chosen, values on the continuous predictor variable
raised to the desired power and used as the values for the X variables. No 
recoding is performed. It is therefore sufficient, in describing regression 
to simply describe the regression equation without explicitly describing th

s are 

designs, 
e design 

matrix X.  
Multiple Regression. Multiple regression designs are to continuous predictor 
variables as main effect ANOVA designs are to categorical predictor variables, 
that is, multiple regression designs contain the separate simple regression 

esigns for 2 or more continuous predictor variables. The regression equation
a 
d  for 

multiple regression design for the first-order effects of 3 continuous predictor 
variables P, Q, and R would be  
Y = b  + b P + b Q + b R  
Factorial Regression. Factorial regression designs are similar to 

0 1 2 3

factorial ANOVA 
 of the levels of the factors are represented in the 

design. In factorial regression designs, however, there may be many more such 
designs, in which combinations



possible combinations of distinct levels for the continuous predictor variables 

 

than there are cases in the data set. To simplify matters, full-factorial regression 
designs are defined as designs in which all possible products of the continuous 
predictor variables are represented in the design. For example, the full-factorial 
regression design for two continuous predictor variables P and Q would include
the main effects (i.e., the first-order effects) of P and Q and their 2-way P by Q 
interaction effect, which is represented by the product of P and Q score
case. The regression equation would be  
Y = b

s for each 

 
c  include the main effects and all 

0 + b1P + b2Q + b3P*Q  
Factorial regression designs can also be fractional, that is, higher-order effects 
can be omitted from the design. A fractional factorial design to degree 2 for 3
ontinuous predictor variables P, Q, and R would

2-way interactions between the predictor variables  
Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  
Polynomial Regression. Polynomial regression designs are designs which 
contain main effects and higher-order effects for the continuous predictor 
variables but do not include interaction effects between predictor variables. For 
example, the polynomial regression design to degree 2 for three continuous 
predictor variables P, Q, and R would include the main effects (i.e., the firs
effects) of P, Q, and R and their quadratic (i.e., second-order) effects, but not the 
2-way 

t-order 

interaction effects or the P by Q by R 3-way interaction effect.  
Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2  

tain all effects up to the same 
 cubic 

he design for some predictor variables, and effects 
 be included in the design for other predictor variables.  

n. Quadratic response surface regression designs 
gn with characteristics of both polynomial regression

Polynomial regression designs do not have to con
degree for every predictor variable. For example, main, quadratic, and
effects could be included in t
up the fourth degree could
Response Surface Regressio
are a hybrid type of desi  
designs and fractional factorial regression designs. Quadratic response surface
regression designs contain all the same effects of polynomial regression designs 

 



to degree 2 and additionally the 2-way interaction effects of the predictor 
variables. The regression equation for a quadratic response surface regression 
design for 3 continuous predictor variables P, Q, and R would be  
Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2 + b7P*Q + b8P*R + b9Q*R  
These types of designs are commonly employed in applied research (e.g., in 
industrial experimation), and a detailed discussion of these types of designs is 
also presented in the Experimental Design chapter (see Central composite 
designs).  
Mixture Surface Regression. Mixture surface regression designs are identical to 

ctorial regressionfa  designs to degree 2 except for the omission of the intercept. 
ixtures, as the name implies, add up to a constant value; the sum of the 

proportions of ingredients in different recipes for some material all must add up 
rial is redundant with the 

M

100%. Thus, the proportion of one ingredient in a mate
remaining ingredients. Mixture surface regression designs deal with this 
redundancy by omitting the intercept from the design. The design matrix for a 
mixture surface regression design for 3 continuous predictor variables P, Q, and
R would be  
Y = b

 

s of designs are commonly employed in applied research (e.g., in 
ion), and a detailed discussion of these types of designs is 

1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  
These type
industrial experimentat
also presented in the Experimental Design chapter (see Mixture designs and 
triangular surfaces).  
Analysis of Covariance. In general, between designs which contain both 
categorical and continuous predictor variables can be called ANCOVA desi
Traditionally, however, ANCOVA designs have referred more specifically to 
designs in which the first-order effects of one or more continuous predictor 
variables are taken into account when assessing the effects of one or more 

gns. 

categorical predictor variables. A basic introduction to analysis of covariance can 
NCOVA)also be found in the Analysis of covariance (A  topic of the 

ANOVA/MANOVA chapter.  



To illustrate, suppose a researcher wants to assess the influences of a 
categorical predictor variable A with 3 levels on some outcome, and that 
measurements on a continuous predictor variable P, known to covary with
outcome, are available. If the data for the analysis are  

 the 

 
then the sigma-restricted X matrix for the design that includes the separate first-
order effects of P and A would be  

 
he bT 2 and b3 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3  
represent the influences of group membership on the A categorical predictor 
variable, controlling for the influence of scores on the P continuous predictor
variable. Similarly, the b

 

s of group membership on A. This traditional 
s a more sensitive test of the influence of A to the extent 

e.  
n using the overparameterized model

1 coefficient represents the influence of scores on P 
controlling for the influence
ANCOVA analysis give
that P reduces the prediction error, that is, the residuals for the outcome variabl
The X matrix for the same desig  would be  

 



The interpretation is unchanged except that the influences of group mem
on the A 

bership 
categorical predictor variables are represented by the b2, b3 and b4 

coefficients in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4  
Separate Slope Designs. The traditional analysis of covariance (ANCOVA) 
design for categorical and continuous predictor variables is inappropriate when 

 the 
in 

the categorical and continuous predictors interact in influencing responses on
outcome. The appropriate design for modeling the influences of the predictors 
this situation is called the separate slope design. For the same example data 
used to illustrate traditional ANCOVA, the overparameterized X matrix for the 
design that includes the main effect of the three-level categorical predictor A and 
the 2-way interaction of P by A would be  

 
The b4, b5, and b6 coefficients in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6  
give the separate slopes for the regression of the outcome on P within each 
group on A, controlling for the main effect of A.  
As with nested ANOVA designs, the sigma-restricted coding of effects for 
separate slope designs is overly restrictive, so only the overparameterized model 

are is used to represent separate slope designs. In fact, separate slope designs 
identical in form to nested ANOVA designs, since the main effects for continuous
predictors are omitted in separate slope designs.  

 

Homogeneity of Slopes. The appropriate design for modeling the influences of 
continuous and categorical predictor variables depends on whether the 
continuous and categorical predictors interact in influencing the outcome. The 
traditional analysis of covariance (ANCOVA) design for continuous and 



categorical predictor variables is appropriate when the continuous and 
ategorical predictorsc  do not interact in influencing responses on the outcome, 

ppropriate when the continuous and 
categorical predictors
and the separate slope design is a

 do interact in influencing responses. The homogeneity of 
slopes designs can be used to test whether the continuous and categorical 
predictors interact in influencing responses, and thus, whether the traditiona
ANCOVA design or the 

l 
separate slope design is appropriate for modeling t

effects of the predictors. For the same example data used to illustrate the 
traditional ANCOVA and separate slope designs, the 

he 

overparameterized X matrix 
for the design that includes the main effect of P, the main effect of the three-level 
categorical predictor A, and the 2-way interaction of P by A would be  

 
If the b5, b6, or b7 coefficient in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7  
is non-zero, the separate slope model should be used. If instead all 3 of these 
regression coefficients are zero the traditional ANCOVA design should be used.  
The sigma-restricted X matrix for the homogeneity of slopes design would be  

 
Using this X matrix, if the b4, or b5 coefficient in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  
is non-zero, the separate slope model should be used. If instead both of these 
regression coefficients are zero the traditional ANCOVA design should be used.  



Mixed Model ANOVA and ANCOVA. Designs which contain random effects for 
one or more categorical predictor variables are called mixed-model designs. 
Random effects are classification effects where the levels of the effects are 
assumed to be randomly selected from an infinite population of possible levels. 
The solution for the normal equations in mixed-model designs is identical to the 

n for fixed-effect designs (i.e., designs which do not contain solutio Random 
effects. Mixed-model designs differ from fixed-effect designs only in the way in 

effects are tested for significance. In fixed-effect designs, between effects
ays tested using the mea

which  
are alw n squared residual as the error term. In mixed-
model designs, between effects are tested using relevant error terms based on 
the covariation of random sources of variation in the design. Specifically, this is 
done using Satterthwaite's method of denominator synthesis (Satterthwaite, 
1946), which finds the linear combinations of sources of random variation that 
serve as appropriate error terms for testing the significance of the respective 
effect of interest. A basic discussion of these types of designs, and methods for 
estimating variance components for the random effects can also be found in the 
Variance Components and Mixed Model ANOVA/ANCOVA chapter.  
Mixed-model designs, like nested designs and separate slope designs, are 
designs in which the sigma-restricted coding of categorical predictors is overly 
restrictive. Mixed-model designs require estimation of the covariation between 
the levels of categorical predictor variables, and the sigma-restricted coding of 
categorical predictors suppresses this covariation. Thus, only the 
overparameterized model is used to represent mixed-model designs (some 
programs will use the sigma-restricted approach and a so-called "restricted 
model" for random effects; however, only the overparameterized model as 
described in General Linear Models applies to both balanced and unbalanced 
designs, as well as designs with missing cells; see Searle, Casella, & McCullock, 
1992, p. 127). It is important to recognize, however, that sigma-restricted coding 
can be used to represent any between design, with the exceptions of mixed-
model, nested, and separate slope designs. Furthermore, some types of 



hypotheses can only be tested using the sigma-restricted coding (i.e., the 
effective hypothesis, Hocking, 1996), thus the greater generality of the 
overparameterized model for representing between designs does not justify it 
being used exclusively for representing categorical predictors in the genera
linear model.  
 
 

Within-Subject (Repeated Measures) Designs  

 

Over

l 

view. It is quite common for researchers to administer the same test to the 

 
lso provided in the Between-groups and 

same subjects repeatedly over a period of time or under varying circumstances. 
In essence, one is interested in examining differences within each subject, for 
example, subjects' improvement over time. Such designs are referred to as 
within-subject designs or repeated measures designs. A basic introduction to
repeated measures designs is a
repeated measures topic of the ANOVA/MANOVA chapter.  
For example, imagine that one wants to monitor the improvement of students' 
algebra skills over two months of instruction. A standardized algebra test is 
administered after one month (level 1 of the repeated measures factor), and a 

 
n  

comparable test is administered after two months (level 2 of the repeated 
measures factor). Thus, the repeated measures factor (Time) has 2 levels.  
Now, suppose that scores for the 2 algebra tests (i.e., values on the Y1 and Y2 
variables at Time 1 and Time 2, respectively) are transformed into scores on a
new composite variable (i.e., values on the T1), using the linear transformatio
T = YM  
where M is an orthonormal contrast matrix. Specifically, if  

 



then the difference of the mean score on T1 from 0 indicates the improvement (or 
deterioration) of scores across the 2 levels of Time.  
One-Way Within-Subject Designs. The example algebra skills study with the 
Time repeated measures factor (see also within-subjects design Overview) 

 

 to 

 
across the levels of the repeated measures factor, that is, 

 the 
re 

illustrates a one-way within-subject design. In such designs, orthonormal contrast
transformations of the scores on the original dependent Y variables are 
performed via the M transformation (orthonormal transformations correspond
orthogonal rotations of the original variable axes). If any b  coefficient in the 
regression of a transformed T variable on the intercept is non-zero, this indicates
a change in responses 

0

the presence of a main effect for the repeated measure factor on responses.  
What if the between design includes effects other than the intercept? If any of
b1 through bk coefficients in the regression of a transformed T variable on X a
non-zero, this indicates a different change in responses across the levels of the 
repeated measures factor for different levels of the corresponding between 
effect, i.e., the presence of a within by between interaction effect on responses.  
The same between-subject effects that can be tested in designs with no 
repeated-measures factors can also be tested in designs that do include 
repeated-measures factors. This is accomplished by creating a transformed 
dependent variable which is the sum of the original dependent variables divided 
by the square root of the number of original dependent variables. The same tests 

is 
of between-subject effects that are performed in designs with no repeated-
measures factors (including tests of the between intercept) are performed on th
transformed dependent variable.  
Multi-Way Within-Subject Designs. Suppose that in the example algebra skill
study with the Time repea

s 
ted measures factor (see the within-subject designs 

Overview), students were given a number problem test and then a word problem 
test on each testing occasion. Test could then be considered as a second 
repeated measures factor, with scores on the number problem tests representing 
responses at level 1 of the Test repeated measure factor, and scores on the 



word problem tests representing responses at level 2 of the Test repeated 
measure factor. The within subject design for the study would be a 2 (Time
(Test) full-factorial design, with effects for Time, Test, and the Time by Test 

) by 2 

interaction.  
To construct transformed dependent variables representing the effects of Tim
Test, and the Time by Test 

e, 
interaction, three respective M transformations of the 

 
r the Time, Test, and the Time by Test 

interaction

original dependent Y variables are performed. Assuming that the original Y 
variables are in the order Time 1 - Test 1, Time 1 - Test 2, Time 2 - Test 1, and
Time 2 - Test 2, the M matrices fo

 would be  

 
fferences of the mean scores on the transformed T variables from 0 are 
sed to interpret the corresponding within-subject effects. 

The di
then u If the b0 
coe c
zero, this indicates a change in responses across the levels of a repeated 

ffi ient in the regression of a transformed T variable on the intercept is non-

measures effect, that is, the presence of the corresponding main or interaction 
effect for the repeated measure factors on responses.  
Interpretation of within by between interaction effects follow the same procedures 
as for one-way within designs, except that now within by between interactions 
are examined for each within effect by between effect combination.  
Multivariate Approach to Repeated Measures. When the repeated measures 
factor has more than 2 levels, then the M matrix will have more than a single 
column. For example, for a repeated measures factor with 3 levels (e.g., Time 1, 
Time 2, Time 3), the M matrix will have 2 columns (e.g., the two transformations 
of the dependent variables could be (1) Time 1 vs. Time 2 and  combined, 

Time 2 vs. Time 3). Consequently, the nature of the design is really 
multivariate, that is, there are two simultaneous dependent variables

Time 3
and (2) 

, which are 
transformations of the original dependent variables. Therefore, when testing 



repeated measures effects involving more than a single degree of freedom
a repeated measures main effect with more than 2 levels), you can compute 

 (e.g., 

multivariate test statistics to test the respective hypotheses. This is a different 
(and usually the preferred) approach than the univariate method that is still 

idely used. For a further discussion of the multivariate approach to testing 
repeated measures effects, and a comparison to the traditional univariate 
approach, see the 

w

Sphericity and compound symmetry topic of the 
ANOVA/MANOVA chapter.  
Doubly Multivariate Designs. If the product of the number of levels for each 
within-subject factor is equal to the number of original dependent variables, t
within-subject design is called a univariate repeated measures design. The within 
design is univariate because there is one 

he 

dependent variable representing ea
combination of levels of the within-subject factors. Note that this use of the term 
univariate design is not to be confused with the univariate and multivariate 
approach to the analysis of 

ch 

repeated measures designs, both of which can be 
used to analyze such univariate (single-dependent-variable-only) designs. When
there are two or more 

 
dependent variables for each combination of levels of the 

within-subject factors, the within-subject design is called a multivariate repeat
measures design, or more commonly, a doubly multivariate within-subject 
design. This term is used because the analysis for each dependent measure can
be done via the multivariate approach;

ed 

 
 so when there is more than one 

 
me: a 

 (or 

dependent measure, the design can be considered doubly-multivariate.  
Doubly multivariate design are analyzed using a combination of univariate 
repeated measures and multivariate analysis techniques. To illustrate, suppose 
in an algebra skills study, tests are administered three times (repeated measures
factor Time with 3 levels). Two test scores are recorded at each level of Ti
Number Problem score and a Word Problem score. Thus, scores on the two 
types of tests could be treated as multiple measures on which improvement
deterioration) across Time could be assessed. M transformed variables could be 
computed for each set of test measures, and multivariate tests of significance 



could be performed on the multiple transformed measures, as well as on the 
each individual test measure.  

Multivariate Designs  

Overview. When there are multiple dependent variables in a design, the design is 

r 
into 

said to be multivariate. Multivariate measures of association are by nature more 
complex than their univariate counterparts (such as the correlation coefficient, fo
example). This is because multivariate measures of association must take 
account not only the relationships of the predictor variables with responses on 
the dependent variables, but also the relationships among the multiple 
dependent variables. By doing so, however, these measures of association 
provide information about the strength of the relationships between predictor and 
dependent variables independent of the dependent variable interrelationships. A 
basic discussion of multivariate designs is also presented in the Multivariate 
Designs topic in the ANOVA/MANOVA chapter.  
The most commonly used multivariate measures of association all can be 
expressed as functions of the eigenvalues of the product matrix  
E-1H  
where E is the error SSCP matrix (i.e., the matrix of sums of squares and cr
products for the 

oss-
dependent variables that are not accounted for by the predict

in the between design), and H is a hypothesis SSCP matrix (i.e., the matrix o
sums of squares and cross-products for the 

ors 
f 

dependent variables that are 
accounted for by all the predictors in the between design, or the sums of squ
and cross-products for the 

ares 
dependent variables that are accounted for by a 

particular effect). If  
λi = the ordered eigenvalues of E-1H, if E-1 exists 
then the 4 commonly used multivariate measures of association are  
Wilks' lambda = Π[1/(1+λi)]  
Pillai's trace = Σλi/(1+λi)  
Hotelling-Lawley trace = Σλi  
Roy's largest root = λ1  



These 4 measures have different upper and lower bounds, with Wilks' lamb
perhaps being the most easily interpretable of the 4 measures. Wilks' lambda
range from 0 to 1, with 1 indicating no relationship of predictors to responses and
0 indicating a perfect relationship of predictors to responses. 1 - Wilks' lambd
can be interpreted as the multivariate counterpart of a univariate R-squared, 
is, it indicates the proportion of generalized variance in the 

da 
 can 

 
a 
that 

dependent variables 
that is accounted for by the predictors.  
The 4 measures of association are also used to construct multivariate tests of 
significance. These multivariate tests are covered in detail in a number of 
sources (e.g., Finn, 1974; Tatsuoka, 1971).  
 
 
 

 

stimation and Hypothesis Testing  

iscuss details concerning hypothesis testing in the 
l 

 

s 

E
The following sections d
context of STATISTICA's VGLM module, for example, how the test for the overal
model fit is computed, the options for computing tests for categorical effects in
unbalanced or incomplete designs, how and when custom-error terms can be 
chosen, and the logic of testing custom-hypotheses in factorial or regression 
designs.  

Whole model tests  

Partitioning Sums of Squares. A fundamental principle of least squares method
is that variation on a dependent variable can be partitioned, or divided into parts,
according to the sources of the variation. Suppose that a 

 
bledependent varia  is 

r he egressed on one or more predictor variables, and that for covenience t
dependent variable is scaled so that its mean is 0. Then a basic least squ
identity is that the total sum of squared values on the 

ares 
dependent variable equals 

the sum of squared predicted values plus the sum of squared residual values. 
Stated more generally,  



Σ(y - y-bar)2 = Σ(y-hat - y-bar)2 + Σ(y - y-hat)2  
where the term on the left is the total sum of squared deviations of the observe
values on the 

d 
dependent variable from the dependent variable mean, and the 

respective terms on the right are (1) the sum of squared deviations of the 
predicted values for the dependent variable from the dependent variable mean 
and (2) the sum of the squared deviations of the observed values on the 
dependent variable from the predicted values, that is, the sum of the squared 
residuals. Stated yet another way,  
Total SS = Model SS + Error SS  
Note that the Total SS is always the same for any particular data set, but that th
Model SS and the Error SS depend on the regression equation. Assuming again 
that the 

e 

dependent variable is scaled so that its mean is 0, the Model SS and the 
Error SS can be computed using  
Model SS = b'X'Y  
Error SS = Y'Y - b'X'Y  
Testing the Whole Model. Given the Model SS and the Error SS, one can 
perform a test that all the regression coefficients for the X variables (b1 through 
bk) are zero. This test is equivalent to a comparison of the fit of the regression 
surface defined by the predicted values (computed from the whole model 
regression equation) to the fit of the regression surface defined solely by the 
dependent variable mean (computed from the reduced regression equation 
containing only the intercept). Assuming that X'X is full-rank, the whole model 
hypothesis mean square  
MSH = (Model SS)/k  
is an estimate of the variance of the predicted values. The error mean square  
s2 = MSE = (Error SS)/(n-k-1)  
is an unbiased estimate of the residual or error variance. The test statistic is  
F = MSH/MSE  
where F has (k, n - k - 1) degrees of freedom.  



If X'X is not full rank, r + 1 is substituted for k, where r is the rank or the number 
of non-redundant columns of X'X.  
Note that in the case of non-intercept models, some multiple regression 
programs will compute the full model test based on the proportion of variance
around 0 (zero) accounted for by the predictors; for more information (see 
Kvålseth, 1985; Okunade, Chang, and

 

 Evans, 1993), while other will actually 
compute both values (i.e., based on the residual variance around 0, and around 
the respective dependent variable means.  
Limitations of Whole Model Tests. For designs such as one-way ANOVA or 
simple regression designs, the whole model test by itself may be sufficient for 
testing general hypotheses about whether or not the single predictor variabl
related to the outcome. In more complex designs, however, hypotheses abou
specific X variables or subsets of X variables are usually of interest. For examp
one might want to make inferences about whether a subset of regression 
coefficients are 0, or one might want to test whether subpopulation means 
corresponding to combinations of specific X variables differ. The whole model 
test is usually insufficient for such purposes.  
A variety of methods have been developed for testing specific hypotheses. Like 
whole model tests, many of these methods rely on comparisons of the fit of 
different models (e.g., 

e is 
t 

le, 

Type I, Type II, and the effective hypothesis sum
quares). Other methods construct tests of linear combinatio

s of 
s ns of regression 
oefficients in order to test mean differences (e.g., Type IIIc , Type IV, and Type V 
ums of squares). For designs that contain only first-order effects of continuous s

predictor variables (i.e., multiple regression designs), many of these methods are 
equivalent (i.e., Type II through Type V sums of squares all test the significance
of partial regression coefficients). However, there are important distinctions 
between the different hypothesis testing techniques for certain types of 
designs (i.e., designs with unequal cell n's and/or missing cells).  
All methods for testing hypotheses, however, involve the same hypothesis testing

 

ANOVA 

 
strategy employed in whole model tests, that is, the sums of squares attributable 



to an effect (using a given criterion) is computed, and then the mean square for 
the effect is tested using an appropriate error term.  
 
 

Six types of sums of squares  

 

When there are categorical predictors in the model, arranged in a factorial 
ANOVA design, then one is typically interested in the main effects for and 
interaction effects between the categorical predictors. However, when the design 

lanced (has unequal cell n's, and consequently, the coded effects for the 

f

is not ba
categorical factors are usually correlated), or when there are missing cells in a 
ull factorial ANOVA design, then there is ambiguity regarding the specific 

tween the (population, or least-squares) cell means that 

in great detail in Milliken and Johnson (1986), and if you routinely 

 I, II, III, 

s (and 

comparisons be
constitute the main effects and interactions of interest. These issues are 
discussed 
analyze incomplete factorial designs, you should consult their discussion of 
various problems and approaches to solving them.  
In addition to the widely used methods that are commonly labeled Type
and IV sums of squares (see Goodnight, 1980), we also offer different methods 
for testing effects in incomplete designs, that are widely used in other area
traditions) of research.  
Type V sums of squares. Specifically, we propose the term Type V sums of 
squares to denote the approach that is widely used in industrial experimentation, 
to analyze fractional factorial designs; these types of designs are discussed in 
detail in the 2**(k-p) Fractional Factorial Designs section of the Experimental 
Design chapter. In effect, for those effects for which tests are performed all 
population marginal means (least squares means) are estimable.  
Type VI sums of squares. Second, in keeping with the Type i labeling conventio
we propose the term Type VI sums of squares to denote the approach that is 

n, 



often used in programs that only implement the sigma-restricted model 
not well suited for certain 

(which is 
types of designs; we offer a choice between the sigma-

restricted and overparameterized model models). This approach is identical to 
what is described as the effective hypothesis method in Hocking (1996).  
Contained Effects. The following descriptions will use the term contained effec
An effect E1 (e.g., A * B 

t. 
interaction) is contained in another effect E2 if:  

• Both effects involve the same continuous predictor variable (if included in the 
model; e.g., A * B * X would be contained in A * C * X, where A, B, and C are 
categorical predictors, and X is a continuous predictor); or  

• E2 has more categorical predictors than does E1, and, if E1 includes any 
categorical predictors, they also appear in E2 (e.g., A * B would be contained in 
the A * B * C interaction).  

Type I Sums of Squares. Type I sums of squares involve a sequential partitioning of the 
 

s
 the model from the predicted sums of squares for the preceding 

Tests of significance for each effect are then performed on 
he predicted sums of squares accounted for by the effect. Type I sums 

e sometimes called sequential or hierarchical sums of squares.  
s are appropriate to use in balanced (equal n) ANOVA 

 

whole model sums of squares. A hierarchical series of regression equations are estimated,
at each step adding an additional effect into the model. In Type I sums of squares, the 
ums of squares for each effect are determined by subtracting the predicted sums of 

squares with the effect in
model not including the effect. 
the increment in t
of squares are therefor
Type I sums of square
designs in which effects are entered into the model in their natural order (i.e., any
main effects are entered before any two-way interaction effects, any two-way 
interaction effects are entered before any three-way interaction effects, a
on). Type I sums of squares are also useful in polynomial regression designs in 
which any lower-order effects are entered before any higher-order effects. A third 
use of Type I sums

nd so 

 of squares is to test hypotheses for hierarchically nested 
nesteddesigns, in which the first effect in the design is  within the second effect, 

the second effect is nested within the third, and so on.  
One important property of Type I sums of squares is that the sums of squares 
attributable to each effect add up to the whole model sums of squares. Thu
Type I sums of squares provide a complete decomposition of the predic
of squares for the whole model. This is not generally true for any

s, 
ted sums 

 other type of 
sums of squares. An important limitation of Type I sums of squares, however, is 
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that the sums of squares attributable to a specific effect will generally depend on 
the order in which the effects are entered into the model. This lack of invariance 
to order of entry into the model limits the usefulness of Type I sums of squares 
for testing hypotheses for certain designs (e.g., fractional factorial designs).  
Type II Sums of Squares. Type II sums of squares are sometimes called partially 
sequential sums of squares. Like Type I sums of squares, Type II sums of 
squares for an effect controls for the influence of other effects. Which other 
effects to control for, however, is determined by a different criterion. In Type
sums of squares, the sums of squares for an effect is computed by controlling for
the influence of all other effects of equal or lower degree. Thus, sums of s
for main effects control for all other main effects, sums of squares for two-w

 II 
 

quares 
ay 

interactions control for all main effects and all other two-way interactions, and so 

e order 
res 

on.  
Unlike Type I sums of squares, Type II sums of squares are invariant to th
in which effects are entered into the model. This makes Type II sums of squa
useful for testing hypotheses for multiple regression designs, for main effect 
ANOVA designs, for full-factorial ANOVA designs with equal cell ns, and for 
hierarchically nested designs.  

here is a drawback to the use of Type II sumsT  of squares for factorial designs 
s with unequal cell ns. In these situations, Type II sums of squares test hypothese

that are complex functions of the cell ns that ordinarily are not meaningful. Thus, 
a different method for testing hypotheses is usually preferred.  
Type III Sums of Squares. Type I and Type II sums of squares usually are not 
appropriate for testing hypotheses for factorial ANOVA designs with unequal ns. 
For ANOVA designs with unequal ns, however, Type III sums of squares
same hypothesis that would be tested if the cell ns were equal, provided that 
there is at least one observation in every cell. Specifically, in no-missing-cell 
designs, Type III sums of squares test hypotheses about differences in 
subpopulation (or marginal) means. When there are no missing cells in the 
design, these subpopulation means are 

 test the 

least squares means, which are the best 
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linear-unbiased estimates of the marginal means for the design (see, Milliken and
Johnson, 1986).  
Tests of differences in 

 

least squares means have the important property that they
are invariant to the choice of the coding of effects for 

 
categorical predictor 

variables (e.g., the use of the sigma-restricted or overparameterized model) a
to the choice of the particular 

nd 
g2 inverse of X'X used to solve the normal 

equations. Thus, tests of linear combinations of least squares means in general,
including Type III tests of differences in 

 
least squares means, are said to not 

depend on the parameterization of the design. This makes Type III sums of 
squares useful for testing hypotheses for any design for which Type I or Type 
sums of squar

II 
es are appropriate, as well as for any unbalanced ANOVA design 

ith no missing cells.  
he Type III sums of squares attributable to an effect is computed as the sums of 

w
T
squares for the effect controlling for any effects of equal or lower degree and 
orthogonal to any higher-order interaction effects (if any) that contain it. The 
orthogonality to higher-order containing interactions is what gives Type III sums 
of squares the desirable properties associated with linear combinations of least 
squares means in ANOVA designs with no missing cells. But for ANOVA designs
with missing cells, Type III sums of squares generally do not test hypothes
about 

 
es 

least squares means, but instead test hypotheses that are complex 
functions of the patterns of missing cells in higher-order containing interactions 

r 

 
g cell 

ontrast coefficients for lower-order effects across the levels of higher-order 
containing int

and that are ordinarily not meaningful. In this situation Type V sums of squares o
tests of the effective hypothesis (Type VI sums of squares) are preferred.  
Type IV Sums of Squares. Type IV sums of squares were designed to test 
"balanced" hypotheses for lower-order effects in ANOVA designs with missing
cells. Type IV sums of squares are computed by equitably distributin
c

eractions.  
Type IV sums of squares are not recommended for testing hypotheses for lower-

with missing cells, even though this is the order effects in ANOVA designs 



purpose for which they were developed. This is because Type IV sum-of-square
are invariant to some but not all g2 inverses of X'X that could be used to so
the normal equations. Specifically, Type IV sums of squares are invariant to the
choice of a 

s 
lve 

 
g2 inverse of X'X given a particular ordering of the levels of the 

categorical predictor variables, but are not invariant to different orderings of 
 of squares levels. Furthermore, as with Type III sums of squares, Type IV sums

test hypotheses that are complex functions of the patterns of missing cells in 
higher-order containing interactions and that are ordinarily not meaningful.  
Statisticians who have examined the usefulness of Type IV sums of squares 
have concluded that Type IV sums of squares are not up to the task for whic
they were developed:  

h 

seems likely that few, if any, of the 

 

l 
 

es that are being 
s 

 

s 

• 
hypotheses tested by the Type IV analysis of [some programs] will be of 
particular interest to the experimenter."  

• Searle (1987, p. 463-464) writes: "In general, [Type IV] hypotheses determined in 
this nature are not necessarily of any interest."; and (p. 465) "This characteristic of 
Type IV sums of squares for rows depending on the sequence of rows establishes
their non-uniqueness, and this in turn emphasizes that the hypotheses they are 
testing are by no means necessarily of any general interest."  

• Hocking (1985, p. 152), in an otherwise comprehensive introduction to genera
linear models, writes: "For the missing cell problem, [some programs] offers a
fourth analysis, Type IV, which we shall not discuss."  

So, we recommend that you use the Type IV sums of squares solution with caution, and 
that you understand fully the nature of the (often non-unique) hypothes

Milliken & Johnson (1992, p. 204) write: "It 

testing, before attempting interpretations of the results. Furthermore, in ANOVA design
with no missing cells, Type IV sums of squares are always equal to Type III sums of 
squares, so the use of Type IV sums of squares is either (potentially) inappropriate, or
unnecessary, depending on the presence of missing cells in the design.  
Type V Sums of Squares. Type V sums of squares were developed as an 
alternative to Type IV sums of squares for testing hypotheses in ANOVA design
in missing cells. Also, this approach is widely used in industrial experimentation, 
to analyze fractional factorial designs; these types of designs are discussed in 
detail in the 2**(k-p) Fractional Factorial Designs section of the Experimental 
Design chapter. In effect, for effects for which tests are performed all population 
marginal means (least squares means) are estimable.  



Type V sums of squares involve a combination of the methods employed in
computing Type I and Type III sums of squares. Specifically, whether or not an 
effect is eligible to be 

 

dropped from the model is determined using Type I 
the 

rated by 
fects considered are A, B, and A by 

B, i re both categorical predictors

procedures, and then hypotheses are tested for effects not dropped from 
model using Type III procedures. Type V sums of squares can be illust
using a simple example. Suppose that the ef

n that order, and that A and B a  with, say, 3 and 

egrees of freedom are determined (i.e., the 
number of non-redundant columns for A in X'X, given the intercept). If A's 

er of levels minus 1), it is 

X, 

tered 
er of 

by B in X'X, given the intercept, A, and B). If B's 
e., the product of the degrees of freedom 

for ere no missing cells), it is eligible to be dropped. Type III 
sums of squares are then computed for the effects that were not found to be 

d, using the reduced model in which any eligible effects are 
dropped. Tests of significance, however, use the error term for the whole model 

h all effects remaining in the model have at least as many degrees of 
free ave if there were no missing cells. This is equivalent to 

s 

2 levels, respectively. The intercept is first entered into the model. Then A is 
entered into the model, and its d

degrees of freedom are less than 2 (i.e., its numb
eligible to be dropped. Then B is entered into the model, and its degrees of 
freedom are determined (i.e., the number of non-redundant columns for B in X'
given the intercept and A). If B's degrees of freedom are less than 1 (i.e., its 
number of levels minus 1), it is eligible to be dropped. Finally, A by B is en
into the model, and its degrees of freedom are determined (i.e., the numb
non-redundant columns for A 
degrees of freedom are less than 2 (i.

its factors if there w

eligible to be droppe

prior to dropping any eligible effects.  
Note that Type V sums of squares involve determining a reduced model for 
whic

dom as they would h
finding a subdesign with no missing cells such that the Type III sums of square
for all effects in the subdesign reflect differences in least squares means.  
Appropriate caution should be exercised when using Type V sums of squares. 
Dropping an effect from a model is the same as assuming that the effect is 



unrelated to the outcome (see, e.g., Hocking, 1996). The reasonableness of the 
assumption does not necessarily insure its validity, so when possible the 
relationships of dropped effects to the outcome should be inspected. It is als
important to note that Type V sums of squares are not invariant to the order i
which eligibility for dropping effects from the model is evaluated. Different orders
of effects could produce different reduced models.  
In spite of these limitations, Type V sums of squares for the reduced model hav
all the same properties of Type III sums of squares for ANOVA designs with no 
missing cells. Even in designs with many missing cells (such as 

o 
n 

 

e 

fractional 
factorial designs, in which many high-order interaction effects are assumed to be 
zero), Type V sums of squares provide tests of meaningful hypotheses, and 

ial 
g for or orthogonal to appropriate additional 

e 
 

sometimes hypotheses that cannot be tested using any other method.  
Type VI (Effective Hypothesis) Sums of Squares. Type I through Type V sums of 
squares can all be viewed as providing tests of hypotheses that subsets of part
regression coefficients (controllin
effects) are zero. Effective hypothesis tests (developed by Hocking, 1996) are 
based on the philosophy that the only unambiguous estimate of an effect is th
proportion of variability on the outcome that is uniquely attributable to the effect.
The overparameterized coding of effects for categorical predictor variables 

enerally cannot be used to provide such unique estimates for lower-order 
effects. E
g

ffective hypothesis tests, which we propose to call Type VI sums of 
uares, use the sigma-restrictedsq  coding of effects for categorical predictor 

var rder effects.  iables to provide unique effect estimates even for lower-o
The method for computing Type VI sums of squares is straightforward. The 
sigma-restricted coding of effects is used, and for each effect, its Type VI sums 
of squares is the difference of the model sums of squares for all other effects 
from the whole model sums of squares. As such, the Type VI sums of squares 
provide an unambiguous estimate of the variability of predicted values for the 
outcome uniquely attributable to each effect.  



In ANOVA designs with missing cells, Type VI sums of squares for effects can 

gns, can even have zero degrees of 
freedom. The philosophy of Type VI sums of squares is to test as much as 

cells is such that no part of the original hypothesis can be tested, so be 

have fewer degrees of freedom than they would have if there were no missing 
cells, and for some missing cell desi

possible of the original hypothesis given the observed cells. If the pattern of 
missing 
it. The inability to test hypotheses is simply the price one pays for having no 
observations at some combinations of the levels of the categorical predictor 
variables. The philosophy is that it is better to admit that a hypothesis canno
tested than it is to test a distorted hypothesis which may not meaningfully refle
he original hypothesis.  
Type VI sums of squares cannot generally be used to test hypotheses for 

t be 
ct 

t
nested 

ANOVA designs, separate slope designs, or mixed-model designs, because the 
sigma-restricted coding of effects for categorical predictor variables is overly 
restrictive in such designs. This limitation, however, does not diminish the fac
that Type VI sums of squares can b  
 
 

Error terms for tests  

Lack-of-Fit Tests using Pure Error. Whole model tests and te

t 

sts based on the 6 
pes of sums of squares use the mean square residual as the error term for 

 of 
s

cts 

test of significance for the Temperature effect in the linear regression of 

ty
tests of significance. For certain types of designs, however, the residual sum
quares can be further partitioned into meaningful parts which are relevant for 

testing hypotheses. One such type of design is a simple regression design in 
which there are subsets of cases all having the same values on the predictor 
variable. For example, performance on a task could be measured for subje
who work on the task under several different room temperature conditions. The 

Performance on Temperature would not necessarily provide complete 



information on how Temperature relates to Performance; the regression 
coefficient for Temperature only reflects its linear effect on the outcome.  
One way to glean additional information from this type of design is to partition the 
residual sums of squares into lack-of-fit and pure error components. In the 
example just described, this would involve determining the difference between 
the sum of squares that cannot be predicted by Temperature levels, given
linear effect of Temperature (residual sums of squares) and

 the 
 the pure error; this 

difference would be the sums of squares associated with the lack-of-fit (in this
example, of the linear model). The test of 

 
lack-of-fit, using the mean square pure 

error as the error term, would indicate whether non-linear effects of Temperature 
are needed to adequately model Tempature's influence on the outcome. Furth
the linear effect could be tested using the 

er, 
pure error term, thus providing a more

sensitive test of the linear effect independent of any possible nonlinear effect.  
Designs with Zero Degrees of Freedom for Error. When the model degrees o
freedom equal the number of cases or subjects, the residual sums of squares will 
have zero degrees of freedom and preclude the use of standard hypothesis tests. 
This sometimes occurs for overfitted designs (designs with many predictors, or 
designs with 

 

f 

categorical predictors having many levels). However, in some 
designed experiments, such as experiments using split-plot designs or highly 
fractionalized factorial designs as commonly used in industrial experimentati
is no accident that the residual sum of squares has zero degrees of freedom. In 
such experiments, mean squares for certain effects are planned to be used a
error terms for testing other effects, and the experiment is designed with this in 
mind. It is entirely appropriate to use alternatives to the mean square residua
error terms for testing hypotheses in such designs.  

on, it 

s 

l as 

Tests in Mixed Model Designs. Designs which contain random effects for one or 
more categorical predictor variables are called mixed-model designs. These 
types of designs, and the analysis of those designs, is also described in detail in 
the Variance Components and Mixed Model ANOVA/ANCOVA chapter. Random 
effects are classification effects where the levels of the effects are assumed to be 



randomly selected from an infinite population of possible levels. The solution f
the normal equations in mixed-model designs is identical to the solution for fixe

ffect designs (i.e., designs which do not contain 

or 
d-

e random effects). Mixed-model 
designs differ from fixed-effect designs only in the way in which effects are tested
for significance. In fixed-effect designs, between effects are always tested usin
the mean square residual as the error term. In mixed-model designs, between
effects are tested using relevant error terms based on the covariation of source
of variation in the design. Also, only the 

 
g 
 
s 

modeloverparameterized  is used to 
code effects for categorical predictors in mixed-models, because the sigma-
restricted model is overly restrictive.  
The covariation of sources of variation in the design is estimated by the ele
of a matrix called the Expected Mean Squares (EMS) matrix. This non-square
matrix contains elements for the covariation of each combination of pairs of 
sources of variation and for each source of variation with Error. Specifically
element is the mean square for one effect (indicated by the column) that is 
expected to be accounted by another effect (indicated by the row), given the 
observed covariation in their levels. Note that expected mean squares can b
computing using any type of sums of squares from 

ments 
 

, each 

e 
Type I through Type V. On

the EMS matrix is computed, it is used to the solve
ce 

 for the linear combinations of 
ources of random variation that are appropriate to use as error terms for testing 
e significance of the respective effects. This is done using Satterthwaite's 
ethod of denominator synthesis

s
th
m  (Satterthwaite, 1946). Detailed discussions of 

ethods for testing effects in mixed-models, and related methods for estimating 
ariance components

m
v  for random effects, can be found in the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter.  

esting Specific Hypotheses  

hole model tests and tests based on sums of squares attributable to specific 
ffects illustrate two general types of hypotheses that can be tested using the 

 
 

T
W
e



general linear model. Still, there may be other types of hypotheses the 
searcher wishes to test that do not fall into either of these categories. For 

xample, hypotheses about subsets of effects may be of interest, or hypotheses 
volving comparisons of specific levels of categorical predictor

re
e
in  variables may be 

f interest.  
stimability of Hypotheses. Before considering tests of specific hypotheses of 
is sort, it is important to address the issue of estimability. A test of a specific 

ypothesis using the general linear model must be framed in terms of the 
gression coefficients for the solution of the normal equations. If the X'X matrix 
 less than full rank, the regression coefficients depend on the particular g2 

o
E
th
h
re
is
inverse used for solving the normal equations, and the regression coefficients will 

ot be unique. When the regression coefficients are not unique, linear functions 
f) of the regression coefficients having the form  

f = Lb  
here L is a vector of coefficients, will also in general not be unique. However, 

t 

hypothesis has been encountered in tests of the effective hypothesis which have 
dom. On the other hand, Type III sums of squares

n
(

w
Lb for an L which satisfies  
L = L(X'X)-X'X  
is invariant for all possible g2 inverses, and is therefore called an estimable 
function.  
The theory of estimability of linear functions is an advanced topic in the theory of 
algebraic invariants (Searle, 1987, provides a comprehensive introduction), bu
its implications are clear enough. One instance of non-estimability of a 

zero degrees of free  for 
categorical predictor variable effects in ANOVA designs with no missing cells 
(and the least squares means in such designs) provide 
unctions which do not depend on the model parameterization (i.e., the particul

an example of estimable 
f ar 
g2 inverse used to solve the normal equations). The general implication of the 
theory of estimability of linear functions is that hypotheses which cannot be 

 of the rows of X (i.e., the combinations of expressed as linear combinations
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observed levels of the categorical predictor variables) are not estimable, and 
therefore cannot be tested. Stated another way, we simply cannot test specifi
hypoth

c 
eses that are not represented in the data. The notion of estimability is 

valuable because the test for estimability makes explicit which specific 
hypotheses can be tested and which cannot.  
Linear Combinations of Effects. In multiple regression designs, it is common for 
hypotheses of interest to involve subsets of effects. In mixture designs, for 
example, one might be interested in simultaneously testing whether the main 
effect and any of the two-way interactions involving a particular predictor varia
are non-zero. It is also common in 

ble 
multiple regression designs for hypotheses of 

ictor variables differ. In both 
interest to involves comparison of slopes. For example, one might be interested 
in whether the regression coefficients for two pred
factorial regression and factorial ANOVA designs with many factors, it is often of
interest whether sets of effects, say, all three-way and higher-order 

 
interactions, 

he 
e 

are nonzero.  
Tests of these types of specific hypotheses involve (1) constructing one or more 
Ls reflecting the hypothesis, (2) testing the estimability of the hypothesis by 
determining whether  
L = L(X'X) X'X  
and if so, using (3)  
(Lb)'<L(X'X) L') (Lb)  
to estimate the sums of squares accounted for by the hypothesis. Finally, (4) t
hypothesis is tested for significance using the usual mean square residual as th
error term. To illustrate this 4-step procedure, suppose that a test of the 
difference in the regression slopes is desired for the (intercept plus) 2 predictor 
variables in a first-order 

-

- -1

multiple regression design. The coefficients for L would 
be  
L = [0 1 -1]  
(note that the first coefficient 0 excludes the intercept from the comparison
which Lb is estimable if the 2 predictor variables are not redundant with each 

) for 
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other. The hypothesis sums of squares reflect the difference in the partial 
regression coefficients for the 2 predictor variables, which is tested for 
significance using the mean square residual as the error term.  
Planned Comparisons of Least Square Means. Usually, experimental hypotheses 
are stated in terms that are more specific than simply main effects or interactions. 

 math 

e 

We may have the specific hypothesis that a particular textbook will improve
skills in males, but not in females, while another book would be about equally 
effective for both genders, but less effective overall for males. Now generally, w
are predicting an interaction here: the effectiveness of the book is modifi
(qualified) by the student's gender. However, we have a particular prediction 
concerning the nature of the 

ed 

interaction: we expect a significant difference 
between genders for one book, but not the other. This type of specific prediction 
is usually tested by testing planned comparisons of least squares means 
(estimates of the population marginal means), or as it is sometimes called, 
contrast analysis.  
B
s

riefly, contrast analysis allows us to test the statistical significance of predicted 
pecific differences in particular parts of our complex design. The 4-step 

d test specific 
ajor and indispensable component of the 

he 

procedure for testing specific hypotheses is used to specify an
predictions. Contrast analysis is a m
analysis of many complex experimental designs (see also for details).  
To learn more about the logic and interpretation of contrast analysis refer to t
ANOVA/MANOVA chapter Overview section.  
Post-Hoc Comparisons. Sometimes we find effects in an experiment that were 
not expected. Even though in most cases a creative experimenter will be able to 
explain almost any pattern of means, it would not be appropriate to analyze and
evaluate that pattern as if one had predicted it all along. The problem here is
of capitalizing on chance when performing multiple tests post-hoc, that is, wit
a priori hypotheses. To illustrate this point, let us consider the following 
"experiment." Imagine we were to write down a number between 1 and 10 on 
100 pieces of paper. We then put all of those pieces into a hat and draw 20 

 
 one 
hout 



samples (of pieces of paper) of 5 observations each, and compute the me
(from the numbers written on the pieces of paper) for each grou

ans 
p. How likely do 

ple means that are significantly different 
 20 

ithout going into 
 post-hoc tests that are explicitly based 

b ur comparison the most 
l means in the design. Those tests apply 

antage of post-hoc selection of 
n 

 

Testing hypotheses for repeated measures and dependent variables  

In the discussion of different hypotheses that can be tested using the general 
linear model, the tests have been described as tests for "the dependent variable

you think it is that we will find two sam
from each other? It is very likely! Selecting the extreme means obtained from
samples is very different from taking only 2 samples from the hat in the first 
place, which is what the test via the contrast analysis implies. W
further detail, there are several so-called
on the first scenario (taking the extremes from 20 samples), that is, they are 

ased on the assumption that we have chosen for o
extreme (different) means out of k tota
"corrections" that are designed to offset the adv
the most extreme comparisons. Whenever one finds unexpected results in a
experiment one should use those post-hoc procedures to test their statistical 
significance.  

 

" 
or "the outcome." This has been done solely to simplify the discussion. When 
there are multiple dependent variables reflecting the levels of repeated measure 
factors, the general linear model performs tests using orthonormalized M-
transformations of the dependent variables. When there are multiple dependent 
variables but no repeated measure factors, the general linear model performs 

g the sums of squares and cross-products for the multiple 
dependent variables
tests usin  hypothesis 

, which are tested against the residual sums of squares and 
ct ndent variablescross-produ s for the multiple depe . Thus, the same hypothesis 

testing procedures which apply to univariate designs with a single dependent 
variable also apply to repeated measure and multivariate designs.  
 



Generalized Additive Models (GAM) 

 

 
The methods available in Generalized Additive Models are implementations of 
techniques developed and popularized by Hastie and Tibshirani (1990). A 
detailed description of these and related techniques, the algorithms used to fit 
these models, and discussions of recent research in this area of statistical 
modeling can also be found in Sc
A m l ection represent a 

io ression

himek (2000). 
dditive ode s. The methods described in this s

generalizat n of multiple reg  (which is a special case of general linear 
models). Spe quares fit is computed 
for a set of predictor or X vari  variable. The well 

a ors, to predict a dependent 
variable Y, can be stated as: 

m

Where Y stands for the (predicted values of the) dependent variable, X1through 
Xm represent the m values for the predictor variables, and b0, and b1 through bm 
are the regression coefficients estimated by multiple regression. A generalization 
of the multiple regression model would be to maintain the additive nature of the 
model, but to replace the simple terms of the linear equation bi*Xi with fi(Xi) where 
fi is a non-parametric function of the predictor Xi.  In other words, instead of a 
single coefficient for each variable (additive term) in the model, in additive 
models an unspecified (non-parametric) function is estimated for each predictor, 
to achieve the best prediction of the dependent variable values. 
G .To summarize the basic idea, the generalized linear 

cifically, in linear regression, a linear least-s
ables, to predict a dependent Y

known linear regression equ tion with m predict

Y = b0 + b1*X1 + ... + bm*X

eneralized linear models
model differs from the general linear model (of which multiple regression is a 
special case) in two major res  the dependent or pects: First, the distribution of
response variable can be (explicitly) non-normal, and does not have to be 
continuous, e.g., it can be binomial; second, the dependent variable values are 
predicted from a linear combination of predictor variables, which are "connected" 



to the dependent variable via a link function. The general linear model fo
single dependent variable can be considered a special case of the generalize
linear model: In the general linear model the dependent variable values are 
expected to follow the 

r a 
d 

normal distribution, and the link function is a simple 
identity function (i.e., the linear combination of values for the predictor variables 
is not transformed).   
To illustrate, in the general linear model a response variable Y is linearly 
associated with values on the X variables while the relationship in the 
generalized linear model is assumed to be  

Y = g(b0 + b1*X1 + ... + bm*Xm) 
where g(…) is a function. Formally, the inverse function of g(…), say gi(…), is 
called the link function; so that: 

gi(muY) = b0 + b1*X1 + ... + bm*Xm

where mu-Y stands for the expected value of Y. 
Distributions and link functions. Generalized Additive Models allows you to 
choose from a wide variety of distributions for the dependent variable, and link 
functions for the effects of the predictor variables on the dependent variable (see
McCullagh and Nelder, 1989; Hastie and Tibshirani, 1990; see also 

 
GLZ 

Introductory Overview - Computational Approach for a discussion of link 
functions and distributions):  
Normal, Gamma, and Poisson distributions: 

Log link: f(z) = log(z) 
Inverse link: f(z) = 1/z 
Identity link: f(z) = z 

Binomial distributions: 
Logit link: f(z)=log(z/(1-z)) 

Generalized additive models. We can combine the notion of additive models with 
generalized linear models, to derive the notion of generalized additive models
as: 

gi(muY) = Σ

, 

In other words, the purpose of generalized additive models is to maximize the 
quality of prediction of a dependent variable Y from various distributions, by 

i(fi(Xi))  



e
a

stimating unspecific (non-parametric) functions of the predictor variables which 
re "connected" to the dependent variable via a link function. 

 

thers. A Estimating the non-parametric function of predictors via scatterplot smoo
unique aspect of generalized additive models are the non-parametric functions fi 
of the predictor variables Xi. Specifically, instead of some kind of simple or 
complex parametric functions, Hastie and Tibshirani (1990) discuss various 
general scatterplot smoothers that can be applied to the X variable values, with 
the target criterion to maximize the quality of prediction of the (transformed) Y 
variable values. One such scatterplot smoother is the cubic smoothing splines 

ip 
in the scatterplot.  Computational details regarding this 

 

rameters (like the regression 

smoother, which generally produces a smooth generalization of the relationsh
between the two variables 
smoother can be found in Hastie and Tibshirani (1990; see also Schimek, 2000).
  
To summarize, instead of estimating single pa
weights in multiple regression), in generalized additive models, we find a 
unspecific (non-parametric) function that relates the predicted (transformed) Y 
values to the predictor values.   
A specific example: The generalized additive logistic model. Let us consider a 

e generalized additive models: A generalization of the 
logistic (logit) model for binary dependent variable values. As also described in 
detail in the context of 

general 

specific example of th

Nonlinear Estimation and Generalized Linear/Nonlinear 
Models, the logistic regression model for binary responses can be written as 
follows: 
  

y=exp(b0+b1*x1+...+bm*xm)/{1+exp(b0+b1*x1+...+bm*xm)} 
Note that the distribution of the dependent variable is assumed to be binomial, 

only assume the values 0 or 1 (e.g., in a market 
cision would be binomial: The customer either 

i.e., the response variable can 
research study, the purchasing de



did or did not make a particular purchase). We can apply the logistic link function 
to the probability p (ranging between 0  and 1) so that: 

p' = log {p/(1-p)}  
By applying the logistic link function, we can now rewrite the model as: 

p' = b0 + b1*X1  + ... + bm*Xm  
 

 

Finally, we substitute the simple single-parameter additive terms to derive the
generalized additive logistic model: 

p' = b0 + f1(X1) + ... + fm(Xm)  
An example application of the this model can be found in Hastie and Tibshirani 
(1990). 
Fitting generalized additive models. Detailed descriptions of how generalized
additive models are fit to data can be found in Hastie and Tibshirani (1990), as 
well as Schimek (2000, p. 300). In general there are two separate iterative 
operations involved in the algorithm, which are usually labeled the outer
inner loop. The purpose of the outer loop is to maximize the o

 and 
verall fit of the 

o model, by minimizing the overall likelihood of the data given the model (similar t
the maximum likelihood estimation procedures as described in, for example,  the 
context of Nonlinear Estimation). The purpose of the inner loop is to refine the 
scatterplot smoother, which is the cubic splines smoother. The smoothing is 
performed with respect to the partial residuals; i.e., for every predictor k, the 
weighted cubic spline fit is found that best represents the relationship between 
variable k and the (partial) residuals computed by removing the effect of all other
j predictors (j ≠ k). The iterative estimation procedure will terminate, when the 
likelihood of the data given the model can not be improved.  
 

Interpreting the results. Many of the standard results statistics computed by 
Generalized Additive Models are similar to those customarily reported by linear 
or nonlinear model fitting procedures. For example, predicted and 

 

residual value
for the final model can be computed, and various graphs of the residual

s 
s can be 

displayed to help the user identify possible outliers, etc. Refer also to the 

http://www.statsoft.com/textbook/stmulreg.html


description of the residual statistics computed by Generalized Linear/Nonlinear 
Models for details. 
The main result of interest, of course, is how the predictors are related to the 
dependent variable. Scatterplots can be computed showing the smoothed 
predictor variable values plotted against the partial residuals, i.e., the residuals 
after removing the effect of all other predictor variables.   

 
This plot allows you to evaluate the nature of the relationship between the 
predictor with the residualized (adjusted) dependent variable values (see Hastie 

m. To reiterate, the generalized additive models

& Tibshirani, 1990; in particular formula 6.3), and hence the nature of the 
influence of the respective predictor in the overall model.   
Degrees of freedo  approach 

ctor replaces the simple products of (estimated) parameter values times the predi
values with a cubic spline smoother for each predictor. When estimating a single 

el. It is not clear how many degrees of freedom are 
parameter value, we lose one degree of freedom, i.e., we add one degree of 
freedom to the overall mod



lost due to estimating the cubic spline smoother for each variable. Intuitively, a 
smoother can either be very smooth, not following the pattern of data in the 
scatterplot very closely, or it can be less smooth, following the pattern of the data 

 
f 

e could 
int, in which case 

s 

als, and typically, 

A word of caution. Generalized additive models

more closely. In the most extreme case, a simple line would be very smooth, and
require us to estimate a single slope parameter, i.e., we would use one degree o
freedom to fit the smoother (simple straight line); on the other hand, w
force a very "non-smooth" line to connect each actual data po
we could "use-up" approximately as many degrees of freedom as there are 
points in the plot. Generalized Additive Models allows you to specify the degree
of freedom for the cubic spline smoother; the fewer degrees of freedom you 
specify, the smoother is the cubic spline fit to the partial residu
the worse is the overall fit of the model. The issue of degrees of freedom for 
smoothers is discussed in detail in Hastie and Tibshirani (1990). 

 are very flexible, and can provide 
e in 

oduce a good fit that likely will not 
replicate in subsequent validation studies. Also, compare the quality of the fit 
obtained from Generalized Additive Models to the fit obtained via Generalized 

an excellent fit in the presence of nonlinear relationships and significant nois
the predictor variables. However, note that because of this flexibility, one must be 
extra cautious not to over-fit the data, i.e., apply an overly complex model (with 
many degrees of freedom) to data so as to pr

Linear/Nonlinear Models. In other words, evaluate whether the added complexity 
(generality) of generalized additive models (regression smoothers) is necessary 
in order to obtain a satisfactory fit to the data. Often, this is not the case, and 
given a comparable fit of the models, the simpler generalized linear model is 
preferable to the more complex generalized additive model. These issues are 
discussed in greater detail in Hastie and Tibshirani (1990). 
Another issue to keep in mind pertains to the interpretability of results obtained 
from (generalized) linear models vs. generalized additive models. Linear models 
are easily understood, summarized, and communicated to others (e.g., in 
technical reports). Moreover, parameter estimates can be used to predict or 



classify new cases in a simple and straightforward manner. Generalized additiv
models are

e 
 not easily interpreted, in particular when they involve complex 

nonlinear effects of some or all of the predictor variables (and, of course, it is in 
 

 a 

 
 
 
 
 
 

those instances where generalized additive models may yield a better fit than
generalized linear models). To reiterate, it is usually preferable to rely on
simple well understood model for predicting future cases, than on a complex 
model that is difficult to interpret and summarize. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Generalized Linear Models (GLZ) 

  
 

This chapter describes the use of the generalized linear model for analyzing linear and 
non-linear effects of continuous and categorical predictor variables on a discrete or 
continuous dependent variable. If you are unfamiliar with the basic methods of regression 
in linear models, it may be useful to first review the basic information on these topics in 
the Elementary Concepts chapter. Discussion of the ways in which the linear regression 
model is extended by the general linear model can be found in the General Linear Models 

F els
chapter.  

or additional information about generalized linear mod , see also Dobson 
(1990), Green and Silverman (1994), or McCullagh and Nelder (1989).  

 

Basic Ideas  

The Generalized Linear Model (GLZ) is a generalization of the general linear 
model (see, e.g., the General Linear Models, Multiple Regression, and 
ANOVA/MANOVA chapters). In its simplest form, a linear model specifies the 
(linear) relationship between a dependent (or response) variable Y, and a set
predictor variables, the X's, so that  

 of 

Y = b0 + b1X1 + b2X2 + ... + bkXk  
alues 

tion 

efficients from a sample of data, measuring height, 
s, 

 
ultiple Regression

In this equation b0 is the regression coefficient for the intercept and the bi v
are the regression coefficients (for variables 1 through k) computed from the 
data.  
So for example, one could estimate (i.e., predict) a person's weight as a func
of the person's height and gender. You could use linear regression to estimate 
the respective regression co
weight, and observing the subjects' gender. For many data analysis problem
estimates of the linear relationships between variables are adequate to describe 
the observed data, and to make reasonable predictions for new observations
(see the M  chapter for additional details).  
However, there are many relationships that cannot adequately be summarized by 
a simple linear equation, for two major reasons:  



Distribution of dependent variable. First, the dependent variable of interest may 
have a non-continuous distribution, and thus, the predicted values should also 
follow the respective distribution; any other predicted values are not logically 
possible. For example, a researcher may be interested in predicting one of three 
possible discrete outcomes (e.g., a consumer's choice of one of three alternative 
products). In that case, the dependent variable can only take on 3 distinct values, 
and the distribution of the dependent variable is said to be multinomial. Or 
suppose you are trying to predict people's family planning choices, specifically, 
how many children families will have, as a function of income and various other 
socioeconomic indicators. The dependent variable -- number of children -- is 
discrete (i.e., a family may have 1, 2, or 3 children and so on, but cannot have 
2.4 children), and most likely the distribution of that variable is highly skewed 
(i.e., most families have 1, 2, or 3 children, fewer will have 4 or 5, very few will 
have 6 or 7, and so on). In this case it would be reasonable to assume that the 
dependent variable follows a Poisson distribution.  
Link function. A second reason why the linear (multiple regression) model might 
be inadequate to describe a particular relationship is that the effect of the 
predictors on the dependent variable may not be linear in nature. For example, 
the relationship between a person's age and various indicators of health is most 
likely not linear in nature: During early adulthood, the (average) health status of 
people who are 30 years old as compared to the (average) health status of 
people who are 40 years old is not markedly different. However, the difference in 
health status of 60 year old people and 70 year old people is probably greater. 
Thus, the relationship between age and health status is likely non-linear in 
nature. Probably some kind of a power function would be adequate to describe 
the relationship between a person's age and health, so that each increment in 
years of age at older ages will have greater impact on health status, as 
compared to each increment in years of age during early adulthood. Put in other 
words, the link between age and health status is best described as non-linear, or 
as a power relationship in this particular example.  



The generalized linear model can be used to predict responses both for 
dependent variables with discrete distributions and for dependent variables which 
are nonlinearly related to the predictors.  
 
 

 
Computational Approach  
To summarize the basic ideas, the generalized linear model differs from the 
general linear model (of which, for example, multiple regression is a special 
case) in two major respects: First, the distribution of the dependent or response 
variable can be (explicitly) non-normal, and does not have to be continuous, i.e., 
it can be binomial, multinomial, or ordinal multinomial (i.e., contain information on 
ranks only); second, the dependent variable values are predicted from a linear 
combination of predictor variables, which are "connected" to the dependent 
variable via a link function. The general linear model for a single dependent 
variable can be considered a special case of the generalized linear model: In the 
general linear model the dependent variable values are expected to follow the 
normal distribution, and the link function is a simple identity function (i.e., the 
linear combination of values for the predictor variables is not transformed).  
To illustrate, in the general linear model a response variable Y is linearly 
associated with values on the X variables by  
Y = b0 + b1X1 + b2X2 + ... + bkXk) + e  
(where e stands for the error variability that cannot be accounted for by the 
predictors; note that the expected value of e is assumed to be 0), while the 
relationship in the generalized linear model is assumed to be  
Y = g (b0 + b1X1 + b2X2 + ... + bkXk + e  
where e is the error, and g(…) is a function. Formally, the inverse function of 
g(…), say f(…), is called the link function; so that:  
f(muy) = b0 + b1X1 + b2X2 + ... + bkXk  
where muy stands for the expected value of y.  



Link functions and distributions. Various link functions (see McCullagh and 
Nelder, 1989) can be chosen, depending on the assumed distribution of the y 
variable values:  
Normal, Gamma, Inverse normal, and Poisson distributions:  
Identity link: f(z) = z 

 
Log link: f(z) = log(z) 

 
Power link: f(z) = za, for a given a



 
Binomial, and Ordinal Multinomial distributions:  

Logit link: f(z)=log(z/(1-z)) 
Probit link: f(z)=invnorm(z) where invnorm is the inverse 

of the standard normal 
cumulative distribution function.

Complementary log-log link: f(z)=log(-log(1-z)) 

 
Log-log link: f(z)=-log(-log(z)) 



 
Multinomial distribution:  
Generalized logit link: f(z1|z2,…,zc)=log(x1/(1-z1-…-zc))

where the model has c+1 categories.

Estimation in the generalized linear model. The values of the parameters (b0 
through bk and the scale parameter) in the generalized linear model are obtained 
by maximum likelihood (ML) estimation, which requires iterative computational 
procedures. There are many iterative methods for ML estimation in the 
generalized linear model, of which the Newton-Raphson and Fisher-Scoring 
methods are among the most efficient and widely used (see Dobson,1990). The 
Fisher-scoring (or iterative re-weighted least squares) method in particular 
provides a unified algorithm for all generalized linear models, as well as providing 
the expected variance-covariance matrix of parameter estimates as a byproduct 
of its computations.  
Statistical significance testing Tests for the significance of the effects in the 
model can be performed via the Wald statistic, the likelihood ratio (LR), or score 
statistic. Detailed descriptions of these tests can be found in McCullagh and 
Nelder (1989). The Wald statistic (e.g., see Dobson,1990), which is computed as 
the generalized inner product of the parameter estimates with the respective 
variance-covariance matrix, is an easily computed, efficient statistic for testing 
the significance of effects. The score statistic is obtained from the generalized 
inner product of the score vector with the Hessian matrix (the matrix of the 
second-order partial derivatives of the maximum likelihood parameter estimates). 



The likelihood ratio (LR) test requires the greatest computational effort (another 
iterative estimation procedure) and is thus not as fast as the first two methods; 
however, the LR test provides the most asymptotically efficient test known. For 
details concerning these different test statistics, see Agresti(1996), McCullagh 
and Nelder(1989), and Dobson(1990).  
Diagnostics in the generalized linear model. The two basic types of residuals are 
the so-called Pearson residuals and deviance residuals. Pearson residuals are 
based on the difference between observed responses and the predicted values; 
deviance residuals are based on the contribution of the observed responses to 
the log-likelihood statistic. In addition, leverage scores, studentized residuals, 
generalized Cook's D, and other observational statistics (statistics based on 
individual observations) can be computed. For a description and discussion of 
these statistics, see Hosmer and Lemeshow (1989).  
 
 

 
Types of Analyses  
The design for an analysis can include effects for continuous as well as 

predictorcategorical  variables. Designs may include polynomials for continuous 
predictors (e.g., squared or cubic
product terms) for con

 terms) as well as interaction effects (i.e., 
tinuous predictors. For categorical predictor variables, one 

can fit ANOVA-like designs, including full factorial, nested, and fractional factorial 
designs, etc. Designs can be incomplete (i.e., involve missing cells), and effects 
for categorical predictor variables can be represented using either the sigma-
restricted parameterization or the overparameterized (i.e., indicator variable) 
representation of effects.  
The topics below give complete descriptions of the types of designs that can be 
analyzed using the generalized linear model, as well as types of designs that can 
be analyzed using the general linear model.  
Signal detection theory. The list of designs shown below is by no means 
comprehensive, i.e., it does not describe all possible research problems to which 



the generalized linear model can be applied. For example, an important 
application of the generalized linear model is the estimation of parameters for 
Signal detection theory (SDT) models. SDT is an application of statistical 
decision theory used to detect a signal embedded in noise. SDT is used in 
psychophysical studies of detection, recognition, and discrimination, and in other 
areas such as medical research, weather forecasting, survey research, and 
marketing research. For example, DeCarlo (1998) shows how signal detection 

odels based on different underlying distributions can easily be considered by 
sing the generalized linear model

m
u  with different link functions.  

  

Overview. The levels or values of the predictor variables in an analysis describe 
the differences between the n subjects or the n valid cases that are analyzed. 
Thus, when we speak of the between subject design (or simply the between 
design) for an analysis, we are referring to the nature, number, and arrangement 
of the predictor variables.  
Concerning the nature or type of predictor variables, between designs which 
contain only categorical predictor

 

Between-Subject Designs  

 variables can be called ANOVA (analysis of 
variance) designs, between designs which contain only continuous predictor 
variables can be called regression designs, and between designs which contain 
both categorica NCOVA 
(analysis of cov  always 
considered to have fixed values, but the levels of categorical predictors

l and continuous predictor variables can be called A
ariance) designs. Further, continuous predictors are

 can be 
considered to be fixed or to vary randomly. Designs which contain random 
categorical factors are called mixed-model designs (see the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter).  



Between designs may involve only a single predictor variable an
described as simple (e.g., simple regression) or may emplo

d therefore be 
y numerous predictor 

variables (e.g., multiple regression).  
Concerning the arrangement of predictor variables, some between designs 
employ only "main effect" or first-order terms for predictors, that is, the values for 
different predictor variables are independent and raised only to the first power. 
Other between designs may employ higher-order terms for predictors by raising 
the values for the original predictor variables to a power greater than 1 (e.g., in 
polynomial regression designs), or by forming products of different predictor 
variables (i.e., interaction terms). A common arrangement for ANOVA designs is 
the full-factorial design, in which every combination of levels for each of the 
categorical predictor variables is represented in the design. Designs with some 
but not all combinations of levels for each of the categorical predictor variab
are aptly called fractional factorial designs. Designs with a hierarchy of 
combinations of levels for the different 

les 

categorical predictor variables are called 
nested designs.  
These basic distinctions about the nature, number, and arrangement of predictor 
variables can be used in describing a variety of different types of between 
designs. Some of the more common between designs can now be described.  
One-Way ANOVA. A design with a single categorical predictor variable is c
a one-way ANOVA design. For example, a study of 4 different fertilizers used on 
different individual plants could be analyzed via one-way ANOVA, with four le
for the factor Fertilizer.  

alled 

vels 

 genera, consider a single categorical predictorIn  variable A with 1 case in each 
f its 3 categories. Using the sigma-restrictedo  coding of A into 2 quantitative 

contrast variables, the matrix X defining the between design is  

 



That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the 
intercept), the case in group A1 is assigned a value of 1 on X1 and a value 0 on 
X2, the case in group A2 is assigned a value of 0 on X1 and a value 1 on X2, and 
the case in group A3 is assigned a value of -1 on X1 and a value -1 on X2. Of 
course, any additional cases in any of the 3 groups would be coded similarly. If 
there were 1 case in group A1, 2 cases in group A2, and 1 case in group A3, the X 
matrix would be  

 
where the first subscript for A gives the replicate number for the cases in each 
group. For brevity, replicates usually are not shown when describing ANOVA 
design matrices.  
Note that in one-way designs with an equal number of cases in each group, 
sigma-restricted coding yields X1 … Xk variables all of which have means of 0.  
Using the overparameterized model to represent A, the X matrix defining the 
between design is simply  

 
These simple examples show that the X matrix actually serves two purposes. It 
specifies (1) the coding for the levels of the original predictor variables on the X 
variables used in the analysis as well as (2) the nature, number, and 
arrangement of the X variables, that is, the between design.  
Main Effect ANOVA. Main effect ANOVA designs contain separate one-way 
ANOVA designs for 2 or more categorical predictors. A good example of main 
effect ANOVA would be the typical analysis performed on screening designs as 
described in the context of the Experimental Design chapter.  
Consider 2 categorical predictor variables A and B each with 2 categories. Using 
the sigma-restricted coding, the X matrix defining the between design is  



 
Note that if there are equal numbers of cases in each group, the sum of the 
cross-products of values for the X1 and X2 columns is 0, for example, with 1 case 
in each group (1*1)+(1*-1)+(-1*1)+(-1*-1)=0. Using the overparameterized model, 
the matrix X defining the between design is  

 
Comparing the two types of coding, it can be seen that the overparameterized 
coding takes almost twice as many values as the sigma-restricted coding to 
convey the same information.  
Factorial ANOVA. Factorial ANOVA designs contain X variables representing 
combinations of the levels of 2 or more categorical predictors (e.g., a study of 
boys and girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) 
design). In particular, full-factorial designs represent all possible combinations of 
the levels of the categorical predictors. A full-factorial design with 2 categorical 
predictor variables A and B each with 2 levels each would be called a 2 x 2 full-

ctorial design. Using the sigma-restrictedfa  coding, the X matrix for this design 
would be  

 
Several features of this X matrix deserve comment. Note that the X1 and X2 
columns represent main effect contrasts for one variable, (i.e., A and B, 
respectively) collapsing across the levels of the other variable. The X3 column 
instead represents a contrast between different combinations of the levels of A 
and B. Note also that the values for X3 are products of the corresponding values 



for X1 and X2. Product variables such as X3 represent the multiplicative or 
interaction effects of their factors, so X3 would be said to represent the 2-way 
interaction of A and B. The relationship of such product variables to the 
dependent variables indicate the interactive influences of the factors on 
responses above and beyond their independent (i.e., main effect) influences on 
responses. Thus, factorial designs provide more information about the 
relationships between categorical predictor variables and responses on the 
dependent variables than is provided by corresponding one-way or main effect 
designs.  
When many factors are being investigated, however, full-factorial designs 
sometimes require more data than reasonably can be collected to represent all 
possible combinations of levels of the factors, and high-order interactions 
between many factors can become difficult to interpret. With many factors, a 
useful alternative to the full-factorial design is the fractional factorial design. As 
an example, consider a 2 x 2 x 2 fractional factorial design to degree 2 with 3 
categorical predictor variables each with 2 levels. The design would include
main effects for each variable, and all 2-way 

 the 
interactions between the three 

variables, but would not include the 3-way interaction between all three variables. 
Using the overparameterized model, the X matrix for this design is  

 
The 2-way interactions are the highest degree effects included in the design. 
These types of designs are discussed in detail the 2**(k-p) Fractional Factorial 
Designs section of the Experimental Design chapter.  
Nested ANOVA Designs. Nested designs are similar to fractional factorial 
designs in that all possible combinations of the levels of the categorical predictor 



variables are not represented in the design. In nested designs, however, the 
omitted effects are lower-order effects. Nested effects are effects in which the 
nested variables never appear as main effects. Suppose that for 2 variables A 
and B with 3 and 2 levels, respectively, the design includes the main effect for A 
and the effect of B nested within the levels of A. The X matrix for this design 
using the overparameterized model is  

 
Note that if the sigma-restricted coding were used, there would be only 2 
columns in the X matrix for the B nested within A effect instead of the 6 columns 
in the X matrix for this effect when the overparameterized model coding is used 
(i.e., columns X4 through X9). The sigma-restricted coding method is overly-
restrictive for nested designs, so only the overparameterized model is used to 
represent nested designs.  
Simple Regression. Simple regression designs involve a single continuous 
predictor variable. If there were 3 cases with values on a predictor variable P of, 
say, 7, 4, and 9, and the design is for the first-order effect of P, the X matrix 
would be  

 
and using P for X1 the regression equation would be  
Y = b0 + b1P  
If the simple regression design is for a higher-order effect of P, say the quadratic 
effect, the values in the X1 column of the design matrix would be raised to the 
2nd power, that is, squared  



 
and using P2 for X1 the regression equation would be  
Y = b0 + b1P2  
The sigma-restricted and overparameterized coding methods do not apply to 
simple regression designs and any other design containing only continuous 
predictors (since there are no categorical predictors to code). Regardless of 
which coding method is chosen, values on the continuous predictor variables are 
raised to the desired power and used as the values for the X variables. No 
recoding is performed. It is therefore sufficient, in describing regression designs, 
to simply describe the regression equation without explicitly describing the design 
matrix X.  
Multiple Regression. Multiple regression designs are to continuous predictor 
variables as main effect ANOVA designs are to categorical predictor variables, 
that is, multiple regression designs contain the separate simple regression 
designs for 2 or more continuous predictor variables. The regression equation for 
a multiple regression design for the first-order effects of 3 continuous predictor 
variables P, Q, and R would be  
Y = b0 + b1P + b2Q + b3R  
Factorial Regression. Factorial regression designs are similar to factorial ANOVA 
designs, in which combinations of the levels of the factors are represented in the 
design. In factorial regression designs, however, there may be many more such 
possible combinations of distinct levels for the continuous predictor variables 
than there are cases in the data set. To simplify matters, full-factorial regression 
designs are defined as designs in which all possible products of the continuous 
predictor variables are represented in the design. For example, the full-factorial 
regression design for two continuous predictor variables P and Q would include 
the main effects (i.e., the first-order effects) of P and Q and their 2-way P by Q 
interaction effect, which is represented by the product of P and Q scores for each 
case. The regression equation would be  



Y = b0 + b1P + b2Q + b3P*Q  
Factorial regression designs can also be fractional, that is, higher-order effects 
can be omitted from the design. A fractional factorial design to degree 2 for 3 
continuous predictor variables P, Q, and R would include the main effects and all 
2-way interactions between the predictor variables  
Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  
Polynomial Regression. Polynomial regression designs are designs which 
contain main effects and higher-order effects for the continuous predictor 
variables but do not include interaction effects between predictor variables. For 
example, the polynomial regression design to degree 2 for three continuous 
predictor variables P, Q, and R would include the main effects (i.e., the first-order 
effects) of P, Q, and R and their quadratic (i.e., second-order) effects, but not the 
2-way interaction effects or the P by Q by R 3-way interaction effect.  
Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2  
Polynomial regression designs do not have to contain all effects up to the same 
degree for every predictor variable. For example, main, quadratic, and cubic 
effects could be included in the design for some predictor variables, and effects 
up the fourth degree could be included in the design for other predictor variables.  
Response Surface Regression. Quadratic response surface regression designs 
are a hybrid type of design with characteristics of both polynomial regression 
designs and fractional factorial regression designs. Quadratic response surface 
regression designs contain all the same effects of polynomial regression designs 
to degree 2 and additionally the 2-way interaction effects of the predictor 
variables. The regression equation for a quadratic response surface regression 
design for 3 continuous predictor variables P, Q, and R would be  
Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2 + b7P*Q + b8P*R + b9Q*R  
These types of designs are commonly employed in applied research (e.g., in 
industrial experimentation), and a detailed discussion of these types of designs is 
also presented in the Experimental Design chapter (see Central composite 
designs).  



Mixture Surface Regression. Mixture surface regression designs are identical to 
factorial regression designs to degree 2 except for the omission of the intercept. 
Mixtures, as the name implies, add up to a constant value; the sum of the 
proportions of ingredients in different recipes for some material all must add up 
100%. Thus, the proportion of one ingredient in a material is redundant with the 
remaining ingredients. Mixture surface regression designs deal with this 
redundancy by omitting the intercept from the design. The design matrix for a 
mixture surface regression design for 3 continuous predictor variables P, Q, and 
R would be  
Y = b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  
These types of designs are commonly employed in applied research (e.g., in 
industrial experimation), and a detailed discussion of these types of designs is 
also presented in the Experimental Design chapter (see Mixture designs and 
triangular surfaces).  
Analysis of Covariance. In general, between designs which contain both 
categorical and continuous predictor variables can be called ANCOVA designs. 
Traditionally, however, ANCOVA designs have referred more specifically to 
designs in which the first-order effects of one or more continuous predictor 
variables are taken into account when assessing the effects of one or more 
categorical predictor variables. A basic introduction to analysis of covariance can 
also be found in the Analysis of covariance (ANCOVA) topic of the 
ANOVA/MANOVA chapter.  
To illustrate, suppose a researcher wants to assess the influences of a 
categorical predictor variable A with 3 levels on some outcome, and that 
measurements on a continuous predictor variable P, known to covary with the 
outcome, are available. If the data for the analysis are  



 
then the sigma-restricted X matrix for the design that includes the separate first-
order effects of P and A would be  

 
The b2 and b3 coefficients in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3  
represent the influences of group membership on the A categorical predictor 
variable, controlling for the influence of scores on the P continuous predictor 
variable. Similarly, the b1 coefficient represents the influence of scores on P 
controlling for the influences of group membership on A. This traditional 
ANCOVA analysis gives a more sensitive test of the influence of A to the extent 
that P reduces the prediction error, that is, the residuals for the outcome variable.  
The X matrix for the same design using the overparameterized model would be  

 
The interpretation is unchanged except that the influences of group membership 
on the A categorical predictor variables are represented by the b2, b3 and b4 
coefficients in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4  



Separate Slope Designs. The traditional analysis of covariance (ANCOVA) 
design for categorical and continuous predictor variables is inappropriate when 
the categorical and continuous predictors interact in influencing responses on the 
outcome. The appropriate design for modeling the influences of the predictors in 
this situation is called the separate slope design. For the same example data 
used to illustrate traditional ANCOVA, the overparameterized X matrix for the 
design that includes the main effect of the three-level categorical predictor A and 
the 2-way interaction of P by A would be  

 
The b4, b5, and b6 coefficients in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6  
give the separate slopes for the regression of the outcome on P within each 
group on A, controlling for the main effect of A.  
As with nested ANOVA designs, the sigma-restricted coding of effects for 
separate slope designs is overly restrictive, so only the overparameterized model 
is used to represent separate slope designs. In fact, separate slope designs are 
identical in form to nested ANOVA designs, since the main effects for continuous 
predictors are omitted in separate slope designs.  
Homogeneity of Slopes. The appropriate design for modeling the influences of 
continuous and categorical predictor variables depends on whether the 
continuous and categorical predictors interact in influencing the outcome. The 
traditional analysis of covariance (ANCOVA) design for continuous and 
categorical predictor variables is appropriate when the continuous and 
categorical predictors do not interact in influencing responses on the outcome, 
and the separate slope design is appropriate when the continuous and 
categorical predictors do interact in influencing responses. The homogeneity of 



slopes designs can be used to test whether the continuous and categorical 
predictors interact in influencing responses, and thus, whether the traditional 
ANCOVA design or the separate slope design is appropriate for modeling the 
effects of the predictors. For the same example data used to illustrate the 
traditional ANCOVA and separate slope designs, the overparameterized X matrix 
for the design that includes the main effect of P, the main effect of the three-level 
categorical predictor A, and the 2-way interaction of P by A would be  

 
If the b5, b6, or b7 coefficient in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7  
is non-zero, the separate slope model should be used. If instead all 3 of these 
regression coefficients are zero the traditional ANCOVA design should be used.  
The sigma-restricted X matrix for the homogeneity of slopes design would be  

 
Using this X matrix, if the b4, or b5 coefficient in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  
is non-zero, the separate slope model should be used. If instead both of these 
regression coefficients are zero the traditional ANCOVA design should be used.  
 
 

 
<>Model Building  



In addition to fitting the whole model for the specified type of analysis, different 
methods for automatic model building can be employed in analyses using the 
generalized linear model. Specifically, forward entry, backward removal, forward 
stepwise, and backward stepwise procedures can be performed, as well as best-
subset search procedures. In forward methods of selection of effects to include in 
the model (i.e., forward entry and forward stepwise methods), score statistics are 
compared to select new (significant) effects. The Wald statistic can be used for 
backward removal methods (i.e., backward removal and backward stepwise, 
when effects are selected for removal from the model).  

 The best subsets search method can be based on three different test statistics:
the score statistic, the model likelihood, and the AIC (Akaike Information 
Criterion, see Akaike, 1973). Note that, since the score statistic does not require 
erative computations, best subset selection based on the score statistic is 
omputationally fastest, while selection based on the other two statistics usually 

 for additional 

it
c
provides more accurate results; see McCullagh and Nelder(1989),
details.  
 
 

 
Interpretation of Results and Diagnostics  
Simple estimation and test statistics may not be sufficient for adequate 
interpretation of the effects in an analysis. Especially for higher order (e.g., 
interaction) effects, inspection of the observed and predicted means can be 
invaluable for understanding the nature of an effect. Plots of these means (with 
error bars) can be useful for quickly grasping the role of the effects in the model.  
Inspection of the distributions of variables is critically important when using the 
generalized linear model. Histograms and probability plots for variables, and 
scatterplots showing the relationships between observed values, predicted 
values, and residuals (e.g., Pearson residuals, deviance residuals, studentized 
residuals, differential Chi-square statistics, differential deviance statistics, and 
generalized Cook's D) provide invaluable model-checking tools.  



 

General Regression Models (GRM) 

  
 

This chapter describes the use of the general linear model for finding the "best" linear 
model from a number of possible models. If you are unfamiliar with the basic methods of 
ANOVA and regression in linear models, it may be useful to first review the basic 
information on these topics in Elementary Concepts. A detailed discussion of univariate 
and multivariate ANOVA techniques can also be found in the ANOVA/MANOVA chapter; 
a discussion of multiple regression methods is also provided in the Multiple Regression 
chapter. Discussion of the ways in which the linear regression model is extended by the 
general linear model can be found in the General Linear Models chapter.  

 
  

A good theory is the end result of a winnowing process. We start with a 
comprehensive model that includes all conceivable, testable influences on the 
phenomena under investigation. Then we test the components of the initial 
comprehensive model, to identify the less comprehensive submodels that 
adequately account for the phenomena under investigation. Finally from these 
candidate submodels, we single out the simplest submodel, which by the 
principle of parsimony we take to be the "best" explanation for the phenomena 
under investigation.  
We prefer simple models not just for philosophical but also for practical reasons. 
Simple models are easier to put to test again in replication and cross-validation 

 are less costly to put into practice in predicting and 
controlling the outcome in the future. The philosophical reasons for preferring 
simple models should not be downplayed, however. Simpler models are easier to 
understand and appreciate, and therefore have a "beauty" that their more 

ribed above is encapsulated in the model-
es of stepwise and best-subset regression. The use of these 

model-building techniques begins with the specification of the design for a 
comprehensive "whole model." Less comprehensive submodels are then tested 

Basic Ideas: The Need for Simple Models

studies. Simple models

complicated counterparts often lack.  
The entire winnowing process desc
building techniqu



to determine if they adequately account for the outcome under investigation. 
Finally, the simplest of the adequate is adopted as the "best."  
 
 

 
Model Building in GSR  
Unlike the multiple regression model, which is used to analyze designs with 
continuous predictor variables, the general linear model can be used to analyze 
any ANOVA design with categorical predictor variables, any ANCOVA design 
with both categorical and continuous predictor variables, as well as any 
regression design with continuous predictor variables. Effects for categorical 
predictor variables can be coded in the design matrix X using either the 
overparameterized model or the sigma-restricted model.  
Only the sigma-restricted parameterization can be used for model-building. True 
to its description as general, the general linear model can be used to analyze 
designs with effects for categorical predictor variables which are coded using 
either parameterization method. In many uses of the general linear model, it is 
arbitrary whether categorical predictors are coded using the sigma-restricted or 
the overparameterized coding. When one desires to build models, however, the 

 is unsatisfactory; lower-order effects for 
predictor variables are redundant with higher-order containing 

interactions, and therefore cannot be fairly evaluated for inclusion in the model 
e model.  

This problem does not occur when categorical predictors

use of the overparameterized model
categorical 

when higher-order containing interactions are already in th
 are coded using the 

sigma-restricted parameterization, so only the sigma-restricted parameterization 
is necessary in general stepwise regression.  
Designs which cannot be represented using the sigma-restricted 
parameterization. The sigma-restricted parameterization can be used to 
represent most, but not all types of designs. Specifically, the designs which 
cannot be represented using the sigma-restricted parameterization are designs 
with nested effects, such as nested ANOVA and separate slope, and random 



effects. Any other type of ANOVA, ANCOVA, or regression design can be 
represented using the sigma-restricted parameterization, and can therefore be 
analyzed with general stepwise regression.  

 with 

r, 
 

Model building for designs with multiple dependent variables. Stepwise and best-
subset model-building techniques are well-developed for regression designs
a single dependent variable (e.g., see Cooley and Lohnes, 1971; Darlington, 
1990; Hocking Lindeman, Merenda, and Gold, 1980; Morrison, 1967; Nete
Wasserman, and Kutner, 1985; Pedhazur, 1973; Stevens, 1986; Younger, 1985).
Using the sigma-restricted parameterization and general linear model methods, 

 these model-building techniques can be readily applied to any ANOVA design
with categorical predictor variables, any ANCOVA design with both categor
and continuous predictor variables, as well as any regression design with 
ontinuous predictor variables. Building models for designs with multiple 

dependent variables, however, involves considerations that are not typically 
addressed by the 

ical 

c

general linear model. Model-building techniques for designs 
with multiple dependent variables are available with Structural Equation 
Modeling.  

 
 

 
Types of Analyses  
A wide variety of types of designs can be represented using the sigma-restricted 
coding of the design matrix X, and any such design can be analyzed using the 
general linear model. The following topics describe these different types of 
designs and how they differ. Some general ways in which designs might differ 
can be suggested, but keep in mind that any particular design can be a "hybrid" 
in the sense that it could have combinations of features of a number of different 
types of designs.  

Between-subject designs  

  



Overview. The levels or values of the predictor variables in an analysis describe the 
differences between the n subjects or the n valid cases that are analyzed. Thus, when we 
speak of the between subject design (or simply the between design) for an analysi
are referring to the nature, number, and arrangement of the predictor variables.  
Concerning the nature or type of predictor variables, between 

s, we 

designs which 
contain only categorical predictor variables can be called ANOVA (analysis of 
variance) designs, between designs which contain only continuous predictor 
variables can be called regression designs, and between designs which con
both categorical and continuous predictor variables can be called ANCOVA 
(analysis of covariance) designs.  
Between designs may involve only a single predictor variable and therefore be 
described as simple (e.g., simple regression) or may employ numerous pred
variables (

tain 

ictor 
e.g., multiple regression).  

 

 
e.g., in 

Concerning the arrangement of predictor variables, some between designs 
employ only "main effect" or first-order terms for predictors, that is, the values for
different predictor variables are independent and raised only to the first power. 
Other between designs may employ higher-order terms for predictors by raising
the values for the original predictor variables to a power greater than 1 (
polynomial regression designs), or by forming products of different predictor 
variables (i.e., interaction terms). A common arrangement for ANOVA desig
the full-fac

ns is 
torial design, in which every combination of levels for each of the 

categorical predictor variables is represented in the design. Designs with some 
but not all combinations of levels for each of the categorical predictor variables 
are aptly called fractional factorial designs.  
These basic distinctions about the nature, number, and arrangement of predictor 
variables can be used in describing a variety of different types of between 
designs. Some of the more common between designs can now be described.  
Simple Regression. Simple regression designs involve a single continuous 

redictor variable. If there were 3 cases with values on a predictor variable P of, 
ay, 7, 4, and 9, and the design is for the first-order effect of P, the X matrix 

would be  

p
s



 
and using P for X1 the regression equation would be  
Y = b0 + b1P  
If the simple regression design is for a higher-order effect of P, say the quadratic 
effect, the values in the X1 column of the design matrix would be raised to the 
2nd power, that is, squared  

 
and using P2 for X1 the regression equation would be  
Y = b0 + b1P2  
In regression designs, values on the continuous predictor variables are raised to 
the desired power and used as the values for the X variables. No recoding is 
performed. It is therefore sufficient, in describing regression designs, to simply 
describe the regression equation without explicitly describing the design matrix X.  
Multiple Regression. Multiple regression designs are to continuous predictor 
variables as main effect ANOVA designs are to categorical predictor variables, 
that is, multiple regression designs contain the separate simple regression 
designs for 2 or more continuous predictor variables. The regression equation for 
a multiple regression design for the first-order effects of 3 continuous predictor 
variables P, Q, and R would be  
Y = b0 + b1P + b2Q + b3R  
A discussion of multiple regression methods is also provided in the Multiple 
Regression chapter.  
Factorial Regression. Factorial regression designs are similar to factorial ANOVA 
designs, in which combinations of the levels of the factors are represented in the 
design. In factorial regression designs, however, there may be many more such 
possible combinations of distinct levels for the continuous predictor variables 
than there are cases in the data set. To simplify matters, full-factorial regression 



designs are defined as designs in which all possible products of the continuous 
predictor variables are represented in the design. For example, the full-factorial 
regression design for two continuous predictor variables P and Q would include 
the main effects (i.e., the first-order effects) of P and Q and their 2-way P by Q 
interaction effect, which is represented by the product of P and Q scores for each 
case. The regression equation would be  
Y = b0 + b1P + b2Q + b3P*Q  
Factorial regression designs can also be fractional, that is, higher-order effects 
can be omitted from the design. A fractional factorial design to degree 2 for 3 
ontinuous predictor variables P, Q, and R would include the main effects and all 
-way interactions

c
2  between the predictor variables  

 = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  
olynomial Regression. Polynomial regression designs are designs which 
ontain main effects and higher-order effects for the continuous predictor 

variables but do not include interaction

Y
P
c

 effects between predictor variables. For 
example, the polynomial regression design to degree 2 for three continuous 

P, Q, and R would include the main effects (i.e., the first-order 
 of P, Q, and R and their quadratic (i.e., second-order) effects, but not the 

-way interaction

predictor variables 
effects)
2  effects or the P by Q by R 3-way interaction effect.  

 = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2  
olynomial regression designs do not have to contain all effects up to the same 

degree for every predictor variable. For example, main, quadratic, and cubic 
ffects could be included in the design for some predictor variables, and effects 

cluded in the design for other predictor variables.  
Response Surface Regression. Quadratic response surface regression designs 

re a hybrid type of design with characteristics of both polynomial regression

Y
P

e
up the fourth degree could be in

a  
esigns and fractional factorial regressiond  designs. Quadratic response surface 
gression designs contain all the same effects of polynomial regression designs 
 degree 2 and additionally the 2-way interaction

re
to  effects of the predictor 



varia n 
design for 3 continuous predictor variables 
Y = b0 + b1P + b2P2 + b3 4 5 6 7 8 9Q*R  
These types of designs are commonly employed in applied research (e.g., in 
industrial experimentation), and a detailed discussion of these types of designs is 
also presented in the Experimental Design

bles. The regression equation for a quadratic response surface regressio
P, Q, and R would be  

Q + b Q2 + b R + b R2 + b P*Q + b P*R + b

 chapter (see Central composite 
designs).  
Mixture Surface Regression. Mixture surface regression designs are identical to 
factorial regression designs to degree 2 except for the omission of the intercept. 
Mixtures, as the name implies, add up to a constant value; the sum of the 
proportions of ingredients in different recipes for some material all must add up 
100%. Thus, the proportion of one ingredient in a material is redundant with the 
remaining ingredients. Mixture surface regression designs deal with this 
redundancy by omitting the intercept from the design. The design matrix for a 
mixture surface regression design for 3 continuous predictor variables P, Q, and 
R would be  
Y = b1P + b2P2 + b3Q + b4P*Q + b5P*R + b6Q*R  
These types of designs are commonly employed in applied research (e.g., in 
industrial experimentation), and a detailed discussion of these types of designs is 
also presented in the Experimental Design chapter (see Mixture designs and 
triangular surfaces).  
One-Way ANOVA. A design with a single categorical predictor variable is called 
a one-way ANOVA design. For example, a study of 4 different fertilizers used on 
different individual plants could be analyzed via one-way ANOVA, with four levels 
for the factor Fertilizer.  
Consider a single categorical predictor variable A with 1 case in each of its 3 
categories. Using the sigma-restricted coding of A into 2 quantitative contrast 
variables, the matrix X defining the between design is  



 
That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the 
intercept), the case in group A1 is assigned a value of 1 on X1 and a value 0 on 
X2, the case in group A2 is assigned a value of 0 on X1 and a value 1 on X2, and 
the case in group A3 is assigned a value of -1 on X1 and a value -1 on X2. Of 
course, any additional cases in any of the 3 groups would be coded similarly. If 
there were 1 case in group A1, 2 cases in group A2, and 1 case in group A3, the X 
matrix would be  

 
where the first subscript for A gives the replicate number for the cases in each 
group. For brevity, replicates usually are not shown when describing ANOVA 
design matrices.  
Note that in one-way designs with an equal number of cases in each group, 
sigma-restricted coding yields X1 … Xk variables all of which have means of 0.  

s. It These simple examples show that the X matrix actually serves two purpose
specifies (1) the coding for the levels of the original predictor variables on the X 
variables used in the analysis as well as (2) the nature, number, and 
arrangement of the X variables, that is, the between design.  
Main Effect ANOVA. Main effect ANOVA designs contain separate one-way 
ANOVA designs for 2 or more categorical predictors. A good example of main 
effect ANOVA would be the typical analysis performed on screening designs as 
described in the context of the Experimental Design chapter.  
Consider 2 categorical predictor variables A and B each with 2 categories. Usi
the 

ng 
sigma-restricted coding, the X matrix defining the between design is  



 
Note that if there are equal numbers of cases in each group, the sum of the 
cross-products of values for the X1 and X2 columns is 0, for example, with 1 case
in each group (1*1)+(1*-1)+(-1*1)+(-1*-1)=0.  

actorial ANOVA. Factorial ANOVA designs contain X variables represen
combinations of the levels of 2 or more 

 

F ting 
categorical predictors (e.g., a study of 

oys and girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) 
design). In particular, full-factorial designs represent all possible combinations o
the levels of the 

b
f 

categorical predictors. A full-factorial design with 2 categorical 
predictor variables A and B each with 2 levels would be called a 2 x 2 full-
factorial design. Using the sigma-restricted coding, the X matrix for this design 
would be  

 
Several features of this X matrix deserve comment. Note that the X1 and X2 
columns represent main effect contrasts for one variable, (i.e., A and B, 
respectively) collapsing across the levels of the other variable. The X3 column 
instead represents a contrast between different combinations of the levels of A 

3 

interaction

and B. Note also that the values for X3 are products of the corresponding values 
for X1 and X2. Product variables such as X represent the multiplicative or 

 effects of their factors, so X3 would be said to represent the 2-way 
interaction of A and B. The relationship of such product variables to the 
dependent variables indicate the interactive influences of the factors on 
responses above and beyond their independent (i.e., main effect) influences on 
responses. Thus, factorial designs provide more information abo
relationships between 

ut the 
categorical predictor variables and responses on the 



dependent variables than is provided by corresponding one-way or main effec
designs.  

t 

 investigated, however, full-factorial designs 
 all 

When many factors are being
sometimes require more data than reasonably can be collected to represent
possible combinations of levels of the factors, and high-order interactions 
between many factors can become difficult to interpret. With many factors, a 
useful alternative to the full-factorial design is the fractional factorial design.
an example, consider a 2 x 2 x 2 fractional factorial de

 As 
sign to degree 2 with 3 

categorical predictor variables each with 2 levels. The design would include
main effects for each variable, and all 2-way 

 the 
interactions between the three 

variables, but would not include the 3-way interactions between all three 
variables. These types of designs are discussed in detail in the 2**(k-p) 
Fractional Factorial Designs section of the Experimental Design chapter.  
Analysis of Covariance. In general, between designs which contain both 
categorical and continuous predictor variables can be called ANCOVA designs. 
Traditionally, however, ANCOVA designs have referred more specifically to 
designs in which the first-order effects of one or more continuous predictor 
variables are taken into account when assessing the effects of one or more 
categorical predictor variables. A basic introduction to analysis of covariance can 
also be found in the Analysis of covariance (ANCOVA) topic of the 
ANOVA/MANOVA chapter.  
To illustrate, suppose a researcher wants to assess the influences of a 
categorical predictor variable A with 3 levels on some outcome, and that 
measurements on a continuous predictor variable P, known to covary with the 
outcome, are available. If the data for the analysis are  

 



then the sigma-restricted X matrix for the design that includes the separate first-
order effects of P and A would be  

 
The b2 and b3 coefficients in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3  
represent the influences of group membership on the A categorical predictor 
variable, controlling for the influence of scores on the P continuous predicto
variable. Similarly, the b

r 

1 coefficient represents the influence of scores on P 
controlling for the influences of group membership on A. This traditional 

t 

 of 

ANCOVA analysis gives a more sensitive test of the influence of A to the exten
that P reduces the prediction error, that is, the residuals for the outcome variable.  
Homogeneity of Slopes. The appropriate design for modeling the influences
continuous and categorical predictor variables depends on whether the 
continuous and categorical predictors interact in influencing the outcome. The 
traditional analysis of covariance (ANCOVA) design for continuous and 
categorical predictor variables is appropriate when the continuous and 
categorical predictors do not interact in influencing responses on the outcome. 
The homogeneity of slopes designs can be used to test whether the continuous 
and categorical predictors interact in influencing responses. For the same 
example data used to illustrate the traditional ANCOVA design, the sigma-
restricted X matrix for the homogeneity of slopes design would be  

 



Using this design matrix X, if the b4 and b5 coefficients in the regression equation
Y = b

  

0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  
are zero, the simpler traditional ANCOVA design should be used.  

Multivariate Designs Overview  

When there are multiple dependent variables in a design, the design is said to be 
multivariate. Multivariate measures of association are by nature more complex 
than their univariate counterparts (such as the correlation coefficient, for 
example). This is because multivariate measures of association must take into 
account not only the relationships of the predictor variables with responses on 
the dependent variables, but also the relationships among the multiple 
dependent variables. By doing so, however, these measures of association 

tor and 
dep n
provide information about the strength of the relationships between predic

e dent variables independent of the dependent variables interrelationships. A 
iscussion of multivariate designs is also presented in the basic d iate Multivar

Designs topic in the ANOVA/MANOVA chapter.  
The
expres

 most commonly used multivariate measures of association all can be 
sed as functions of the eigenvalues of the product matrix  

E-1H  
where E is the error SSCP matrix (i.e., the matrix of sums of squares and cross-
products for the dependent variables that are not accounted for by the predi
in the between design), and H is a hypothesis SSCP matrix (i.e., the matrix o
sums of squares and cross-products for the 

ctors 
f 

dependent variables that are 
accounted for by all the predictors in the between design, or the sums of s
and cross-products for the 

quares 
dependent variables that are accounted for by a 

particular effect). If  
λi = the ordered eigenvalues of E-1H, if E-1 exists 
then the 4 commonly used multivariate measures of association are  
Wilks' lambda = Π[1/(1+λi)]  
Pillai's trace = Σλi/(1+λi)  
Hotelling-Lawley trace = Σλi  

http://www.statsoft.com/textbook/stbasic.html


Roy's largest root = λ1  
These 4 measures have different upper and lower bounds, with Wilks' lambda 
perhaps being the most easily interpretable of the four measures. Wilks' lambda 
can range from 0 to 1, with 1 indicating no relationship of predictors to responses 

Wilks' and 0 indicating a perfect relationship of predictors to responses. 1 - 
lambda can be interpreted as the multivariate counterpart of a univariate R-
squared, that is, it indicates the proportion of generalized variance in the 
dependent variables that is accounted for by the predictors.  
The 4 measures of association are also used to construct multivariate tests of 

 

significance. These multivariate tests are covered in detail in a number of 
sources (e.g., Finn, 1974; Tatsuoka, 1971).  
 

 
Building the Whole Model  
The following sections discuss details for building and testing hypotheses about 
the "whole model", for example, how sums of squares are partitioned and how 
the overall fit for the whole model is tested.  

Partitioning Sums of Squares  

A fundamental principle of least squares methods is that variation on a 
dependent variable can be partitioned, or divided into parts, according to the 
sources of the variation. Suppose that a dependent variable is regressed on one 
or more predictor variables, and that for convenience the dependent variable is 
scaled so that its mean is 0. Then a basic least squares identity is that the total
sum of squared values on the 

 
dependent variable equals the sum of s

predicted values plus the sum of squared residual va
quared 

lues. Stated more generally,  
(y-hat - y-bar)2 + Σ(y - y-hat)2  Σ(y - y-bar)2 = Σ

where the term on the left is the total sum of squared deviations of the observed 
values on the dependent variable from the dependent variable mean, and the 
respective terms on the right are (1) the sum of squared deviations of the 
predicted values for the dependent variable from the dependent variable mean 



and (2) the sum of the squared deviations of the observed values on the 
dependent variable from the predicted values, that is, the sum of the squared 
residuals. Stated yet another way,  
Total SS = Model SS + Error SS  
Note that the Total SS is always the same for any particular data set, but that the 
Model SS and the Error SS depend on the regression equation. Assuming again 
that the dependent variable is scaled so that its mean is 0, the Model SS and the
Error SS can be computed using  
Model SS = b'X'Y  

 

 Model SS and the Error SS, one can perform a test that all the 

ted from 
e fit of the regression surface defined 

Error SS = Y'Y - b'X'Y  

Testing the Whole Model  
Given the
regression coefficients for the X variables (b1 through bk, excluding the b0 
coefficient for the intercept) are zero. This test is equivalent to a comparison of 
the fit of the regression surface defined by the predicted values (compu
the whole model regression equation) to th
solely by the dependent variable mean (computed from the reduced regression 
equation containing only the intercept). Assuming that X'X is full-rank, the
model hypothesis mean square  
MSH = (Model SS)/k  
where k is the number of columns of X (excluding the intercept column), i
estimate of the variance of the predicted values. The error mean square  
s

 whole 

s an 

 number of observations, is an unbiased estimate of the residual or 
error variance. The test statistic is  

2 = MSE = (Error SS)/(n-k-1)  
where n is the

F = MSH/MSE  
where F has (k, n - k - 1) degrees of freedom.  
If X'X is not full rank, r + 1 is substituted for k, where r is the rank or the numb
of non-redund

er 
ant columns of X'X.  



If the whole model test is not significant the analysis is complete; the whole 
model is concluded to fit the data no better than the reduced model using the 
dependent variable mean alone. It is futile to seek a submodel which adequately 
fits the data when the whole model is inadequate.  
Note that in the case of non-intercept models, some multiple regression 
programs will only compute the full model test based on the proportion of 
variance around 0 (zero) accounted for by the predictors; for more information 
(see Kvålseth, 1985; Okunade, Chang, and Evans, 1993). Other programs will 
actually compute both values (i.e., based on the residual variance around 0, and 
around the respective dependent variable means.  

Limitations of Whole Models  

For designs such as one-way ANOVA or simple regression designs, the w
model test by itself may be sufficient for testing general hypotheses abou
whether or not the single predictor variable is related to the outcome. In comple
designs, however, finding a statistically significant test of whole model fit is oft
just the first step in the analysis; one then seeks to identify simpler submo
that fit the data equally well (see the section on 

hole 
t 

x 
en 

dels 
e Basic ideas: The need for simpl

models). It is to this task, the search for submodels that fit the data well, that 
stepwise and best-subset regression are devoted.  
 
 

 
ls via Stepwise Regression  

n, 1967; 

"stepping," that is, repeatedly altering the model at the previous step by adding or 
removing a predictor variable in accordance with the "stepping criteria," and (3) 
terminating the search when stepping is no longer possible given the stepping 

Building Mode
Stepwise model-building techniques for regression designs with a single 
dependent variable are described in numerous sources (e.g., see Darlington, 
1990; Hocking, 1966, Lindeman, Merenda, and Gold, 1980; Morriso
Neter, Wasserman, and Kutner, 1985; Pedhazur, 1973; Stevens, 1986; Younger, 
1985). The basic procedures involve (1) identifying an initial model, (2) iteratively 



criteria, or when a specified maximum number of steps has been reached. Th
following topics provide details on the use

e 
 of stepwise model-building 

procedures.  
The Initial Model in Stepwise Regression. The initial model is designated the 
model at Step 0. The initial model always includes the regression intercept 
(unless the No intercept option has been specified.). For the backward stepwise 
and backward removal methods, the initial model also includes all effects 
specified to be included in the design for the analysis. The initial model for these 
methods is therefore the whole model.  

d forward entry methods, the initial model always 

r more effects specified to be 
forced into the model. If j is the number of effects specified to be forced into the 

del 

ard 

ffects are not eligible to be removed from 
ps.  

n the entry statistic is 
entered into the model. Stepping is also terminated if the maximum number of 
steps is reached.  
The Backward Removal Method. The backward removal method is also a simple 
model-building procedure. At each Step after Step 0, the removal statistic is 
computed for each effect eligible to be removed from the model. If no effect has a 

For the forward stepwise an
includes the regression intercept (unless the No intercept option has been 
specified.). The initial model may also include 1 o

model, the first j effects specified to be included in the design are entered into the 
model at Step 0 . Any such effects are not eligible to be removed from the mo
during subsequent Steps.  
Effects may also be specified to be forced into the model when the backw
stepwise and backward removal methods are used. As in the forward stepwise 
and forward entry methods, any such e
the model during subsequent Ste
The Forward Entry Method. The forward entry method is a simple model-building 
procedure. At each Step after Step 0, the entry statistic is computed for each 
effect eligible for entry in the model. If no effect has a value on the entry statistic 
which exceeds the specified critical value for model entry, then stepping is 
terminated, otherwise the effect with the largest value o



value on the removal statistic which is less than the critical value for removal 
from the model, then stepping is terminated, otherwise the effect with the 
smallest value on the removal statistic is removed from the model. Stepping is 
also terminated if the maximum number of steps is reached.  
The Forward Stepwise Method. The forward stepwise method employs a 
combination of the procedures used in the forward entry and backward removal 
methods. At Step 1 the procedures for forward entry are performed. At any 
subsequent step where 2 or more effects have been selected for entry into the 

 

 forward entry and backward removal 

pping is 
tepping is also terminated if the maximum number of steps is 

 

mber of Steps is reached.  
 
 

model, forward entry is performed if possible, and backward removal is 
performed if possible, until neither procedure can be performed and stepping is
terminated. Stepping is also terminated if the maximum number of steps is 
reached.  
The Backward Stepwise Method. The backward stepwise method employs a 
combination of the procedures used in the
methods. At Step 1 the procedures for backward removal are performed. At any 
subsequent step where 2 or more effects have been selected for entry into the 
model, forward entry is performed if possible, and backward removal is 
performed if possible, until neither procedure can be performed and ste
terminated. S
reached.  
Entry and Removal Criteria. Either critical F values or critical p values can be 
specified to be used to control entry and removal of effects from the model. If p 
values are specified, the actual values used to control entry and removal of 
effects from the model are 1 minus the specified p values. The critical value for
model entry must exceed the critical value for removal from the model. A 
maximum number of Steps can also be specified. If not previously terminated, 
stepping stops when the specified maximum nu

 
Building Models via Best-Subset Regression  



All-possible-subset regression can be used as an alternative to or in conjunction 
with stepwise methods for finding the "best" possible submodel.  
Neter, Wasserman, and Kutner (1985) discuss the use of all-possible-subset 
regression in conjunction with stepwise regression "A limitation of the stepwise 
regression search approach is that it presumes there is a single "best" subset of 
X variables and seeks to identify it. As noted earlier, there is often no unique 
"best" subset. Hence, some statisticians suggest that all possible regression 
models with a similar number of X variables as in the stepwise regression 

tted subsequently to study whether some other subsets of X 

of 

wise solution is suspect.  

solution be fi
variables might be better." (p. 435). This reasoning suggests that after finding a 
stepwise solution, the "best" of all the possible subsets of the same number 
effects should be examined to determine if the stepwise solution is among the 
"best." If not, the step
All-possible-subset regression can also be used as an alternative to stepwise 
regression. Using this approach, one first decides on the range of subset sizes 
that could be considered to be useful. For example, one might expect that 
inclusion of at least 3 effects in the model is necessary to adequately account fo
responses, and also might expect there is no advantage to considering models 

r 

dering subsets in terms of 
"goodness." The most often used criteria are the subset multiple R-square, 

regression is used in conjunction with stepwise

with more than 6 effects. Only the "best" of all possible subsets of 3, 4, 5, and 6 
effects are then considered.  
Note that several different criteria can be used for or

adjusted R-square, and Mallow's Cp statistics. When all-possible-subset 
 methods, the subset multiple R-

square statistic allows direct comparisons of the "best" subsets identified using 
each approach.  
The number of possible submodels increases very rapidly as the number of 
effects in the whole model increases, and as subset size approaches half of the 
number of effects in the whole model. The amount of computation required to 
perform all-possible-subset regression increases as the number of possible 



submodels increases, and holding all else constant, also increases very rapidly 
as the number of levels for effects involving categorical predictors increases, t
resulting in more columns in the 

hus 
design matrix X. For example, all possible 

subsets of up to a dozen or so effects could certainly theoretically be computed 
for a design that includes two dozen or so effects all of which have many levels, 
but the computation would be very time consuming (e.g., there are about 2.7 
million different ways to select 12 predictors from 24 predictors, i.e., 2.7 million 

en 
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models to evaluate just for subset size 12). Simpler is generally better wh
using all-possible-subset regression.  
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
  

 
 
 

 



Selected Topics in Graphical Analytic Techniques 
 

Brief Overviews of Types of Graphs 
  

 

methods involves 
dividing ("splitting") the data set into categories in order compare the patterns of 
data between the resulting subsets. This common technique is known under a 
variety of terms (such as breaking down, grouping, categorizing, splitting, slicing, 
drilling-down, or conditioning) and it is used both in exploratory data analyses

Categorized Graphs  

One of the most important, general, and also powerful analytic 

 
and hypothesis testing. For example: A positive relation between the age and the 
risk of a heart attack may be different in males and females (it may be stronger in 
males). A promising relation between taking a drug and a decrease of the 
cholesterol level may be present only in women with a low blood pressure and 
only in their thirties and forties. The process capability indices or capability 
histograms can be different for periods of time supervised by different operators. 
The regression slopes can be different in different experimental groups. 
There are many computational techniques that capitalize on grouping and that 
are designed to quantify the differences that the grouping will reveal (e.g., 
ANOVA/MANOVA). However, graphical techniques (such as categorized graphs 
discussed in this section) offer unique advantages that cannot be substituted by 
any computational method alone: they can reveal patterns that cannot be easily 
quantified (e.g., complex interactions, exceptions, anomalies) and they provide 
unique, multidimensional, global analytic perspectives to explore or "mine" the 
data. 

What are Categorized Graphs?  

ft in 

ce a series of 2D, 3D, ternary, or nD graphs (such as histograms

Categorized graphs (the term first used in STATISTICA software by StatSo
1990; also recently called Trellis graphs, by Becker, Cleveland, and Clark, at Bell 
Labs) produ , 
scatterplots, line plots, surface plots, ternary scatterplots, etc.), one for each 



selected category of cases (i.e., subset of cases), for example, respondents from 

 of 

 them is 

New York, Chicago, Dallas, etc. These "component" graphs are placed 
sequentially in one display, allowing for comparisons between the patterns
data shown in graphs for each of the requested groups (e.g., cities).  
A variety of methods can be used to select the subsets; the simplest of
using a categorical variable (e.g., a variable City, with three values New York, 
Chicago, and Dallas). For example, the following graph shows histograms of a 
variable representing self-reported stress levels in each of the three cities.  

 
One could conclude that the data suggest that people who live in Dallas are less 
likely to report being stressed, while the patterns (distributions) of stress reporting 
in New York and Chicago are quite similar.  
Categorized graphs in some software systems (e.g., in STATISTICA) also 

 
 the 

en aph represents a cross-section of one level of 
one grouping variable

support two-way or multi-way categorizations, where not one criterion (e.g., City)
but two or more criteria (e.g., City and Time of the day) are used to create
subsets. Two-way categorized graphs can be thought of as "crosstabulations of 
graphs" where each compon t gr

 (e.g., City) and one level of the other grouping variable 
(e.g., Time).  



 
Adding this second factor reveals that the patterns of stress reporting in New 

taken into consideration, whereas the Time factor makes little difference in 
York and Chicago are actually quite different when the Time of questioning is 

Dallas.  
Categorized graphs vs. matrix graphs. Matrix graphs also produce displays 
containing multiple component graphs; however, each of those component 
graphs are (or can be) based on the same set of cases and the graphs are 
generated for all combinations of variables from one or two lists. Categorized 
graphs require a selection of variables that normally would be selected for non-
categorized graphs of the respective type (e.g., two variables for a scatterplot). 
However, in categorized plots, you also need to specify at least one grouping 
variable (or some criteria to be used for sorting the observations into the 
categories) that contains information on group membership of each case (e.g., 
Chicago, Dallas). That grouping variable will not be included in the graph directly 
(i.e., it will not be plotted) but it will serve as a criterion for dividing all analyzed 
cases into separate graphs. As illustrated above, one graph will be created for 
each group (category) identified by the grouping variable.  
Common vs. Independent scaling. Each individual category graph may be scaled 
according to its own range of values (independent scaling),  



 
or all graphs may be scaled to a common scale wide enough to accommoda
values in all of the category graphs.  

te all 

 
Common scaling allows the analyst to make comparisons of ranges and 
distributions of values among categories. However, if the ranges of values in 
graph categories are considerably different (causing a very wide common scale), 
then some of the graphs may be difficult to examine. The use of independent 
scaling may make it easier to spot trends and specific patterns within categories, 
but it may be more difficult to make comparisons of ranges of values among 
categories.  

Categorization Methods  

There are five general methods of categorization of values and they will be 
reviewed briefly in this section: Integer mode, Categories, Boundaries, Codes, 
and Multiple subsets. Note that the same methods of categorization can be used 
to categorize cases into component graphs and to categorize cases within 
component graphs (e.g., in histograms or box plots).  



Integer Mode. When you use Integer Mode, integer values of the selected 
grouping variable will be used to define the categories, and one graph will be 
created for all cases that belong each category (defined by those integer values). 
If the selected grouping variable contains non-integer values, the software will 
usually truncate each encountered value of the selected grouping variable to an 
integer value.  

 
Categories. With this mode of categorization, you will specify the number of 
categories which you wish to use. The software will divide the entire range of 
values of the selected grouping variable (from minimum to maximum) into the 
requested number of equal length intervals.  

 
Boundaries. The Boundaries method will also create interval categorization, 

 can be of arbitrary (e.g., uneven) width as defined by 
xample, "less than –10," "greater than or equal 

ess than 0," "greater than or equal to 0 but less than 10," and "equal 

however, the intervals
custom interval boundaries (for e
to –10 but l
to or greater than 10").  



 
Codes. Use this method if the selected grouping variable contains "codes" (i.e., 
specific, meaningful values such as Male, Female) from which you want to 
specify the categories.  

 
Multiple subsets. This method allows you to custom-define the categories and 
enables you to use more than one variable to define the category. In other words, 
categorizations based on multiple subset definitions of categories may not 
represent distributions of specific (individual) variables but distributions of 
frequencies of specific "events" defined by particular combinations of values of 
several variables (and defined by conditions which may involve any number of 
variables from the current data set). For example, you might specify six 
categories based on combinations of three variables Gender, Age, and 
Employment.  



 
Histograms  

In general, histograms are used to examine frequency distributions of values of 
variables. For example, the frequency distribution plot shows which specific 
values or ranges of values of the examined variable are most frequent, how 
differentiated the values are, whether most observations are concentrated 
around the mean, whether the distribution is symmetrical or skewed, whether it is 
multimodal (i.e., has two or more peaks) or unimodal, etc. Histograms are also 
useful for evaluating the similarity of an observed distribution with theoretical or 
expected distributions.  
Categorized Histograms allow you to produce histograms broken down by one or 
more categorical variables, or by any other one or more sets of logical 
categorization rules (see Categorization Methods).  
There are two major reasons why frequency distributions are of interest.  

ed • One may learn from the shape of the distribution about the nature of the examin
variable (e.g., a bimodal distribution may suggest that the sample is not 
homogeneous and consists of observations that belong to two populations that are 
more or less normally distributed).  

• Many statistics are based on assumptions about the distributions of analyzed 
variables; histograms help one to test whether those assumptions are met.  

Often, the first step in the analysis of a new data set is to run histograms on all variables.  
Histograms vs. Breakdown. Categorized Histograms provide information similar 
to breakdowns (e.g., mean, median, mini
values, etc.; see the 

mum, maximum, differentiation of 
ablesBasic Statistics and T  chapter). Although specific 

(numerical) descriptive statistics are easier to read in a table, the overall shape 



and global descriptive characteristics of a distribution are much easier to 
examine in a graph. Moreover, the graph provides qualitative information
the distribution that cannot be fully represented

 about 
 by any single index. For example, 

the overall skewed distribution of income may indicate that the majority of people 

wn by gender and ethnic background, this 
characteristic of the income distribution may be found to be more pronounced in 
certain subgroups. Although this information will be contained in the index of 
skewness

have an income that is much closer to the minimum than maximum of the range 
of income. Moreover, when broken do

 (for each sub-group), when presented in the graphical form of a 
histogram, the information is usually more easily recognized and remembered. 
The histogram may also reveal "bumps" that may represent important facts about 
the specific social stratification of the investigated population or anomalies in the 
distribution of income in a particular group caused by a recent tax reform.  
Categorized histograms and scatterplots. A useful application of the 

us 
. Shown below is a scatterplot for two 

variables Load 1 and Load 2.  

categorization methods for continuous variables is to represent the simultaneo
relationships between three variables

 
Now suppose you would like to add a third variable (Output) and examine how it 
is distributed at different levels of the joint distribution of Load 1 and Load 2. The
following graph could be produced:  

 



 
In this graph, Load 1 and Load 2 are both categorized into 5 intervals, and within 

. each combination of intervals the distribution for variable Output is computed
Note that the "box" (parallelogram) encloses approximately the same 
observations (cases) in both graphs shown above.  

Scatterplots  

In general, two-dimensional scatterplots are used to visualize relations between 
two variables X and Y (e.g., weight and height). In scatterplots, individual data 
points are represented by point markers in two-dimensional space, where axes 
represent the variables. The two coordinates (X and Y) which determine the 
location of each point correspond to its specific values on the two variables. If the 
two variables are strongly related, then the data points form a systematic shape 

lear curve). If the variables are not related, then the 
points form a round "cloud."  
The categorized scatterplot option allows you to produce scatterplots

(e.g., a straight line or a c

 categorized 
by one or more variables. Via the Multiple Subsets method (see Categorization 
Methods), you can also categorize the scatterplot based on logical selection 
conditions that define each category or group of observations.  
Categorized scatterplots offer a powerful exploratory and analytic technique for 
investigating relationships between two or more variables within different sub-
groups.  



Homogeneity of Bivariate Distributions (Shapes of Relations). Scatterplots are 
typically used to identify the nature of relations between two variables (e.g., blood 
pressure and cholesterol level), because they can provide much more 
information than a correlation coefficient.  
For example, a lack of homogeneity in the sample from which a correlation was 
calculated can bias the value of the correlation. Imagine a case where a 
correlation coefficient is calculated from data points which came from two 
different experimental groups, but this fact was ignored when the correlation was 
calculated. Suppose the experimental manipulation in one of the groups 

 correlated variables, and thus the data from each increased the values of both
group form a distinctive "cloud" in the scatterplot (as shown in the following 
illustration).  

 
In this example, the high correlation is entirely due to the arrangement of the two 
groups, and it does not represent the "true" relation between the two variables, 
which is practically equal to 0 (as could be seen if one looked at each group 
separately).  
If you suspect that such pattern may exist in your data and you know how to 
identify the possible "subsets" of data, then producing a categorized scatterplot  



 
may yield a more accurate picture of the strength of the relationship between the 

 

erplots

X and Y variable, within each group (i.e., after controlling for group membership). 
Curvilinear Relations. Curvilinearity is another aspect of the relationships 
between variables which can be examined in scatt . There are no 
"automatic" or easy-to-use tests to measure curvilinear relationships between 
variables: The standard Pearson r coefficient measures only linear relations; 
some nonparametric correlations such as the Spearman R can measure 
curvilinear relations, but not non-monotonous relations. Examining scatterplots 
allows one to identify the shape of relations, so that later an appropriate data 
transformation can be chosen to "straighten" the data or choose an appropriate 
nonlinear estimation equation to be fit.  
For more information, refer to the chapters on Basic Statistics, Nonparametrics 
and Distributions, Multiple Regression, and Nonlinear Estimation.  

Probability Plots  

Three types of categorized probability plots are Normal, Half-Normal, and 
Detrended. Normal probability plots provide a quick way to visually inspect to 
what extent the pattern of data follows a normal distribution.  
Via categorized probability plots, one can examine how closely the distribution of 
a variable follows the normal distribution in different sub-groups.  



 
Categorized normal probability plots provide an efficient tool to examine the 
normality aspect of group homogeneity.  

 
Quantile-Quantile Plots  

The categorized Quantile-Quantile (or Q-Q) plot is useful for finding the best 
fitting distribution within a family of distributions.  

 
With Categorized Q-Q plots, a series of Quantile-Quantile (or Q-Q) plots, one for 
each category of cases identified by the X or X and Y category variables (or 
identified by the Multiple Subset criteria, see Categorization Methods) are 
produced. Examples of distributions which are used for Q-Q plots are the 



Exponential Distribution, Extreme Distribution, Normal, Rayleigh, Beta, Gamma, 
Lognormal, and Weibull distributions.  

Probability-Probability Plots  

The categorized Probability-Probability (or P-P) plot is useful for determining how 
well a specific theoretical distribution fits the observed data. This type of graph 
includes a series of Probability-Probability (or P-P) plots, one for each category 
of cases identified by the X or X and Y category variables (or identified by the 
Multiple Subset criteria, see Categorization Methods).  

 
In the P-P plot, the observed cumulative distribution function (the proportion of 
non-missing values x) is plotted against a theoretical cumulative distribution 
function in order to assess the fit of the theoretical distribution to the observed 
data. If all points in this plot fall onto a diagonal line (with intercept 0 and slope 1), 
then you can conclude that the theoretical cumulative distribution adequately 
approximates the observed distribution.  
If the data points do not all fall on the diagonal line, then you can use this plot to 
visually assess where the data do and do not follow the distribution (e.g., if the 
points form an S shape along the diagonal line, then the data may need to be 
transformed in order to bring them to the desired distribution pattern).  

Line Plots  

In line plots, individual data points are connected by a line. Line plots provide a 
simple way to visually present a sequence of many values (e.g., stock market 
quotes over a number of days). The categorized Line Plots graph is useful when 
one wants to view such data broken down (categorized) by a grouping variable 



(e.g., closing stock quotes on Mondays, Tuesdays, etc.) or some other logical 
criteria involving one or more other variables (e.g., closing quotes only for those 
days when two other stocks and the Dow Jones index went up, versus all other 
closing quotes; see Categorization Methods).  

 
Box Plots  

In Box Plots (the term first used by Tukey, 1970), ranges of values of a selected 
variable (or variables) are plotted separately for groups of cases defined by 
values of up to three categorical (grouping) variables, or as defined by Multiple 
Subsets categories.  
The central tendency (e.g., median or mean), and range or variation statistics 
(e.g., quartiles, standard errors, or standard deviations) are computed for each 
group of cases, and the selected values are presented in one of five styles (Box 
Whiskers, Whiskers, Boxes, Columns, or High-Low Close). Outlier data points 
can also be plotted (see the sections on outliers and extremes).  
For example, in the following graph, outliers (in this case, points greater or less 
than 1.5 times the inter-quartile range) indicate a particularly "unfortunate" flaw in 
an otherwise nearly perfect combination of factors:  



 
However, in the following graph, no outliers or extreme values are evident.  

 
There are two typical applications for box plots: (a) showing ranges of values for 
individual items, cases or samples (e.g., a typical MIN-MAX plot for stocks or 
commodities or aggregated sequence data plots with ranges), and (b) showing 
variation of scores in individual groups or samples (e.g., box and whisker plots 

 mean for each sample as a point inside the box, standard errors presenting the
as the box, and standard deviations around the mean as a narrower box or a pa
of "whiskers").  

ir 

Box plots showing variation of scores allow one to quickly evaluate and 
"intuitively envision" the strength of the relation between the grouping and 
dependent variable. Specifically, assuming that the dependent variable is 
normally distributed, and knowing what proportion of observations fall, for 
example, within ±1 or ±2 standard deviations from the mean (see Elementary 
Concepts), one can easily evaluate the results of an experiment and say that, for 
example, the scores in about 95% of cases in experimental group 1 belong to a 
different range than scores in about 95% of cases in group 2.  



In addition, so-called trimmed means (this term was first used by Tukey, 1962) 
may be plotted by excluding a user-specified percentage of cases from the 
extremes (i.e., tails) of the distribution of cases.  

Pie Charts  

The pie chart is one of the most common graph formats used for representing 
proportions or values of variables. This graph allows you to produce pie charts 
broken down by one or more other variables (e.g., grouping variables such as 
gender) or categorized according to some logical selection conditions that 
identify Multiple Subsets (see Categorization Methods).  
For purposes of this discussion, categorized pie charts will always be interpreted 
as frequency pie charts (as opposed to data pie charts). This type of pie chart 
(sometimes called a frequency pie chart) interprets data like a histogram. It 
categorizes all values of the selected variable following the selected 
categorization technique and then displays the relative frequencies as pie slices 
of proportional sizes. Thus, these pie charts offer an alternative method to 
display frequency histogram data (see the section on Categorized Histograms).  

 
Pie-Scatterplots. Another useful application of categorized pie charts is to 
represent the relative frequency distribution of a variable at each "location" of the 
joint distribution of two other variables. Here is an example:  



 
Note that pies are only drawn in places" where there are data. Thus, the graph 
shown above takes on the appearance of a scatterplot (of variables L1 and L2), 
with the individual pies as point markers. However, in addition to the information 
contained in a simple scatterplot

 "

, each pie shows the relative distribution of a 
third variable at the respective location (i.e., Low, Medium, and High Quality).  

Missing/Range Data Points Plots  

This graph produces a series of 2D graphs (one for each category of cases 
identified by the grouping variables or by the Multiple Subset criteria; see 
Categorization Methods) of missing data points and/or user-specified "out of 
range" points from which you can visualize the pattern or distribution of missing 
data (and/or user-specified "out of range" points) within each subset of cases 
(category).  

 



This graph is useful in exploratory data analysis to determine the extent of 
missing (and/or "out of range") data and whether the patterns of those data occur 
randomly.  

3D Plots  

This type of graph allows you to produce 3D scatterplots (space plots, spectral 
plots, deviation plots, and trace plots), contour plots, and surface plots for 
subsets of cases defined by the specified categories of a selected variable or 
categories determined by user-defined case selection conditions (see 
Categorization Methods). Thus, the general purpose of this plot is to facilitate 
comparisons between groups or categories regarding the relationships between 
three or more variables.  

 
A
b

pplications. In general, 3D XYZ graphs summarize the interactive relationships 
etween three variables. The different ways in which data can be categorized (in 
 Categorized Graph) allow one to review those relationships contingent on 

some other criterion (e.g., group membership).  
or example, from the categorized surface plot shown below, one can conclude 

e level in an apparatus does not affect the 
vestigated relationship between the measurements (Depend1, Depend2, and 
eight) unless the setting is

a

F
that the setting of the toleranc
in
H  3.  



 
The effect is more salient when you switch to the contour plot representation.  

 
Ternary Plots  

A categorized ternary plot can be used to examine relations between three or 
more dimensions where three of those dimensions represent components of a 
mixture (i.e., the relations between them is constrained such that the values of 
the three variables add up to the same constant for each case) for each level of a 
grouping variable.  



 
In ternary plots, the triangular coordinate systems are used to plot four (or more) 
variables (the components X, Y, and Z, and the responses V1, V2, etc.) in two 

imensions (ternary scatterplots or contours) or three dimensions (ternary 
urface plots). In order to produce ternary graphs, the relative proportions of 

each component within each case are constrained to add up to the same value 
(e.g., 1).  

 a categorized ternary plot, one component graph is produced for each level of 
the grouping variable

d
s

In
 (or user-defined subset of data) and all the component 

graphs are arranged in one display to allow for comparisons between the subsets 
f data (categories).  
pplications. A typical application of this graph is when the measured 

response(s) from an experiment depends on the relative proportions of three 
s (e.g., three different chemicals) which are varied in order to 

etermine an optimal combination of those components (e.g., in mixture 

o
A

component
d
designs). This type of graph can also be used for other applications where 

lations between constrained variables need to be compared across categories 
r subsets of data.  

re
o



 
 
 
 

Brushing  

Perhaps the most common and historically first widely used technique explicitly 
identified as graphical exploratory data analysis is brushing, an interactive 
method allowing one to select on-screen specific data points or subsets of data
and identify their (e.g., common) characteristics, or to examine their effects on 
relations between relevant variables (e.g., in 

 

scatterplot matrices) or to identify 
(e.g., label) outliers.  
Those relations between variables can be visualized by fitted functions (e.g., 2D
lines or 3D surfaces) and their confidence intervals, thus, for example, one can 
examine changes in those functions by interactively (temporarily) removing or 
adding specific subsets of data. For example, one of many applications of the 
brushing technique is to select (i.e., highlight) in

 

 a matrix scatterplot all data 
points that belong to a certain category (e.g., a "medium" income level, see the 
highlighted subset in the upper right component graph in illustration below):  



 
in
b

 order to examine how those specific observations contribute to relations 
etween other variables in the same data set (e.g, the correlation between the 

ent example).  
ample 

 brush that 
would move over the consecutive ranges of a criterion variable (e.g., "income" 
measured on a continuous scale and not a discrete scale as in the illustration to 
the above) and examine the dynamics of the contribution of the criterion variable 
to the relations between other relevant variables in the same data set.  

  

 
 
 

"debt" and "assets" in the curr
If the brushing facility supports features like "animated brushing" (see ex
below) or "automatic function re-fitting," one can define a dynamic

 
 

Smoothing Bivariate Distributions  



Three-dimensional histograms are used to visualize crosstabulations of valu
wo variables. They can be considered to be a conjunction of two simple (i.e., 

univariate) histograms, combined such that the frequencies of co-occurrences of
values on the two analyzed v

es in 
t

 
ariables can be examined. In a most common 

ective 
cell of the table. Different methods of categorization can be used for each of the 
two variables for which the bivariate distribution is visualized (see below).  

format of this graph, a 3D bar is drawn for each "cell" of the crosstabulation table 
and the height of the bar represents the frequency of values for the resp

 
If the software provides smoothing facilities, you can fit surfaces to 3D 
representations of bivariate frequency data. Thus, every 3D histogram can be 
turned into a smoothed surface. This technique is of relatively little help if applied 
to a simple pattern of categorized data (such as the histogram that was shown 
above).  



 
However, if applied to more complex patterns of frequencies, it may provide a 
valuable exploratory technique,  

 
allowing identification of regularities which are less salient when examining the 
standard 3D histogram representations (e.g., see the systematic surface "wave-
patterns" shown on the smoothed histogram above).  
 
 
 

Layered Compression  



When layered compression is used, the main graph plotting area is reduced in 
size to leave space for Margin Graphs in the upper and right side of the display 
(and a miniature graph in the corner). These smaller Margin Graphs represent 
ertically and horizontally compressed images (respectively) of the main grap

In 2D graphs, layered compression is an exploratory data analysis technique 
may facilitate the identification of otherwise obscured trends and patterns in 2-
dimensional data sets. For example, in the following illustration  

v h.  
that 

 
(based on an example discussed by Cleveland, 1993), it can be seen that the 
number of sunspots in each cycle decays more slowly than it rises at the onset of 
each cycle. This tendency is not readily apparent when examining the standard 
line plot; however, the compressed graph uncovers the hidden pattern.  
 
 
 

Projections of 3D data sets  

Contour plots generated by projecting surfaces (created from multivariate, 
typically three-variable, data sets) offer a useful method to explore and 
analytically examine the shapes of surfaces.  



 
As compared to surface plots, they may be less effective to quickly visualize
overall shape of 3D data structures,  

 the 

 
however, their main advantage is that they allow for precise examination and 
analysis of the shape of the surface  

 



(Contour Plots display a series of undistorted horizontal "cross sections" of th
surface).  
 
 
 

Icon Plots  

Icon Graphs represent cases or units of observation as multidimensional symbols 
and they offer a powerful although not easy to use exploratory technique. The 
general idea behind this method capitalizes on the human ability to 
"automatically" spot complex (sometimes interactive) relations between multiple 

e 

variables if those relations are consistent across a set of instances (in this case 
"icons"). Sometimes the observation (or a "feeling") that certain instances are 
"somehow similar" to each other comes before the observer (in this case an 
analyst) can articulate which specific variables are responsible for the observed 
conisistency (Lewicki, Hill, & Czyzewska, 1992). However, further analysis that 
focuses on such intuitively spotted consistencies can reveal the specific nature of 
the relevant relations between variables.  

 
The basic idea of icon plots is to represent individual units of observation as 
particular graphical objects where values of variables are assigned to spec
features or dimensions of the objects (usually one case = one object). Th
assignment is such that the overall appearance of the object changes as a 
function of the configuration of value

ific 
e 

s.  



 
Thus, the objects are given visual "identities" that are unique for configurations of 
values and that can be identified by the observer. Examining such icons may 
help to discover specific clusters of both simple relations and interactions 
between variables.  

Analyzing Icon Plots  

he "ideal" design of the analysis of icon plots consists of five phases:  

1. Select the order of variables to be analyzed. In many cases a random starting 
sequence is the best solution. You may also try to enter variables based on the 
order in a multiple regression

T

 equation, factor loadings on an interpretable factor 
(see the Factor Analysis chapter), or a similar multivariate technique. That 
method may simplify and "homogenize" the general appearance of the icons 
which may facilitate the identification of non-salient patterns. It may also, 
however, make some interactive patterns more difficult to find. No universal 
recommendations can be given at this point, other than to try the quicker (random 
order) method before getting involved in the more time-consuming method.  

2. Look for any potential regularities, such as similarities between groups of icons, 
outliers, or specific relations between aspects of icons (e.g., "if the first two rays 
of the star icon are long, then one or two rays on the other side of the icon are 
usually short"). The Circular type of icon plots is recommended for this phase.  

3. If any regularities are found, try to identify them in terms of the specific variables 
involved.  

4. Reassign variables to features of icons (or switch to one of the sequential icon 
plots) to verify the identified structure of relations (e.g., try to move the related 
aspects of the icon closer together to facilitate further comparisons). In some 
case at appear 
not to contribute to the identified pattern.  

5. Finally, use a quantitative method (such as a regression method

s, at the end of this phase it is recommended to drop the variables th

, nonlinear 
estimation, discriminant function analysis, or cluster analysis) to test and quantify 

 pattern or at least some aspects of the pattern.  

Taxonomy of Icon Plots  

Most icon plots can be assigned to one of two categories: circular and sequential.  

the identified



Circular icons. Circular icon plots (star plots, sun ray plots, polygon icons) follow 
a "spoked wheel" format where values of variables are represented by distances 
between the center ("hub") of the icon and its edges.  

 
Those icons may help to identify interactive relations between variables because 
the overall shape of the icon may assume distinctive and identifiable overall 
patterns depending on multivariate configurations of values of input variables.  
In order to translate such "overall patterns" into specific models (in terms of 
relations between variables) or verify specific observations about the pattern, it is 
helpful to switch to one of the sequential icon plots which may prove more 
efficient when one already knows what to look for.  
Sequential icons. Sequential icon plots (column icons, profile icons, line icons) 
follow a simpler format where individual symbols are represented by small 
sequence plots (of different types).  

 
The values of consecutive variables are represented in those plots by distances 
between the base of the icon and the consecutive break points of the sequence 
(e.g., the height of the columns shown above). Those plots may be less efficient 
as a tool for the initial exploratory phase of icon analysis because the icons may 



look alike. However, as mentioned before, they may be helpful in the phase when 
some hypothetical pattern has already been revealed and one needs to verify it 
or articulate it in terms of relations between individual variables.  
Pie icons. Pie icon plots fall somewhere in-between the previous two categories; 
all icons have the same shape (pie) but are sequentially divided in a different way 
according to the values of consecutive variables.  

 
From a functional point of view, they belong rather to the sequential than circular 
category, although they can be used for both types of applications.  
Chernoff faces. This type of icon is a category by itself. Cases are visualized by 
schematic faces such that relative values of variables selected for the graph are 
represented by variations of specific facial features.  

 
Due to its unique features, it is considered by some researchers as an ultimate 
exploratory multivariate technique that is capable of revealing hidden patterns of 
interrelations between variables that cannot be uncovered by any other 
technique. This statement may be an exaggeration, however. Also, it must be 
admitted that Chernoff Faces is a method that is difficult to use, and it requires a 



great deal of experimentation with the assignment of variables to facial features. 
See also Data Mining Techniques.  

Standardization of Values  

Except for unusual cases when you intend for the icons to reflect the global 
differences in ranges of values between the selected variables, the values of th
variables should be standardized once to assure within-icon compatibility of 
value ranges. For example, because the largest value sets the global sca
reference point for the icons, then if there are variables that are in a ran
much smaller order, they may not appear in the icon at all, e.g., in a star plot, the
rays that represent them will be too short to be visible.  

Applications  

e 

ling 
ge of 

 

on plots are generally applicable (1) to situations where one wants to find 
ystematic patterns or clusters of observations, and (2) when one wants to 

ships between several variables. The first type 

Ic
s
explore possible complex relation
of application is similar to cluster analysis; that is, it can be used to classify 
observations.  
For example, suppose you studied the personalities of artists, and you recorded 
the scores for several artists on a number of personality questionnaires. Th
plot may help you determine whether there are natural clusters of artists 
distinguished by particular patterns of scores on different questionnaires (e.g
you may find that some artists are very creative, undisciplined, and independent, 
while a second group is particularly intelligent, discip

e icon 

., 

lined, and concerned with 
publicly-acknowledged success).  
The second type of application -- the exploration of relationships between several 
variables -- is more similar to factor analysis; that is, it can be used to detect 
which variables tend to "go together." For example, suppose you were studying 
the structure of people’s perception of cars. Several subjects completed detailed 
questionnaires rating different cars on numerous dimensions. In the data file, the 
average ratings on each dimension (entered as the variables) for each car 
(entered as cases or observations) are recorded.  



When you now study the Chernoff faces (each face representing the perceptions 
for one car), it may occur to you that smiling faces tend to have big ears; if price 
was assigned to the amount of smile and acceleration to the size of ears, then 
this "discovery" means that fast cars are more expensive. This, of course, is only 
a simple example; in real-life exploratory data analyses, non-obvious complex 
relationships between variables may become apparent.  

Related Graphs  

Matrix plots visualize relations between variables from one or two lists. If the 
software allows you to mark selected subsets, matrix plots may provide 
information similar to that in icon plots.  
If the software allows you to create and identify user-defined subsets in 
scatterplots, simple 2D scatterplots can be used to explore the relationships 
between two variables; likewise, when exploring the relationships between three 
variables, 3D scatterplots provide an alternative to icon plots.  

Graph Type  

There are various types of Icon Plots.  
 

 
 face).  

Chernoff Faces. A separate "face" icon is drawn for each case; relative values of
the selected variables for each case are assigned to shapes and sizes of
individual facial features (e.g., length of nose, angle of eyebrows, width of

 
For more information see Chernoff Faces in Taxonomy of Icon Plots.  
Stars. Star Icons is a circular type of icon plot. A separate star-like icon is plotted 
for each case; relative values of the selected variables for each case are 



represented (clockwise, starting at 12:00) by the length of individual rays in each
star. Th

 
e ends of the rays are connected by a line.  

 
Sun Rays. Sun Ray Icons is a circular type of icon plot. A separate sun-like icon 
is plotted for each case; each ray represents one of the selected variables 
(clockwise, starting at 12:00), and the length of the ray represents the relative 
value of the respective variable. Data values of the variables for each case are 
connected by a line.  

 
Polygons. Polygon Icons is a circular type of icon plot. A separate polygon icon is 
plotted for each case; relative values of the selected variables for each case are 
represented by the distance from the center of the icon to consecutive corners of 
the polygon (clockwise, starting at 12:00).  



 
Pies. Pie Icons is a circular type of icon plot. Data values for each case are 
plotted as a pie chart (clockwise, starting at 12:00); relative values of selected 
variables are represented by the size of the pie slices.  

 
Columns. Column Icons is a sequential type of icon plot. An individual column 

raph is plotted for ea h case; relative values of the selected variables for each 
case are r
g c

epresented by the height of consecutive columns.  

 
Lines. Line Icons is a sequential type of icon plot.  



 
An individual line graph is plotted for each case; relative values of the selected 
variables for each case are represented by the height of consecutive break 
points of the line above the baseline.  
Profiles. Profile Icons is a sequential type of icon plot. An individual area graph is 
plotted for each case; relative values of the selected variables for each case are 
represented by the height of consecutive peaks of the profile above the baseline.  

 
Mark Icons  

If the software allows you to specify multiple subsets, it is useful to specify the 
 icons will be marked (i.e., frames will be placed around 

the selected icons) in the plot.  
cases (subjects) whose



 
The line patterns of frames which identify specific subsets should be listed in the 
legend along with the case selection conditions. The following graph shows an 
example of marked subsets.  

 
All cases (observations) which meet the condition specified in Subset 1 (i.e., 
cases for which the value of variable Iristype is equal to Setosa and for which the 
case number is less than 100) are marked with a specific frame around the 
selected icons.  
All cases which meet the condition outlined in Subset 2 (i.e., cases for which the 
value of Iristype is equal to Virginic and for which the case number is less than 
100) are assigned a different frame around the selected icons.  
 
 
 

Data Reduction  



Sometimes plotting an extremely large data set, can obscure an existing pattern 
(see the animation below). When you have a very large data file, it can be useful 
to plot only a subset of the data, so that the pattern is not hidden by the number 
of point markers.  

 
Some software products offer methods for data reduction (or optimizing) which 

ple size) reduction methods effectively draw a 
random sample from the current data set. Obviously, the nature of such data 
reduction is entirely different than when data are selectively reduced only to a 
specific subset or split into subgroups based on certain criteria (e.g., such as 
gender, region, or cholesterol level). The latter methods can be implemented 
interactively (e.g., using animated brushing facilities

can be useful in these instances. Ideally, a data reduction option will allow you to 
specify an integer value n less than the number of cases in the data file. Then the 
software will randomly select approximately n cases from the available cases and 
create the plot based on these cases only.  
Note that such data set (or sam

), or other techniques (e.g., 
categorized graphs or case selection conditions). All these methods can further 
aid in identifying patterns in large data sets.  
 
 
 

Data Rotation (in 3D space)  



Changing the viewpoint for 3D scatterplots (e.g., simple, spectral, or space plots) 
may prove to be an effective exploratory technique since it can reveal patterns 
that are easily obscured unless you look at the "cloud" of data points from an 
appropriate angle (see the animation below).  

 
Some software products offer interactive perspective, rotation, and continuous 
spinning controls which can be useful in these instances. Ideally, these controls 
will allow you to adjust the graph's angle and perspective to find the most 
informative location of the "viewpoint" for the graph as well as allowing you to 
control the vertical and horizontal rotation of the graph.  
While these facilities are useful for initial exploratory data analysis, they can also 
be quite beneficial in exploring the factorial space (see Factor Analysis) and 
exploring the dimensional space (see Multidimensional Scaling).  
 
 
 

 
 
 
 

.  
 

 
 
 
 
 
 



Independent Components Analysis 
 

Introductory Overview  

Independent Component Analysis is a well established and reliable statistical 
method that performs signal separation. Signal separation is a frequently 
occurring problem and is central to Statistical Signal Processing, which has a 
wide range of applications in many areas of technology ranging from Audio and 
Image Processing to Biomedical Signal Processing, Telecommunications, and 
Econometrics.  

Imagine being in a room with a crowd of people and two speakers giving 
presentations at the same time. The crowed is making comments and noises in 
the background. We are interested in what the speakers say and not the 
comments emanating from the crowd. There are two microphones at different 
locations, recording the speakers' voices as well as the noise coming from the 
crowed. Our task is to separate the voice of each speaker while ignoring the 
background noise (see illustration below).  

 

This is a classic example of the Independent Component Analysis, a well 
established stochastic technique. ICA can be used as a method of Blind Source 



Separation, meaning that it can separate independent signals from linear 
mixtures with virtually no prior knowledge on the signals. An example is 
decomposition of Electro or Magnetoencephalographic signals. In computational 
Neuroscience, ICA has been used for Feature Extraction, in which case it seems 
to adequately model the basic cortical processing of visual and auditory 
information. New application areas are being discovered at an increasing pace.  
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Multiple Regression 
 
 

Gen
The general purpose of multiple regression (the term was first used by Pearson, 
1908) is to learn more about the relationship between several independent or 
predictor variables and a dependent or criterion variable. For example, a real 
estate agent might record for each listing the size of the house (in square feet), 
the number of bedrooms, the average income in the respective neighborhood 

ccording to census data, and a subjective rating of appeal of the house. Once 
to 

te to the price for which a house is 

 a house sells in a particular neighborhood than 
how "pretty" the house is (subjective rating). One may also detect "outliers," that 
is, houses that should really sell for more, given their location and characteristics.  
Personnel professionals customarily use multiple regression procedures to 

lity" (Resp) or "number of people to 
supervise" (No_Super) that one believes to contribute to the value of a job. The 
personnel analyst then usually conducts a salary survey among comparable 
companies in the market, recording the salaries and respective characteristics 
(i.e., values on dimensions) for different positions. This information can be used 
in a multiple regression analysis to build a regression equation of the form:  

n now 
uct a graph of the expected (predicted) salaries and the actual 

eral Purpose  

a
this information has been compiled for various houses it would be interesting 
see whether and how these measures rela
sold. For example, one might learn that the number of bedrooms is a better 
predictor of the price for which

determine equitable compensation. One can determine a number of factors or 
dimensions such as "amount of responsibi

Salary = .5*Resp + .8*No_Super  
Once this so-called regression line has been determined, the analyst ca
easily constr
salaries of job incumbents in his or her company. Thus, the analyst is able to 
determine which position is underpaid (below the regression line) or overpaid 
(above the regression line), or paid equitably.  



In the social and natural sciences multiple regression procedures are very widely 
used in research. In general, multiple regression allows the researcher to as
(and hopefully answer) the general question "what is the best predictor of ...". F
example, educational researchers might want to learn what are the best 
predictors of success in high-school. Psychologists may want to determine which 
personality variable best predicts social adjustment. Sociologists may want to 
find out which of the multiple social indic

k 
or 

ators best predict whether or not a new 
immigrant group will adapt and be absorbed into society.  
See also Exploratory Data Analysis and Data Mining Techniques, the General 
Stepwise Regression chapter, and the General Linear Models chapter.  

 
 

Computational Approach  
The general computational problem that needs to be solved in multiple 
regression analysis is to fit a straight line to a number of points.  

 
In the simplest case -- one dependent and one independent variable -- one can 
visualize this in a scatterplot.   
See also Exploratory Data Analysis and Data Mining Techniques, the General 
Stepwise Regression chapter, and the General Linear Models chapter.  
Least Squares. In the scatterplot, we have an independent or X variable, and a 
dependent or Y variable. These variables may, for example, represent IQ 
(intelligence as measured by a test) and school achievement (grade point 
average; GPA), respectively. Each point in the plot represents one student, that 



is, the respective student's IQ and GPA. The goal of linear regression procedures 
is to fit a line through the points. Specifically, the program will compute a line so 
that the squared deviations of the observed points from that line are minimized. 
Thus, this general procedure is sometimes also referred to as least squares 
estimation.  
See also Exploratory Data Analysis and Data Mining Techniques, the General 
Stepwise Regression chapter, and the General Linear Models chapter.  
The Regression Equation. A line in a two dimensional or two-variable space is 
defined by the equation Y=a+b*X; in full text: the Y variable can be expressed in 
terms of a constant (a) and a slope (b) times the X variable. The constant is also 
referred to as the intercept, and the slope as the regression coefficient or B 
coefficient. For example, GPA may best be predicted as 1+.02*IQ. Thus, knowing 
that a student has an IQ of 130 would lead us to predict that her GPA would be 
3.6 (since, 1+.02*130=3.6).  
For example, the animation below shows a two dimensional regression equation 
plotted with three different confidence intervals (90%, 95% and 99%).  

 
In the multivariate case, when there is more than one independent variable, the 
regression line cannot be visualized in the two dimensional space, but can be 

 example, if in addition to IQ we had additional 
ievement (e.g., Motivation, Self- discipline) we could construct a 

hose variables. In general then, multiple regression 
rocedures will estimate a linear equation of the form:  

Y = a + b1*X1 + b2*X2 + ... + bp*Xp  

computed just as easily. For
predictors of ach
linear equation containing all t
p



Unique Prediction and Partial Correlation. Note that in this equation, the 
regression coefficients (or B coefficients) represent the independent contributions 

he prediction of the dependent variable. Another 
ay to express this fact is to say that, for example, variable X1 is correlated with 
e Y variable, after controlling for all other independent variables. This type of 

orrelation is also referred to as a partial correlation (this term was first used by 
Yule, 1907). Perhaps the following example will clarify this issue. One would 
probably find a significant negative correlation between hair length and height in 

e population (i.e., short people have longer hair). At first this may seem odd; 
owever, if we were to add the variable Gender into the multiple regression 
quation, this correlation would probably disappear. This is because women, on 
e average, have longer hair than men; they also are shorter on the average 

than men. Thus, after we remove this gender difference by entering Gender into 
the equation, the relationship between hair length and height disappears 

ecause hair length does not make any unique contribution to the prediction of 
height, above and beyond what it shares in the prediction with variable Gender. 
Put another way, after controlling for the variable Gender, the partial correlation 

d height is zero.  
Predicted and Residu s the best 
prediction of the dependent variable (Y), given the independent variables (X). 
However, nature is rarely (if ever) perfectly predictable, and usually there is 
substantial variation of the observed points around the fitted regression line (as in 
the scatterplot shown earlier). The deviation of a particular point from the 
regression line (its predicted value) is called the residual value.  
Residual Variance and R-square. The smaller the variability of the residual 
values around the regression line relative to the overall variability, the better is 
our prediction. For example, if there is no relationship between the X and Y 
variables, then the ratio of the residual variability of the Y variable to the original 
variance is equal to 1.0. If X and Y are perfectly related then there is no residual 

ratio of variance would be 0.0. In most cases, the ratio would 

of each independent variable to t
w
th
c

th
h
e
th

b

between hair length an
al Scores. The regression line expresse

variance and the 



fall somewhere between these extremes, that is, between 0.0 and 1.0. 1.0 minu
this ratio is referred to as R-square or the coefficient of determination. This value 
is immediately interpretable in the following manner. If we have an R-square of 
0.4 then we know that the variability of the Y values around the regression line is 
1-0.4 times the original variance; in other words we have explained 40% of the 
original variability, and are left with 60% residual

s 

 variability. Ideally, we would like 

riables 

 two 
ent or X variables) are related to the dependent (Y) 

f 

to 
 then there is no relationship between the variables.  

 

Assumptions, Limitations, Practical Considerations  

  

Assumption of Linearity. First of all, as is evident in the name multiple linear 
regression, it is assumed that the relationship between variables is linear. In 
practice this assumption can virtually never be confirmed; fortunately, multiple 
regression procedures are not greatly affected by minor deviations from this 

to explain most if not all of the original variability. The R-square value is an 
indicator of how well the model fits the data (e.g., an R-square close to 1.0 
indicates that we have accounted for almost all of the variability with the va
specified in the model).  
Interpreting the Correlation Coefficient R. Customarily, the degree to which
or more predictors (independ
variable is expressed in the correlation coefficient R, which is the square root o
R-square. In multiple regression, R can assume values between 0 and 1. To 
interpret the direction of the relationship between variables, one looks at the 
signs (plus or minus) of the regression or B coefficients. If a B coefficient is 
positive, then the relationship of this variable with the dependent variable is 
positive (e.g., the greater the IQ the better the grade point average); if the B 
coefficient is negative then the relationship is negative (e.g., the lower the class 
size the better the average test scores). Of course, if the B coefficient is equal 
0
 



assumption. However, as a rule it is prudent to always look at bivariate 
scatterplot of the variables of interest. If curvature in the relationships is evident, 
one may consider either transforming the variables, or explicitly allowing for 
nonlinear components.  
See also Exploratory Data Analysis and Data Mining Techniques, the General 
Stepwise Regression chapter, and the General Linear Models chapter.  
Normality Assumption. It is assumed in multiple regression that the residuals 
(predicted minus observed values) are distributed normally (i.e., follow the 
normal distribution). Again, even though most tests (specifically the F-test) are 
quite robust with regard to violations of this assumption, it is always a good idea, 
before drawing final conclusions, to review the distributions of the major variables 

(correlation) between the damage that a fire does and the number of firemen 
involved in fighting the blaze. Do we conclude that the firemen cause the 
damage? Of course, the most likely explanation of this correlation is that the size 
of the fire (an external variable that we forgot to include in our study) caused the 
damage as well as the involvement of a certain number of firemen (i.e., the 
bigger the fire, the more firemen are called to fight the blaze). Even though this 
example is fairly obvious, in real correlation research, alternative causal 
explanations are often not considered.  
Choice of the Number of Variables. Multiple regression is a seductive technique: 
"plug in" as many predictor variables as you can think of and usually at least a 

w of them will come out significant. This is because one is capitalizing on 
hance when simply including as many variables as one can think of as 

predictors of some other variable of interest. This problem is compounded when, 
in addition, the number of observations is relatively low. Intuitively, it is clear that 

of interest. You can produce histograms for the residuals as well as normal 
probability plots, in order to inspect the distribution of the residual values.  
Limitations. The major conceptual limitation of all regression techniques is that 
one can only ascertain relationships, but never be sure about underlying causal 
mechanism. For example, one would find a strong positive relationship 

fe
c



one can hardly draw conclusions from an analysis of 100 questionnaire items 
based on 10 respondents. Most authors recommend that one should have at 
least 10 to 20 times as many observations (cases, respondents) as one has 
variables, otherwise the estimates of the regression line are probably very 
unstable and unlikely to replicate if one were to do the study over.  
Multicollinearity and Matrix Ill-Conditioning. This is a common problem in many 
correlation analyses. Imagine that you have two predictors (X variables) of a 
person's height: (1) weight in pounds and (2) weight in ounces. Obviously, our 
two predictors are completely redundant; weight is one and the same variable, 
regardless of whether it is measured in pounds or ounces. Trying to decide which 
one of the two measures is a better predictor of height would be rather silly; 
however, this is exactly what one would try to do if one were to perform a multiple 

 

lf after several variables have already been entered 
into the regression equation. Nevertheless, when this problem occurs it means 

ne practically) completely redundant 
pred here are many statistical indicators of this type of 

dundancy (tolerances, semi-partial R, etc., as well as some remedies (e.g., 
).  

Fitting Centered Polynomial Models. The fitting of higher-order polynomials of an 
independent variable with a mean not equal to zero can create difficult 
multicollinearity problems. Specifically, the polynomials will be highly correlated 
due to the mean of the primary independent variable. With large numbers (e.g., 

y serious, and if proper protections are not put in 
p

example, the classic text by Neter, Wasserman, & Kutner (1985, Chapter 9), for a 

regression analysis with height as the dependent (Y) variable and the two 
measures of weight as the independent (X) variables. When there are very many
variables involved, it is often not immediately apparent that this problem exists, 
and it may only manifest itse
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ictor

he predictor variables is (
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Ridge regression

Julian dates), this problem is ver
lace, can cause wrong results! The solution is to "center" the independent 

variable (sometimes, this procedures is referred to as "centered polynomials"), 
i.e., to subtract the mean, and then to compute the polynomials. See, for 



detailed discussion of this issue (and analyses with polynomial models in 
general).  
The Importance of Residual Analysis. Even though most assumptions of multiple 

 cann ed explicitly, gross violations can be detected and 
. In particular outliers (i.e., extreme cases) can 

pulling" or "pushing" the regression line in a 
particular direction (see the animation below), thereby leading to biased 
regression coefficients. Often, excluding just a single extreme case can yield a 
completely different set of results.  

regression ot be test
should be 
seriously bias the results by "

dealt with appropriately
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Log-Linear Analysis of Frequency Tables 

  
 

 
thod for analyzing data is via crosstabulation. 

d; an 
, region, and 

initial capitalization; a market researcher may tabulate consumer preferences by 
t 

y table, that is, in a crosstabulation 
table with two or more factors.  
Log-Linear provides a more "sophisticated" way of looking at crosstabulation 
tables. Specifically, you can test the different factors that are used in the 
crosstabulation (e.g., gender, region, etc.) and their interactions

General Purpose 
One basic and straightforward me
For example, a medical researcher may tabulate the frequency of different 
symptoms by patients' age and gender; an educational researcher may tabulate 
the number of high school drop-outs by age, gender, and ethnic backgroun
economist may tabulate the number of business failures by industry

product, age, and gender; etc. In all of these cases, the major results of interes
can be summarized in a multi-way frequenc

 for statistical 
significance (see Elementary Concepts for a discussion of statistical significance 
testing). The following text will present a brief introduction to these methods, their 
logic, and interpretation.  
Correspondence analysis is a descriptive/exploratory technique designed to 
analyze two-way and multi-way tables containing some measure of 
correspondence between the rows and columns. The results provide information 
which is similar in nature to those produced by Factor Analysis techniques, and 
they allow one to explore the structure of the categorical variables included in the 
table.  
 
 

Two-way Frequency Tables  
et us begin with the simplest possible crosstabulation, the 2 by 2 table. Suppose 
e were interested in the relationship between age and the graying of people's 

L
w



hair. We took a sample of 100 subjects, and determined who does and does not 
have gray hair. We also recorded the approximate age of the subjects. The 
results of this study may be summarized as follows:  

Age Gray 
Hair Below 40 40 or older Total 
No 
Yes 

40 
20 

  5 
35 

45 
55 

Total 60 40 100 

While interpreting the results of our little study, let us introduce the terminology 
that will allow us to generalize to complex tables more easily.  
Design variables and response variables. In multiple regression (Multiple 
Regression) or analysis of variance (ANOVA/MANOVA) one customarily 

ize to 
 

 of hair color (gray, not gray) as the dependent 
ariable, and age as the independent variable. Alternative terms that are often 
sed in the context of frequency tables are response variables and design 

variables, respectively. Response variables are those that vary in response to the 

 

distinguishes between independent and dependent variables. Dependent 
variables are those that we are trying to explain, that is, that we hypothes
depend on the independent variables. We could classify the factors in the 2 by 2
table accordingly: we may think
v
u

design variables. Thus, in the example table above, hair color can be considered 
to be the response variable, and age the design variable.  
Fitting marginal frequencies. Let us now turn to the analysis of our example table. 
We could ask ourselves what the frequencies would look like if there were no 
relationship between variables (the null hypothesis). Without going into details,
intuitively one could expect that the frequencies in each cell would 
proportionately reflect the marginal frequencies (Totals). For example, consider 
the following table:  

Age Gray 
Hair Below 40 40 or older Total 
No 
Yes 

27 
33 

18 
22 

45 
55 

Total 60 40 100 



In this table, the proportions of the marginal frequencies are reflected in the 
individual cells. Thus, 27/33=18/22=45/55 and 27/18=33/22=60/40. Given the 

 

between the two variables: There are more than expected (under the null 
hypothesis) cases below age 40 without gray hair, and more cases above age 40 

ith gray hair.  
his example illustrates the general principle on which the log-linear analysis is 
ased: Given the marginal totals for two (or more) factors, we can compute the 

cell frequencies that would be expected if the two (or more) factors are unrelated. 
ignificant deviations of the observed frequencies from those expected 

hip between the two (or more) variables.  
Model fitting approach. Let u
far. We can say that fitting the model of two variables that are not related (age 

les) model. In that case we would reject that 
model for our data, and instead accept the model that allows for a relationship or 
association between age and hair color.  
 
 

Multi-way Frequency Tables  
The reasoning presented for the analysis of the 2 by 2 table can be generalized 
to more complex tables. For example, suppose we had a third variable in our 
study, namely whether or not the individuals in our sample experience stress at 
work. Because we are interested in the effect of stress on graying, we will 
consider Stress as another design variable. (Note that, if our study were 
concerned with the effect of gray hair on subsequent stress, variable stress 

marginal frequencies, these are the cell frequencies that we would expect if there
were no relationship between age and graying. If you compare this table with the 
previous one you will see that the previous table does reflect a relationship 

w
T
b

S
frequencies reflect a relations

s now rephrase our discussion of the 2 by 2 table so 

and hair color) amounts to computing the cell frequencies in the table based on 
the respective marginal frequencies (totals). Significant deviations of the 
observed table from those fitted frequencies reflect the lack of fit of the 
independence (between two variab



would be the response variable, and hair color would be the design variable.). 
The resultant table is a three- way frequency table.  
Fitt  
Specif ut 
the da
indepe
case w ant 

air color, and stress is related to hair color, but the two (age and stress) factors 
ase, we would need to simultaneously fit 

 

to that used in analysis of variance 
(AN V

ing models. We can apply our previous reasoning to analyze this table. 
ically, we could fit different models that reflect different hypotheses abo
ta. For example, we could begin with a model that hypothesizes 
ndence between all factors. As before, the expected frequencies in that 
ould reflect the respective marginal frequencies. If any signific

deviations occur, we would reject this model.  
Interaction effects. Another conceivable model would be that age is related to 
h
do not interact in their effect. In that c
the marginal totals for the two-way table of age by hair color collapsed across 
levels of stress, and the two-way table of stress by hair color collapsed across 
the levels of age. If this model does not fit the data, we would have to conclude
that age, stress, and hair color all are interrelated. Put another way, we would 
conclude that age and stress interact in their effect on graying.  
The concept of interaction here is analogous 

O A /MANOVA). For example, the age by stress interaction could be 
eted such that the relationship of age to hair color is modified by stress. 
age brings about only little graying in the absence of stress, age is highly 
 when stress is present. Put another way, the effects of age and stress on 

interpr
While 
related
graying are not additive, but interactive.  
If y  a
read th

ou re not familiar with the concept of interaction, we recommend that you 
e Introductory Overview to ANOVA/MANOVA. Many aspects of the 

etation of results from a log-linear analysis of a multi-way frequency table 
ry similar to

interpr
are ve  ANOVA.  
Iter iv
increas
Howev
reasoning developed for the 2 by 2 table to complex tables. The commonly used 

at e proportional fitting. The computation of expected frequencies becomes 
ingly complex when there are more than two factors in the table. 
er, they can be computed, and, therefore, we can easily apply the 



method for computing the expected frequencies is the so-called iterative 
proportional fitting procedure.  

The Log-Linear Model  
The e
transfo
terms A. Specifically, one may think of the multi-

ay frequency table to reflect various main effects and interaction effects that 
on to bring about the observed table of frequencies. 

Bishop, Fienberg, and Holland (1974) provide details on how to derive log- linear 
equations to express the relationship between factors in a multi-way frequency 
table.  

Goodness-of-Fit  
In the previous discussion we have repeatedly made reference to the 
"significance" of deviations of the observed frequencies from the expected 
frequencies. One can evaluate the statistical significance of the goodness-of-fit of 
a particular model via a Chi-square

 t rm log-linear derives from the fact that one can, through logarithmic 
rmations, restate the problem of analyzing multi-way frequency tables in 
that are very similar to ANOV

w
add together in a linear fashi

 test. You can compute two types of Chi-
squares, the traditional Pearson Chi-square statistic and the maximum likelihood 
ratio Chi-square statistic (the term likelihood ratio was first introduced by Neyman 
and Pearson, 1931; the term maximum likelihood was first used by Fisher, 
1922a). In practice, the interpretation and magnitude of those two Chi-square 
statistics are essentially identical. Both tests evaluate whether the expected cell 
frequencies under the respective model are significantly different from the 
observed cell frequencies. If so, the respective model for the table is rejected.  
Reviewing and plotting residual frequencies. After one has chosen a model for 
the observed table, it is always a good idea to inspect the residual frequencies, 
that is, the observed minus the expected frequencies. If the model is appropriate 
for the table, then all residual frequencies should be "random noise," that is, 
consist of positive and negative values of approximately equal magnitudes that 
are distributed evenly across the cells of the table.  



Statistical significance of effects. The Chi-squares of models that are 
hierarchically related to each other can be directly compared. For example, if we 
first fit a model with the age by hair color interaction and the stress by hair color 
interaction, and then fit a model with the age by stress by hair color (three-way) 
interaction, then the second model is a superset of the previous model. We could 
evaluate the difference in the Chi-square statistics, based on the difference in the 
degrees of freedom; if the differential Chi-square statistic is significant, then we 
would conclude that the three-way interaction model provides a significantly 
better fit to the observed table than the model without this interaction. Therefore, 
the three-way interaction is statistically significant.  
In general, two models are hierarchically related to each other if one can be 
produced from the other by either adding terms (variables or interactions) or 
deleting terms (but not both at the same time).  

Automatic Model Fitting  
When analyzing four- or higher-way tables, finding the best fitting model can 
become increasingly difficult. You can use automatic model fitting options to 
facilitate the search for a "good model" that fits the data. The general logic of this 
algorithm is as follows. First, fit a model with no relationships between factors; if 
that model does not fit (i.e., the respective Chi- square statistic is significant), 
then it will fit a model with all two-way interactions. If that model does not fit 
either, then the program will fit all three-way interactions, and so on. Let us 
assume that this process found the model with all two-way interactions to fit the 
data. The program will then proceed to eliminate all two-way interactions that are 
not statistically significant. The resulting model will be the one that includes the 
least number of interactions necessary to fit the observed table.  
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Multivariate Adaptive Regression Splines 
(MARSplines) 

  
Introductory Overview  
Multivariate Adaptive Regression Splines (MARSplines) is an implementation of 
techniques popularized by Friedman (1991) for solving regression-type problems 
(see also, Multiple Regression), with the main purpose to predict the values of a 
continuous dependent or outcome variable from a set of independent or predictor 
variables. There are a large number of methods available for fitting models to 
continuous variables, such as a linear regression [e.g., Multiple Regression, 
General Linear Model (GLM)], nonlinear regression (Generalized 
Linear/Nonlinear Models), regression trees (see Classification and Regression 
Trees), CHAID, Neural Networks, etc.  (see also Hastie, Tishirani, and Friedman, 
2001, for an overview).  
Multivariate Adaptive Regression Splines (MARSplines) is a nonparametric 
regression procedure that makes no assumption about the underlying functional 
relationship between the dependent and independent variables. Instead, 
MARSplines constructs this relation from a set of coefficients and basis functions 
that are entirely "driven" from the regression data. In a sense, the method is 
based on the "divide and conquer" strategy, which partitions the input space into 
regions, each with its own regression equation. This makes MARSplines 
particularly suitable for problems with higher input dimensions (i.e., with more 
than 2 variables), where the curse of dimensionality would likely create problems 
for other techniques. 
The MARSplines technique has become particularly popular in the area of data 
mining because it does not assume or impose any particular type or class of 
relationship (e.g., linear, logistic, etc.) between the predictor variables and the 
dependent (outcome) variable of interest. Instead, useful models (i.e., models 
that yield accurate predictions) can be derived even in situations where the 
relationship between the predictors and the dependent variables is non-
monotone and difficult to approximate with parametric models. For more 



information about this technique and how it compares to other methods for 
nonlinear regression (or regression trees), see Hastie, Tishirani, and Friedman 
(2001). 
Regression Problems  
Regression problems are used to determine the relationship between a set of 
dependent variables (also called output, outcome, or response variables) and 
one or more independent variables (also known as input or predictor variables). 
The dependent variable is the one whose values you want to predict, based on 
the values of the independent (predictor) variables. For instance, one might be 
interested in the number of car accidents on the roads, which can be caused by 
1) bad weather and 2) drunk driving. In this case one might write, for example,  
Number_of_Accidents =  Some Constant + 0.5*Bad_Weather + 
2.0*Drunk_Driving 
The variable Number of Accidents is the dependent variable that is thought to be 
caused by (among other variables) Bad Weather and Drunk Driving (hence the 
name dependent variable). Note that the independent variables are multiplied by 

r 
e 

predictors in this simple (fictitious) example were 

o Multiple 

factors, i.e., 0.5 and 2.0. These are known as regression coefficients. The large
these coefficients, the stronger the influence of the independent variables on th
dependent variable. If the two 
measured on the same scale (e.g., if the variables were standardized to a mean 
of 0.0 and standard deviation 1.0), then Drunk Driving could be inferred to 
contribute 4 times more to car accidents than Bad Weather. (If the variables are 
not measured on the same scale, then direct comparisons between these 
coefficients are not meaningful, and, usually, some other standardized measure 
of predictor "importance" is included in the results.)   
For additional details regarding these types of statistical models, refer t
Regression or General Linear Models (GLM), as well as General Regression 
Models (GRM). In general, the social and natural sciences regression procedures
are widely used in research. Regression

 
 allows the researcher to ask (and 

hopefully answer) the general question "what is the best predictor of ..." For 
example, educational researchers might want to learn what the best predictors of 



success in high-school are. Psychologists may want to determine which 
personality variable best predicts social adjustment. Sociologists may want to 
find out which of the multiple social indicators best predict whether a new 

 

ships 

 

immigrant group will adapt and be absorbed into society. 
Multivariate Adaptive Regression Splines  
The car accident example we considered previously is a typical application for 
linear regression, where the response variable is hypothesized to depend linearly
on the predictor variables. Linear regression also falls into the category of so-
called parametric regression, which assumes that the nature of the relation
(but not the specific parameters) between the dependent and independent 
variables is known a priori (e.g., is linear). By contrast, nonparametric regression
(see Nonparametrics) does not make any such assumption as to how the 

ression 

ou can think of 

dependent variables are related to the predictors. Instead it allows the reg
function to be "driven" directly from data. 
Multivariate Adaptive Regression Splines (MARSplines) is a nonparametric 
regression procedure that makes no assumption about the underlying functional 
relationship between the dependent and independent variables. Instead, 
MARSplines constructs this relation from a set of coefficients and so-called basis 
functions that are entirely determined from the regression data. Y
the general "mechanism" by which the MARSplines algorithm operates as 
multiple piecewise linear regression (see Nonlinear Estimation), where each 
breakpoint (estimated from the data) defines the "region of application" for a 
particular (very simple) linear regression equation. 
Basis functions. Specifically, MARSplines uses two-sided truncated functions of 
the form (as shown below) as basis functions for linear or nonlinear expansion, 
which approximates the relationships between the response and predictor 
variables.  



 
Shown above is a simple example of two basis functions (t-x)+ and (x-t)+ 
(adapted from Hastie, et al., 2001, Figure 9.9). Parameter t is the knot of the 
basis functions (defining the "pieces" of the piecewise linear regression); these 

ermined from the data. The "+" signs next to the 
 positive results of the respective 

meters 
(

knots (parameters) are also det
terms (t-x) and (x-t) simply denote that only
equations are considered; otherwise the respective functions evaluate to zero. 
This can also be seen in the illustration. 
The MARSplines model. The basis functions together with the model para
estimated via least squares estimation) are combined to produce the predictions

given the inputs. The general MARSplines model equation (see Hastie et al., 
 

2001, equation 9.19) is given as: 

 
where the summation is over the M nonconstant terms in the model (further 
details regarding the model are also provided in Technical Notes). To 
summarize, y is predicted as a function of the predictor variables X (and their 

interactions); this function consists of an intercept parameter ( ) and the 

weighted (by ) sum of one or more basis functions , of the kind 
illustrated earlier. You can also think of this model as "selecting" a weighted sum
of basis functions from the set of (a large number of) basis functions that span
values of each predictor (i.e., that set would consist of one basis functio

 
 all 

n, and 
parameter t, for each distinct value for each predictor variable). The MARSplines 



algorithm then searches over the space of all inputs and predictor values (kn
locations t) as well as interactions between variables. During this search, a
ncreasingly larger number of basis functions are added to the model (selected 
from the set of possible basis functions), to maximize an overall least squares 
goodness-of-fit criterion. As a resu

ot 
n 

i

lt of these operations, MARSplines 
automatically determines the most important independent variables as well as 
the most significant interactions among them. The details of this algorithm are 
further described in Technical Notes, as well as in Hastie et al., 2001). 
Categorical predictors. In practice, both continuous and categorical predictors 
could be used, and will often yield useful results. However, the basic MARSpline
algorithm assumes that the predictor variables are continuous in nature, and, for
example, the computed knots program will usually not coincide with actual class 
codes found in the categorical predictors. For a detailed discussion of categ

s 
 

orical 

lgorithm will 

fficients for each dependent variable. This method of treating 

predictor variables in MARSplines, see Friedman (1993). 
Multiple dependent (outcome) variables. The MARSplines algorithm can be 
applied to multiple dependent (outcome) variables. In this case, the a
determine a common set of basis functions in the predictors, but estimate 
different coe
multiple outcome variables is not unlike some neural networks architectures, 
where multiple outcome variables can be predicted from common neurons a
hidden layers; in the case of MARSplines, multiple outcome variables are 
predicted from common basis functions, with different coefficients. 
MARSplines and classification problems. Because MARSplines can handle 
multiple dependent variables, it is easy to apply the algorithm to classification 
problems as well. First, code the classes in the categorical response variabl
multiple indicator variables (e.g., 1 = observation belongs to class k, 0 = 
observation does not belong to class k); then apply the MARSplines algorithm
fit a model, and compute predicted (continuous) values or scores; finally, for 
prediction,

nd 

e into 

 to 

 assign each case to the class for which the highest score is predicted 
(see also Hastie, Tibshirani, and Freedman, 2001, for a description of this 



procedure). Note that this type of application will yield heuristic classificatio
that may work very well in practice, but is not based on a statistical model for 
deriving classification probabilities. 
Model Selection and Pruning  
In general, nonparametric models are adaptive and can exhibit a high degree of 
flexibility that may ultimately result in 

ns 

overfitting if no measures are taken to
counteract it. Although such models can achieve zero error on training data, the
have the tendency to perform poorly when presented with new observations or 
instances (i.

 
y 

e., they do not generalize well to the prediction of "new" cases). 
MARSplines, like most methods of this kind, tend to overfit the data as well. To 
combat this problem, MARSplines uses a pruning technique (similar to pruning in 
classification trees) to limit the complexity of the model by reducing the nu
of its basis functions. 
MARSplines as a predictor (feature) selection method. This feature - the 
selection of and pruning of basis functions - makes this method a very powerful 
tool for predictor selection. The MARSplines algorithm will pick up only those 
basis functions (and those predictor variables) that make a "sizeable" 
contribution to the pre

mber 

diction (refer to Technical Notes for details).  
s  

 have become very 
Application
Multivariate Adaptive Regression Splines (MARSplines)
popular recently for finding predictive models for "difficult" data mining problems, 
i.e., when the predictor variables do not exhibit simple and/or monotone 
relationships to the dependent variable of interest. Alternative models or 
approaches that you can consider for such cases are CHAID, Classification and 
Regression Trees, or any of the many Neural Networks architectures available. 
Because of the specific manner in which MARSplines selects predictors (basis 
functions) for the model, it does generally "well" in situations where regression-
tree models are also appropriate, i.e., where hierarchically organized successive 
splits on the predictor variables yield good (accurate) predictions. In fact, instead 
of considering this technique as a generalization of multiple regression (as it was 
presented in this introduction), you may consider MARSplines as a generalization 



o
functions. Refer to Hastie, Tibshirani, and Friedman (2001) for

f regression trees, where the "hard" binary splits are replaced by "smooth" basis 
 additional details. 

s a two step pr

 
Technical Notes: The MARSplines Algorithm  
Implementing MARSplines involve ocedure that is applied 
successively until a desired model is found. In the first step, we build the model, 
i.e. increase its complexity by adding basis functions until a preset (user-defined) 
maximum level of complexity has been reached. Then we begin a backward 
procedure to remove the least significant basis functions from the model, i.e. 
those whose removal will lead to the least reduction in the (least-squares) 
goodness of fit. This algorithm is implemented as follows: 

1. Start with the simplest model involving only the constant basis function
2. Search the space of basis functions, for each variable and for all possibl

knots, and add those which maximize a certain measure of goodne

. 
e 

ss of fit 
(minimize prediction error). 

ed that contribute least to the overall (least squares

3. Step 2 is recursively applied until a model of pre-determined maximum 
complexity is derived. 

4. Finally, in the last stage, a pruning procedure is applied where those basis 
functions are remov ) 
goodness of fit. 

 
Technical Notes: The Multivariate Adaptive Regression 
Splines (MARSplines) Model  
The MARSplines algorithm builds models from two sided truncated functions of 
the predictors (x) of the form: 

 
These serve as basis functions for linear or nonlinear expansion that 
approximates some true underlying function f(x). 



The MARSplines model for a dependent (outcome) variable y, and
e summarized in the following equation: 

 M terms , can 
b

 
here the summation is over the M terms in the model, and βw o and βm are 

parameters of the model (along with the knots t for each basis function, whi
also estimated from the data). Function H is defined as: 

ch are 

 
where xv(k,m) is the predictor in the k'th of the m'th product. For order of 
interactions K=1, the model is additive and for K=2 the model pairwise 
interactive.  
During forward stepwise, a number of basis functions are added to 
according to a pre-determined maximum which should be considerably larger 
(twice as much at least) than the optimal (best least-squares fit). 

the model 

tions, a backward 

res) 

After implementing the forward stepwise selection of basis func
procedure is applied in which the model is pruned by removing those basis 
functions that are associated with the smallest increase in the (least squa
goodness-of-fit. A least squares error function (inverse of goodness-of-fit) is 
computed. The so-called Generalized Cross Validation error is a measure of the 
goodness of fit that takes into account not only the residual error but also the 
model complexity as well. It is given by 

 
with  

 
where N is the number of cases in the data set, d is the effective degrees of 
freedom, which is equal to the number of independent basis functions. The 
quantity c is the penalty for adding a basis function. Experiments have shown 
that the best value for C can be found somewhere in the range 2 < d < 3 (see 
Hastie et al., 2001). 



 

Machine Learning 
 
 

Machine Learning Introductory Overview  
Machine Learning includes a number of advanced statistical methods for 

andling regression and classification tasks with multiple dependent and 
se methods include Support Vector Machines (SVM) 

ese 
ed 

h
independent variables. The
for regression and classification, Naive Bayes for classification, and k-Nearest 
Neighbours (KNN) for regression and classification. Detailed discussions of th
techniques can be found in Hastie, Tibshirani, & Freedman (2001); a specializ
comprehensive introduction to support vector machines can also be found in 
Cristianini and Shawe-Taylor (2000).  

Support Vector Machines (SVM)  
This method performs regression and classification tasks by constructing 
nonlinear decision boundaries. Because of the nature of the feature space in 
which these boundaries are found, Support Vector Machines can exhibit a larg
degree of flexibility in handling classification and regression tasks of varied 
complexities. There are several types of Support Vector models including linear, 
polynomial, RBF, and sigmoid.  

e 

Naive Bayes  

This is a well established Bayesian method primarily formulated for performing 
classification tasks. Given its simplicity, i.e., the assumption that the independe
variables are statistically independent, Naive Bayes models are effective 
classification tools that are easy to use and interpret. Naive Bayes is particularly 
appropriate when the dimensionality of the independent space (i.e., number of 
input variables) is high (a problem known as the 

nt 

curse of dimensionality). For t
reasons given above, Naive Bayes can often outperform other m

he 
ore 

ods. A variety of methods exist for modeling the 
conditional distributions of the inputs including normal, lognormal, gamma, and 
Poisson.  

sophisticated classification meth



k-Nearest Neighbors  

k-Nearest Neighbors is a memory-based method that, in contrast to other 
statistical methods, requires no training (i.e., no model to fit). It falls into the 
category of Prototype Methods. It functions on the intuitive idea that close objects 
are more likely to be in the same category. Thus, in KNN, predictions are based 
on a set of prototype examples that are used to predict new (i.e., unseen) data 
based on the majority vote (for classification tasks) and averaging (for 
regression) over a set of k-nearest prototypes (hence the name k-nearest 
neighbors).  
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
  

 
 

 
 

 
 
 
 
 

 
 
  

 
© Copyright StatSoft, Inc., 1984-2003 



Multidimensional Scaling 

  
 

General Purpose  
Multidimensional scaling (MDS) can be considered to be an alternative to factor 
analysis (see Factor Analysis). In general, the goal of the analysis is to detect 
meaningful underlying dimensions that allow the researcher to explain observed 
similarities or dissimilarities (distances) between the investigated objects. In 
factor analysis, the similarities between objects (e.g., variables) are expressed in 
the correlation matrix. With MDS one may analyze any kind of similarity or 
dissimilarity matrix, in addition to correlation matrices.  

Logic of MDS  
The following simple example may demonstrate the logic of an MDS analysis. 
Suppose we take a matrix of distances between major US cities from a map. We 
then analyze this matrix, specifying that we want to reproduce the distances 
based on two dimensions. As a result of the MDS analysis, we would most likely 
obtain a two-dimensional representation of the locations of the cities, that is, we 
would basically obtain a two-dimensional map.  
In general then, MDS attempts to arrange "objects" (major cities in this example) 
in a space with a particular number of dimensions (two-dimensional in this 
example) so as to reproduce the observed distances. As a result, we can 
"explain" the distances in terms of underlying dimensions; in our example, we 
could explain the distances in terms of the two geographical dimensions: 
north/south and east/west.  
Orientation of axes. As in factor analysis, the actual orientation of axes in the 
final solution is arbitrary. To return to our example, we could rotate the map in 
any way we want, the distances between cities remain the same. Thus, the final 
orientation of axes in the plane or space is mostly the result of a subjective 
decision by the researcher, who will choose an orientation that can be most 
easily explained. To return to our example, we could have chosen an orientation 



of axes other than north/south and east/west; however, that orientation is most 
convenient because it "makes the most sense" (i.e., it is easily interpretable).  
 
 

Computational Approach  
MDS is not so much an exact procedure as rather a way to "rearrange" objects in 
an efficient manner, so as to arrive at a configuration that best approximates the 
observed distances. It actually moves objects around in the space defined by the 
requested number of dimensions, and checks how well the distances between 
objects can be reproduced by the new configuration. In more technical terms, it 
uses a function minimization algorithm that evaluates different configurations with 
the goal of maximizing the goodness-of-fit (or minimizing "lack of fit").  
Measures of goodness-of-fit: Stress. The most common measure that is used to 
evaluate how well (or poorly) a particular configuration reproduces the observed 
distance matrix is the stress measure. The raw stress value Phi of a configuration 
is defined by:  
Phi = [dij - f ( ij)]2  
In this formula, dij stands for the reproduced distances, given the respective 
number of dimensions, and ij (deltaij) stands for the input data (i.e., observed 
distances). The expression f ( ij) indicates a nonmetric, monotone 
transformation of the observed input data (distances). Thus, it will attempt to 
reproduce the general rank-ordering of distances between the objects in the 
analysis.  
There are several similar related measures that are commonly used; however, 
most of them amount to the computation of the sum of squared deviations of 
observed distances (or some monotone transformation of those distances) from 
the reproduced distances. Thus, the smaller the stress value, the better is the fit 
of the reproduced distance matrix to the observed distance matrix.  
Shepard diagram. One can plot the reproduced distances for a particular number 
of dimensions against the observed input data (distances). This scatterplot is 



referred to as a Shepard diagram. This plot shows the reproduced distances 
plotted on the vertical (Y) axis versus the original similarities plotted on the 
horizontal (X) axis (hence, the generally negative slope). This plot also shows a 
step-function. This line represents the so- called D-hat values, that is, the result 
of the monotone transformation f( ) of the input data. If all reproduced distances 
fall onto the step-line, then the rank-ordering of distances (or similarities) would 
be perfectly reproduced by the respective solution (dimensional model). 
Deviations from the step-line indicate lack of fit.  
 
 

How Many Dimensions to Specify?  
If you are familiar with factor analysis, you will be quite aware of this issue. If you 
are not familiar with factor analysis, you may want to read the Factor Analysis 
section in the manual; however, this is not necessary in order to understand
following discussion. In general, the more dimensions we use in orde

 the 
r to 

reproduce the distance matrix, the better is the fit of the reproduced matrix to the 
observed matrix (i.e., the smaller is the stress). In fact, if we use as many 
dimensions as there are variables, then we can perfectly reproduce the observed 

 have 

s compared to relying on the distance matrix only.  
Sources of misfit. Let us consider for a moment why fewer factors may produce a 
worse representation of a distance matrix than would more factors. Imagine the 
three cities A, B, and C, and the three cities D, E, and F; shown below are their 
distances from each other.  
  A B C   D E F 
A 
B 
C 

0 
90 
90 

  
0 

90 

  
  
0 

  D 
E 
F 

0 
90 

180 

  
0 

90 

  
  
0 

distance matrix. Of course, our goal is to reduce the observed complexity of 
nature, that is, to explain the distance matrix in terms of fewer underlying 
dimensions. To return to the example of distances between cities, once we
a two-dimensional map it is much easier to visualize the location of and navigate 
between cities, a



 
 
In the first matrix, all cities are exactly 90 miles apart from each other; in the 
second matrix, cities D and F are 180 miles apart. Now, can we arrange the three 
cities (objects) on one dimension (line)? Indeed, we can arrange cities D, E, and 
F on one dimension:  
D---90 miles---E---90 miles---F  
D is 90 miles away from E, and E is 90 miles away form F; thus, D is 90+90=180 
miles away from F. If you try to do the same thing with cities A, B, and C you will 
see that there is no way to arrange the three cities on one line so that the 
distances can be reproduced. However, we can arrange those cities in two 
dimensions, in the shape of a triangle:  

A 
90 miles   90 miles 

B 90 miles C 
 
 
Arranging the three cities in this manner, we can perfectly reproduce the 
distances between them. Without going into much detail, this small example 
illustrates how a particular distance matrix implies a particular number of 
dimensions. Of course, "real" data are never this "clean," and contain a lot of 
noise, that is, random variability that contributes to the differences between the 
reproduced and observed matrix.  
Scree test. A common way to decide how many dimensions to use is to plot the 
stress value against different numbers of dimensions. This test was first 
proposed by Cattell (1966) in the context of the number-of-factors problem in 
factor analysis (see Factor Analysis); Kruskal and Wish (1978; pp. 53-60) discuss 
the application of this plot to MDS.  
Cattell suggests to find the place where the smooth decrease of stress values 
(eigenvalues in factor analysis) appears to level off to the right of the plot. To the 
right of this point one finds, presumably, only "factorial scree" -- "scree" is the 



geological term referring to the debris which collects on the lower part of a rocky 
slope.  
Interpretability of configuration. A second criterion for deciding how many 
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resents the final step of the analysis. 

ted in any direction. A first step is to produce 
sca er

dimensions to interpret is the clarity of the final configuration. Sometimes, as in 
our example of distances between cities, the resultant dimensions are easily
interpreted. At other times, the points in the plot form a sort of "random clo
and there is no straightforward and easy way to interpret the dimensions. In t
latter case one should try to include more or fewer dimensions and examine 
resultant final configurations. Often, more interpretable solutions emerge. 
However, if the data points in the plot do not follow any pattern, and if the stress 
plot does not show any clear "elbow," then the data are most likely random 
"noise."  
 
 

Interpreting the Dimensions  
The interpretation of dimensions usually rep
As mentioned earlier, the actual orientations of the axes from the MDS analysis 
are arbitrary, and can be rota

tt plots of the objects in the different two-dimensional planes.  

 
Three-dimensional solutions can also be illustrated graphically, however, their 

omewhat more complex.  interpretation is s



 
In addition to "meaningful dimensions," one should also look for clusters of points 
or particular patterns and configurations (such as circles, manifolds, etc.). For a 
detailed discussion of how to interpret final configurations, see Borg and Lingoes 
(1987), Borg and Shye (in press), or Guttman (1968).  
Use of multiple regression techniques. An analytical way of interpreting 
dimensions (described in Kruskal & Wish, 1978) is to use multiple regression 
techniques to regress some meaningful variables on the coordinates for the 
different dimensions. Note that this can easily be done via Multiple Regression.  
 
 

Applications  
The "beauty" of MDS is that we can analyze any kind of distance or similarity 
matrix. These similarities can represent people's ratings of similarities between 
objects, the percent agreement between judges, the number of times a subjects 
fails to discriminate between stimuli, etc. For example, MDS methods used to be 
very popular in psychological research on person perception where similarities 
between trait descriptors were analyzed to uncover the underlying dimensionality 
of people's perceptions of traits (see, for example Rosenberg, 1977). They are 
also very popular in marketing research, in order to detect the number and nature 
of dimensions underlying the perceptions of different brands or products & 
Carmone, 1970).  



In general, MDS methods allow the researcher to ask relatively unobtrusive 
questions ("how similar is brand A to brand B") and to derive from those 
questions underlying dimensions without the respondents ever knowing what is 
the researcher's real interest.  
 
 

MDS and Factor Analysis  
Even though there are similarities in the type of research questions to which 
these two procedures can be applied, MDS and factor analysis are fundamentally 
different methods. Factor analysis requires that the underlying data are 
distributed as multivariate normal, and that the relationships are linear. MDS 
imposes no such restrictions. As long as the rank-ordering of distances (or 
similarities) in the matrix is meaningful, MDS can be used. In terms of resultant 
differences, factor analysis tends to extract more factors (dimensions) than MDS; 
as a result, MDS often yields more readily, interpretable solutions. Most 
importantly, however, MDS can be applied to any kind of distances or similarities, 
while factor analysis requires us to first compute a correlation matrix. MDS can 
be based on subjects' direct assessment of similarities between stimuli, while 
factor analysis requires subjects to rate those stimuli on some list of attributes 
(for which the factor analysis is performed).  
In summary, MDS methods are applicable to a wide variety of research designs 
because distance measures can be obtained in any number of ways (for different 
examples, refer to the references provided at the beginning of this section).  
 
 

 
 
 
 

 
 
 



Neural Networks 

  
 

Many concepts related to the neural networks methodology are best explained if they are 
illustrated with applications of a specific neural network program. Therefore, this chapter 
contains many references to STATISTICA Neural Networks (in short, ST Neural 
Networks, a neural networks application available from StatSoft), a particularly 
comprehensive neural network tool.  

 
Preface  
Neural networks have seen an explosion of interest over the last few years, and 
are being successfully applied across an extraordinary range of problem 
domains, in areas as diverse as finance, medicine, engineering, geology and 
physics. Indeed, anywhere that there are problems of prediction, classification or 
control, neural networks are being introduced. This sweeping success can be 
attributed to a few key factors:  

• Power. Neural networks are very sophisticated modeling techniques capable of 
modeling extremely complex functions. In particular, neural networks are 
nonlinear (a term which is discussed in more detail later in this section). For 
many years linear modeling has been the commonly used technique in most 
modeling domains since linear models have well-known optimization strategies. 
Where the linear approximation was not valid (which was frequently the case) the 
models suffered accordingly. Neural networks also keep in check the curse of 
dimensionality problem that bedevils attempts to model nonlinear functions with 
large numbers of variables.  

elect an appropriate neural 
network, and how to interpret the results, the level of user knowledge needed to 
successfully apply neural networks is much lower than would be the case using 
(for example) some more traditional nonlinear statistical methods.  

Neural networks are also intuitively appealing, based as they are on a crude low-level 
model of biological neural systems. In the future, the development of this neurobiological 
modeling may lead to genuinely intelligent computers.  
 
Applications for Neural Networks  
Neural networks are applicable in virtually every situation in which a relationship 
between the predictor variables (independents, inputs) and predicted variables 

• Ease of use. Neural networks learn by example. The neural network user gathers 
representative data, and then invokes training algorithms to automatically learn 
the structure of the data. Although the user does need to have some heuristic 
knowledge of how to select and prepare data, how to s



(dependents, outputs) exists, even when that relationship is very complex and 
not easy to articulate in the usual terms of "correlations" or "differences between 
groups." A few representative examples of problems to which neural network 
analysis has been applied successfully are:  

• Detection of medical phenomena. A variety of health-related indices (e.g., a 
combination of heart rate, levels of various substances in the blood, respiration 
rate) can be monitored. The onset of a particular medical condition could be 
associated with a very complex (e.g., nonlinear and interactive) combination of 
changes on a subset of the variables being monitored. Neural networks have been 
used to recognize this predictive pattern so that the appropriate treatment can be 
prescribed.  

• Stock market prediction. Fluctuations of stock prices and stock indices are 
another example of a complex, multidimensional, but in some circumstances at 
least partially-deterministic phenomenon. Neural networks are being used by 
many technical analysts to make predictions about stock prices based upon a large 
number of factors such as past performance of other stocks and various economic 
indicators.  

• Credit assignment. A variety of pieces of information are usually known about 
an applicant for a loan. For instance, the applicant's age, education, occupation, 
and many other facts may be available. After training a neural network on 
historical data, neural network analysis can identify the most relevant 
characteristics and use those to classify applicants as good or bad credit risks.  

• Monitoring the condition of machinery. Neural networks can be instrumental in 
cutting costs by bringing additional expertise to scheduling the preventive 
maintenance of machines. A neural network can be trained to distinguish between 
the sounds a machine makes when it is running normally ("false alarms") versus 
when it is on the verge of a problem. After this training period, the expertise of 
the network can be used to warn a technician of an upcoming breakdown, before 
it occurs and causes costly unforeseen "downtime."  

• Engine management. Neural networks have been used to analyze the input of 
sensors from an engine. The neural network controls the various parameters 
within which the engine functions, in order to achieve a particular goal, such as 
minimizing fuel consumption. 

 
The Biological Inspiration  
Neural networks grew out of research in Artificial Intelligence; specifically, 
attempts to mimic the fault-tolerance and capacity to learn of biological neural 
systems by modeling the low-level structure of the brain (see Patterson, 1996). 
The main branch of Artificial Intelligence research in the 1960s -1980s produced 
Expert Systems. These are based upon a high-level model of reasoning 



processes (specifically, the concept that our reasoning processes are built upon 
manipulation of symbols). It became rapidly apparent that these systems, 
although very useful in some domains, failed to capture certain key aspects of 
human intelligence. According to one line of speculation, this was due to their 
failure to mimic the underlying structure of the brain. In order to reproduce 
intelligence, it would be necessary to build systems with a similar architecture.  
The brain is principally composed of a very large number (circa 10,000,000,000) 
of neurons, massively interconnected (with an average of several thousand 
interconnects per neuron, although this varies enormously). Each neuron is a 
specialized cell which can propagate an electrochemical signal. The neuron has 
a branching input structure (the dendrites), a cell body, and a branching output 
structure (the axon). The axons of one cell connect to the dendrites of another 
via a synapse. When a neuron is activated, it fires an electrochemical signal 
along the axon. This signal crosses the synapses to other neurons, which may in 
turn fire. A neuron fires only if the total signal received at the cell body from the 
dendrites exceeds a certain level (the firing threshold).  
The strength of the signal received by a neuron (and therefore its chances of 
firing) critically depends on the efficacy of the synapses. Each synapse actually 
contains a gap, with neurotransmitter chemicals poised to transmit a signal 
across the gap. One of the most influential researchers into neurological systems 
(Donald Hebb) postulated that learning consisted principally in altering the 
"strength" of synaptic connections. For example, in the classic Pavlovian 
conditioning experiment, where a bell is rung just before dinner is delivered to a 
dog, the dog rapidly learns to associate the ringing of a bell with the eating of 
food. The synaptic connections between the appropriate part of the auditory 
cortex and the salivation glands are strengthened, so that when the auditory 
cortex is stimulated by the sound of the bell the dog starts to salivate. Recent 
research in cognitive science, in particular in the area of nonconscious 
information processing, have further demonstrated the enormous capacity of the 



human mind to infer ("learn") simple input-output covariations from extremely 
complex stimuli (e.g., see Lewicki, Hill, and Czyzewska, 1992).  
Thus, from a very large number of extremely simple processing units (each 
performing a weighted sum of its inputs, and then firing a binary signal if the total 
input exceeds a certain level) the brain manages to perform extremely complex 
tasks. Of course, there is a great deal of complexity in the brain which has not 
been discussed here, but it is interesting that artificial neural networks can 
achieve some remarkable results using a model not much more complex than 
this.  
 

The Basic Artificial Model  
To capture the essence of biological neural systems, an artificial neuron is 
defined as follows:  

• It receives a number of inputs (either from original data, or from the output of 
other neurons in the neural network). Each input comes via a connection that has 
a strength (or weight); these weights correspond to synaptic efficacy in a 
biological neuron. Each neuron also has a single threshold value. The weighted 
sum of the inputs is formed, and the threshold subtracted, to compose the 
activation of the neuron (also known as the post-synaptic potential, or PSP, of the 
neuron).  

• The activation signal is passed through an activation function (also known as a 
transfer function) to produce the output of the neuron.  

If the step activation function is used (i.e., the neuron's output is 0 if the input is less than 
zero, and 1 if the input is greater than or equal to 0) then the neuron acts just like the 
biological neuron described earlier (subtracting the threshold from the weighted sum and 
comparing with zero is equivalent to comparing the weighted sum to the threshold). 
Actually, the step function is rarely used in artificial neural networks, as will be 
discussed. Note also that weights can be negative, which implies that the synapse has an 
inhibitory rather than excitatory effect on the neuron: inhibitory neurons are found in the 
brain.  
This describes an individual neuron. The next question is: how should neurons 
be connected together? If a network is to be of any use, there must be inputs 
(which carry the values of variables of interest in the outside world) and outputs 
(which form predictions, or control signals). Inputs and outputs correspond to 
sensory and motor nerves such as those coming from the eyes and leading to 



the hands. However, there also can be hidden neurons that play an internal role 
in the network. The input, hidden and output neurons need to be connected 
together.  
The key issue here is feedback (Haykin, 1994). A simple network has a 
feedforward structure: signals flow from inputs, forwards through any hidden 
units, eventually reaching the output units. Such a structure has stable behavior. 
However, if the network is recurrent (contains connections back from later to 
earlier neurons) it can be unstable, and has very complex dynamics. Recurrent 
networks are very interesting to researchers in neural networks, but so far it is 
the feedforward structures that have proved most useful in solving real problems.  
A typical feedforward network has neurons arranged in a distinct layered 
topology. The input layer is not really neural at all: these units simply serve to 
introduce the values of the input variables. The hidden and output layer neurons 
are each connected to all of the units in the preceding layer. Again, it is possible 
to define networks that are partially-connected to only some units in the 
preceding layer; however, for most applications fully-connected networks are 
better.  

 
When the network is executed (used), the input variable values are placed in the 
input units, and then the hidden and output layer units are progressively 
executed. Each of them calculates its activation value by taking the weighted 
sum of the outputs of the units in the preceding layer, and subtracting the 
threshold. The activation value is passed through the activation function to 
produce the output of the neuron. When the entire network has been executed, 
the outputs of the output layer act as the output of the entire network.  



 

Using a Neural Network  

The previous section describes in simplified terms how a neural network turns 
inputs into outputs. The next important question is: how do you apply a neural 
network to solve a problem?  
The type of problem amenable to solution by a neural network is defined by the 
way they work and the way they are trained. Neural networks work by feeding in 
some input variables, and producing some output variables. They can therefore 
be used where you have some known information, and would like to infer some 
unknown information (see Patterson, 1996; Fausett, 1994). Some examples are:  
Stock market prediction. You know last week's stock prices and today's DOW, 
NASDAQ, or FTSE index; you want to know tomorrow's stock prices.  
Credit assignment. You want to know whether an applicant for a loan is a good or 
bad credit risk. You usually know applicants' income, previous credit history, etc. 
(because you ask them these things).  
Control. You want to know whether a robot should turn left, turn right, or move 
forwards in order to reach a target; you know the scene that the robot's camera is 
currently observing.  
Needless to say, not every problem can be solved by a neural network. You may 
wish to know next week's lottery result, and know your shoe size, but there is no 
relationship between the two. Indeed, if the lottery is being run correctly, there is 
no fact you could possibly know that would allow you to infer next week's result. 
Many financial institutions use, or have experimented with, neural networks for 
stock market prediction, so it is likely that any trends predictable by neural 
techniques are already discounted by the market, and (unfortunately), unless you 
have a sophisticated understanding of that problem domain, you are unlikely to 
have any success there either!  
Therefore, another important requirement for the use of a neural network 
therefore is that you know (or at least strongly suspect) that there is a 
relationship between the proposed known inputs and unknown outputs. This 



relationship may be noisy (you certainly would not expect that the factors given in 
the stock market prediction example above could give an exact prediction, as 
prices are clearly influenced by other factors not represented in the input set, and 
there may be an element of pure randomness) but it must exist.  
In general, if you use a neural network, you won't know the exact nature of the 
relationship between inputs and outputs - if you knew the relationship, you would 
model it directly. The other key feature of neural networks is that they learn the 
input/output relationship through training. There are two types of training used in 
neural networks, with different types of networks using different types of training. 
These are supervised and unsupervised training, of which supervised is the most 
common and will be discussed in this section (unsupervised learning is described 
in a later section).  
In supervised learning, the network user assembles a set of training data. The 
training data contains examples of inputs together with the corresponding 
outputs, and the network learns to infer the relationship between the two. 
Training data is usually taken from historical records. In the above examples, this 
might include previous stock prices and DOW, NASDAQ, or FTSE indices, 
records of previous successful loan applicants, including questionnaires and a 
record of whether they defaulted or not, or sample robot positions and the correct 
reaction.  
The neural network is then trained using one of the supervised learning 
algorithms (of which the best known example is back propagation, devised by 
Rumelhart et. al., 1986), which uses the data to adjust the network's weights and 
thresholds so as to minimize the error in its predictions on the training set. If the 
network is properly trained, it has then learned to model the (unknown) function 
that relates the input variables to the output variables, and can subsequently be 
used to make predictions where the output is not known.  
 

Gathering Data for Neural Networks  



Once you have decided on a problem to solve using neural networks, you will 
need to gather data for training purposes. The training data set includes a 
number of cases, each containing values for a range of input and output 
variables. The first decisions you will need to make are: which variables to use, 
and how many (and which) cases to gather.  
The choice of variables (at least initially) is guided by intuition. Your own 
expertise in the problem domain will give you some idea of which input variables 
are likely to be influential. As a first pass, you should include any variables that 
you think could have an influence - part of the design process will be to whittle 
this set down.  
Neural networks process numeric data in a fairly limited range. This presents a 
problem if data is in an unusual range, if there is missing data, or if data is non-
numeric. Fortunately, there are methods to deal with each of these problems. 
Numeric data is scaled into an appropriate range for the network, and missing 
values can be substituted for using the mean value (or other statistic) of that 
variable across the other available training cases (see Bishop, 1995).  
Handling non-numeric data is more difficult. The most common form of non-
numeric data consists of nominal-value variables such as Gender={Male, 
Female}. Nominal-valued variables can be represented numerically. However, 
neural networks do not tend to perform well with nominal variables that have a 
large number of possible values.  
For example, consider a neural network being trained to estimate the value of 
houses. The price of houses depends critically on the area of a city in which they 
are located. A particular city might be subdivided into dozens of named locations, 
and so it might seem natural to use a nominal-valued variable representing these 
locations. Unfortunately, it would be very difficult to train a neural network under 
these circumstances, and a more credible approach would be to assign ratings 
(based on expert knowledge) to each area; for example, you might assign ratings 
for the quality of local schools, convenient access to leisure facilities, etc.  



Other kinds of non-numeric data must either be converted to numeric form, or 
discarded. Dates and times, if important, can be converted to an offset value 
from a starting date/time. Currency values can easily be converted. 
Unconstrained text fields (such as names) cannot be handled and should be 
discarded.  
The number of cases required for neural network training frequently presents 
difficulties. There are some heuristic guidelines, which relate the number of 
cases needed to the size of the network (the simplest of these says that there 

 to the (unknown) complexity of the underlying 
function which the network is trying to model, and to the variance of the additive 
noise. As the number of variables increases, the number of cases required 
increases nonlinearly, so that with even a fairly small number of variables 
(perhaps fifty or less) a huge number of cases are required. This problem is 

ases required will be 
hundreds or thousands. For very comp
would be a rare (even trivial) problem which required less than a hundred cases. 
If your data is sparser than this, you really don't have enough information to train 
a network, and the best you can do is probably to fit a linear model

should be ten times as many cases as connections in the network). Actually, the 
number needed is also related

known as "the curse of dimensionality," and is discussed further later in this 
chapter.  
For most practical problem domains, the number of c

lex problems more may be required, but it 

. If you have a 
larger, but still restricted, data set, you can compensate to some extent by 
forming an ensemble of networks, each trained using a different resampling of 
the available data, and then average across the predictions of the networks in the 
ensemble.  

 that is unreliable: some variables may Many practical problems suffer from data
be corrupted by noise, or values may be missing altogether. Neural networks are
also noise tolerant. However, there is a limit to this tolerance; if there are 

 

occasional outliers far outside the range of normal values for a variable, they may 
bias the training. The best approach to such outliers is to identify and remove 



them (either discarding the case, or converting the outlier into a missing value). If 
outliers are difficult to detect, a city block error function (see Bishop, 1995) may 
be used, but this outlier-tolerant training is generally less effective than the 
standard approach.  
Summary  
Choose variables that you believe may be influential  
Numeric and nominal variables can be handled. Convert other variables to one of 
these forms, or discard.  
Hundreds or thousands of cases are required; the more variables, the more 
cases.  
Cases with missing values can be used, if necessary, but outliers may cause 
problems - check your data. Remove outliers if possible. If you have sufficient 
data, discard cases with missing values.  
If the volume of the data available is small, consider using ensembles and 
resampling.  
 

Pre- and Post-processing  

All neural networks take numeric input and produce numeric output. The transfer 
function of a unit is typically chosen so that it can accept input in any range, and 
produces output in a strictly limited range (it has a squashing effect). Although 
the input can be in any range, there is a saturation effect so that the unit is only 
sensitive to inputs within a fairly limited range. The illustration below shows one 
of the most common transfer functions, the logistic function (also sometimes 
referred to as the sigmoid function, although strictly speaking it is only one 
example of a sigmoid - S-shaped - function). In this case, the output is in the 
range (0,1), and the input is sensitive in a range not much larger than (-1,+1). 
The function is also smooth and easily differentiable, facts that are critical in 
allowing the network training algorithms to operate (this is the reason why the 
step function is not used in practice).  



 
The limited numeric response range, together with the fact that information has to 
be in numeric form, implies that neural solutions require preprocessing and post-
processing stages to be used in real applications (see Bishop, 1995). Two issues 
need to be addressed:  
Scaling. Numeric values have to be scaled into a range that is appropriate for the 
network. Typically, raw variable values are scaled linearly. In some 
circumstances, non-linear scaling may be appropriate (for example, if you know 
that a variable is exponentially distributed, you might take the logarithm). Non-
linear scaling is not supported in ST Neural Networks. Instead, you should scale 
the variable using STATISTICA's data transformation facilities before transferring 
the data to ST Neural Networks.  
Nominal variables. Nominal variables may be two-state (e.g., 
Gender={Male,Female}) or many-state (i.e., more than two states). A two-state 
nominal variable is easily represented by transformation into a numeric value 
(e.g., Male=0, Female=1). Many-state nominal variables are more difficult to 
handle. They can be represented using an ordinal encoding (e.g., 
Dog=0,Budgie=1,Cat=2) but this implies a (probably) false ordering on the 
nominal values - in this case, that Budgies are in some sense midway between 
Dogs and Cats. A better approach, known as one-of-N encoding, is to use a 
number of numeric variables to represent the single nominal variable. The 
number of numeric variables equals the number of possible values; one of the N 
variables is set, and the others cleared (e.g., Dog={1,0,0}, Budgie={0,1,0}, 
Cat={0,0,1}). ST Neural Networks has facilities to convert both two-state and 
many-state nominal variables for use in the neural network. Unfortunately, a 



nominal variable with a large number of states would require a prohibitive 
number of numeric variables for one-of-N encoding, driving up the network size 
and making training difficult. In such a case it is possible (although 
unsatisfactory) to model the nominal variable using a single numeric ordinal; a 
better approach is to look for a different way to represent the information.  
Prediction problems may be divided into two main categories:  
Classification. In classification, the objective is to determine to which of a number 
of discrete classes a given input case belongs. Examples include credit 
assignment (is this person a good or bad credit risk), cancer detection (tumor, 
clear), signature recognition (forgery, true). In all these cases, the output required 
is clearly a single nominal variable. The most common classification tasks are (as 
above) two-state, although many-state tasks are also not unknown.  
Regression. In regression, the objective is to predict the value of a (usually) 
continuous variable: tomorrow's stock price, the fuel consumption of a car, next 
year's profits. In this case, the output required is a single numeric variable.  
Neural networks can actually perform a number of regression and/or 
classification tasks at once, although commonly each network performs only one. 
In the vast majority of cases, therefore, the network will have a single output 
variable, although in the case of many-state classification problems, this may 
correspond to a number of output units (the post-processing stage takes care of 
the mapping from output units to output variables). If you do define a single 
network with multiple output variables, it may suffer from cross-talk (the hidden 
neurons experience difficulty learning, as they are attempting to model at least 
two functions at once). The best solution is usually to train separate networks for 
each output, then to combine them into an ensemble so that they can be run as a 
unit.  
 

Multilayer Perceptrons  

This is perhaps the most popular network architecture in use today, due originally 
to Rumelhart and McClelland (1986) and discussed at length in most neural 



network textbooks (e.g., Bishop, 1995). This is the type of network discussed 
briefly in previous sections: the units each perform a biased weighted sum of 
their inputs and pass this activation level through a transfer function to produce 
their output, and the units are arranged in a layered feedforward topology. The 
network thus has a simple interpretation as a form of input-output model, with the 
weights and thresholds (biases) the free parameters of the model. Such networks 
can model functions of almost arbitrary complexity, with the number of layers, 
and the number of units in each layer, determining the function complexity. 
Important issues in Multilayer Perceptrons (MLP) design include specification of 
the number of hidden layers and the number of units in these layers (see Haykin, 
1994; Bishop, 1995).  
The number of input and output units is defined by the problem (there may be 
some uncertainty about precisely which inputs to use, a point to which we will 
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tomatically adjust the 
weights and thresholds in order to minimize this error. This process is equivalent 
to fitting the model represented by the network to the training data available. The 
error of a particular configuration of the network can be determined by running all 
the training cases through the network, comparing the actual output generated 
with the desired or target outputs. The differences are combined together by an 
error function to give the network error. The most common error functions

return later. However, for the moment we will assume that the input variables 
intuitively selected and are all meaningful). The number of hidden units to use is
far from clear. As good a starting point as any is to use one hidden layer, with the
number of units equal to half the sum of the numbe
Again, we will discuss how to choose a sensible number later.  
Training Multilayer Perceptrons  
Once the n
selected, the network's weights and thresholds must be set so as to minimize
prediction error made by the network. This is the role of the training algorithms. 
The historical cases that you have gathered are used to au

 are the 
sum squared error (used for regression problems), where the individual errors of 



output units on each case are squared and summed together, and the cross 
entropy functions (used for maximum likelihood classification).  
In traditional modeling approaches (e.g., linear modeling) it is possible to 
algorithmically determine the model configuration that absolutely minimizes this 
error. The price paid for the greater (non-linear) modeling power of neural 
networks is that although we can adjust a network to lower its error, we can 
never be sure that the error could not be lower still.  
A helpful concept here is the error surface. Each of the N weights and thresholds 
of the network (i.e., the free parameters of the model) is taken to be a dimension 
in space. The N+1th dimension is the network error. For any possible 
configuration of weights the error can be plotted in the N+1th dimension, forming 
an error surface. The objective of network training is to find the lowest point in 
this many-dimensional surface.  
In a linear model with sum squared error function, this error surface is a parabola 
(a quadratic), which means that it is a smooth bowl-shape with a single minimum. 
It is therefore "easy" to locate the minimum.  
Neural network error surfaces are much more complex, and are characterized by 
a number of unhelpful features, such as local minima (which are lower than the 
surrounding terrain, but above the global minimum), flat-spots and plateaus, 
saddle-points, and long narrow ravines.  
It is not possible to analytically determine where the global minimum of the error 
surface is, and so neural network training is essentially an exploration of the error 
surface. From an initially random configuration of weights and thresholds (i.e., a 
random point on the error surface), the training algorithms incrementally seek for 
the global minimum. Typically, the gradient (slope) of the error surface is 
calculated at the current point, and used to make a downhill move. Eventually, 
the algorithm stops in a low point, which may be a local minimum (but hopefully 
is the global minimum).  
The Back Propagation Algorithm  



The best-known example of a neural network training algorithm is back 
propagation (see Patterson, 1996; Haykin, 1994; Fausett, 1994). Modern 
second-order algorithms such as conjugate gradient descent and Levenberg-
Marquardt (see Bishop, 1995; Shepherd, 1997) (both included in ST Neural 
Networks) are substantially faster (e.g., an order of magnitude faster) for many 
problems, but back propagation still has advantages in some circumstances, and 
is the easiest algorithm to understand. We will introduce this now, and discuss 
the more advanced algorithms later. There are also heuristic modifications of 
back propagation which work well for some problem domains, such as quick 
propagation (Fahlman, 1988) and Delta-Bar-Delta (Jacobs, 1988) and are also 

ventually find a 
minimum of some sort. The difficult part is to decide how large the steps should 
be.  
Large steps may converge more quickly, but may also overstep the solution or (if 
the error surface is very eccentric) go off in the wrong direction. A classic 
example of this in neural network

included in ST Neural Networks.  
In back propagation, the gradient vector of the error surface is calculated. This 
vector points along the line of steepest descent from the current point, so we 
know that if we move along it a "short" distance, we will decrease the error. A 
sequence of such moves (slowing as we near the bottom) will e

 training is where the algorithm progresses very 
slowly along a steep, narrow, valley, bouncing from one side across to the other. 
In contrast, very small steps may go in the correct direction, but they also require 
a large number of iterations. In practice, the step size is proportional to the slope 
(so that the algorithms settles down in a minimum) and to a special constant: the 
learning rate. The correct setting for the learning rate is application-dependent, 
and is typically chosen by experiment; it may also be time-varying, getting 
smaller as the algorithm progresses.  
The algorithm is also usually modified by inclusion of a momentum term: this 
encourages movement in a fixed direction, so that if several steps are taken in 
the same direction, the algorithm "picks up speed", which gives it the ability to 



(sometimes) escape local minimum, and also to move rapidly over flat spots and 
plateaus.  
The algorithm therefore progresses iteratively, through a number of epochs. On 
each epoch, the training cases are each submitted in turn to the network, and 
target and actual outputs compared and the error calculated. This error, together 
with the error surface gradient, is used to adjust the weights, and then the 
process repeats. The initial network configuration is random, and training stops 
when a given number of epochs elapses, or when the error reaches an 
acceptable level, or when the error stops improving (you can select which of 
these stopping conditions to use).  
Over-learning and Generalization  
One major problem with the approach outlined above is that it doesn't actually 
minimize the error that we are really interested in - which is the expected error 
the network will make when new cases are submitted to it. In other words, the 
most desirable property of a network is its ability to generalize to new cases. In 
reality, the network is trained to minimize the error on the training set, and short 
of having a perfect and infinitely large training set, this is not the same thing as 
minimizing the error on the real error surface - the error surface of the underlying 
and unknown model (see Bishop, 1995).  
The most important manifestation of this distinction is the problem of over-
learning, or over-fitting. It is easiest to demonstrate this concept using polynomial 
curve fitting rather than neural networks, but the concept is precisely the same.  
A polynomial is an equation with terms containing only constants and powers of 
the variables. For example:  
y=2x+3 
y=3x2+4x+1  
Different polynomials have different shapes, with larger powers (and therefore 
larger numbers of terms) having steadily more eccentric shapes. Given a set of 
data, we may want to fit a polynomial curve (i.e., a model) to explain the data. 
The data is probably noisy, so we don't necessarily expect the best model to 



pass exactly through all the points. A low-order polynomial may not be sufficiently 
flexible to fit close to the points, whereas a high-order polynomial is actually too 
flexible, fitting the data exactly by adopting a highly eccentric shape that is 
actually unrelated to the underlying function. See illustration below.  

 
Neural networks have precisely the same problem. A network with more weights 
models a more complex function, and is therefore prone to over-fitting. A network 
with less weights may not be sufficiently powerful to model the underlying 
function. For example, a network with no hidden layers actually models a simple 
linear function.  
How then can we select the right complexity of network? A larger network will 
almost invariably achieve a lower error eventually, but this may indicate over-
fitting rather than good modeling.  
The answer is to check progress against an independent data set, the selection 
set. Some of the cases are reserved, and not actually used for training in the 
back propagation algorithm. Instead, they are used to keep an independent 
check on the progress of the algorithm. It is invariably the case that the initial 
performance of the network on training and selection sets is the same (if it is not 
at least approximately the same, the division of cases between the two sets is 
probably biased). As training progresses, the training error naturally drops, and 
providing training is minimizing the true error function, the selection error drops 
too. However, if the selection error stops dropping, or indeed starts to rise, this 
indicates that the network is starting to overfit the data, and training should 
cease. When over-fitting occurs during the training process like this, it is called 
over-learning. In this case, it is usually advisable to decrease the number of 
hidden units and/or hidden layers, as the network is over-powerful for the 
problem at hand. In contrast, if the network is not sufficiently powerful to model 



the underlying function, over-learning is not likely to occur, and neither training 
nor selection errors will drop to a satisfactory level.  
The problems associated with local minima, and decisions over the size of 
network to use, imply that using a neural network typically involves experimenting 
with a large number of different networks, probably training each one a number 
of times (to avoid being fooled by local minima), and observing individual 
performances. The key guide to performance here is the selection error. 
However, following the standard scientific precept that, all else being equal, a 
simple model is always preferable to a complex model, you can also select a 
smaller network in preference to a larger one with a negligible improvement in 
selection error.  
A problem with this approach of repeated experimentation is that the selection 
set plays a key role in selecting the model, which means that it is actually part of 
the training process. Its reliability as an independent guide to performance of the 
model is therefore compromised - with sufficient experiments, you may just hit 
upon a lucky network that happens to perform well on the selection set. To add 
confidence in the performance of the final model, it is therefore normal practice 
(at least where the volume of training data allows it) to reserve a third set of 
cases - the test set. The final model is tested with the test set data, to ensure that 
the results on the selection and training set are real, and not artifacts of the 
training process. Of course, to fulfill this role properly the test set should be used 
only once - if it is in turn used to adjust and reiterate the training process, it 
effectively becomes selection data!  
This division into multiple subsets is very unfortunate, given that we usually have 
less data than we would ideally desire even for a single subset. We can get 
around this problem by resampling. Experiments can be conducted using 
different divisions of the available data into training, selection, and test sets. 
There are a number of approaches to this subset, including random (monte-
carlo) resampling, cross-validation, and bootstrap. If we make design decisions, 
such as the best configuration of neural network to use, based upon a number of 



experiments with different subset examples, the results will be much more 
reliable. We can then either use those experiments solely to guide the decision 
as to which network types to use, and train such networks from scratch with new 
samples (this removes any sampling bias); or, we can retain the best networks 
found during the sampling process, but average their results in an ensemble, 

 units set to half the sum of the number of input and output units).  
• Iteratively conduct a number of experiments with each configuration, retaining 

the best network (in terms of selection error) found. A number of experiments are 
required with each configuration to avoid being fooled if training locates a local 
minimum, and it is also best to resample.  

• On each experiment, if under-learning occurs (the network doesn't achieve an 
acceptable performance level) try adding more neurons to the hidden layer(s). If 
this doesn't help, try adding an extra hidden layer.  

• If over-learning

which at least mitigates the sampling bias.  
To summarize, network design (once the input variables have been selected) 
follows a number of stages:  

• Select an initial configuration (typically, one hidden layer with the number of 
hidden

 occurs (selection error starts to rise) try removing hidden units 
(and possibly layers).  

• Once you have experimentally determined an effective configuration for your 
networks, resample and generate new networks with that configuration.  

Data Selection  
All the above stages rely on a key assumption. Specifically, the training, 
verification and test data must be representative of the underlying model (and, 
further, the three sets must be independently representative). The old computer 
science adage "garbage in, garbage out" could not apply more strongly than in 
neural modeling. If training data is not representative, then the model's worth is at 
best compromised. At worst, it may be useless. It is worth spelling out the kind of 
problems which can corrupt a training set:  
The future is not the past. Training data is typically historical. If circumstances 
have changed, relationships which held in the past may no longer hold.  
All eventualities must be covered. A neural network can only learn from cases 
that are present. If people with incomes over $100,000 per year are a bad credit 
risk, and your training data includes nobody over $40,000 per year, you cannot 



expect it to make a correct decision when it encounters one of the previously-
unseen cases. Extrapolation is dangerous with any model, but some types of 
neural network may make particularly poor predictions in such circumstances.  
A network learns the easiest features it can. A classic (possibly apocryphal) 
illustration of this is a vision project designed to automatically recognize tanks. A 
network is trained on a hundred pictures including tanks, and a hundred not. It 
achieves a perfect 100% score. When tested on new data, it proves hopeless. 
The reason? The pictures of tanks are taken on dark, rainy days; the pictures 
without on sunny days. The network learns to distinguish the (trivial matter of) 
differences in overall light intensity. To work, the network would need training 
cases including all weather and lighting conditions under which it is expected to 
operate - not to mention all types of terrain, angles of shot, distances...  
Unbalanced data sets. Since a network minimizes an overall error, the proportion 
of types of data in the set is critical. A network trained on a data set with 900 
good cases and 100 bad will bias its decision towards good cases, as this allows 
the algorithm to lower the overall error (which is much more heavily influenced by 
the good cases). If the representation of good and bad cases is different in the 
real population, the network's decisions may be wrong. A good example would 
be disease diagnosis. Perhaps 90% of patients routinely tested are clear of a 
disease. A network is trained on an available data set with a 90/10 split. It is then 
used in diagnosis on patients complaining of specific problems, where the 
likelihood of disease is 50/50. The network will react over-cautiously and fail to 
recognize disease in some unhealthy patients. In contrast, if trained on the 
"complainants" data, and then tested on "routine" data, the network may raise a 
high number of false positives. In such circumstances, the data set may need to 
be crafted to take account of the distribution of data (e.g., you could replicate the 
less numerous cases, or remove some of the numerous cases), or the network's 
decisions modified by the inclusion of a loss matrix (Bishop, 1995). Often, the 
best approach is to ensure even representation of different cases, then to 
interpret the network's decisions accordingly.  



Insights into MLP Training  
More key insights into MLP behavior and training can be gained by considering 
the type of functions they model. Recall that the activation level of a unit is the 
weighted sum of the inputs, plus a threshold value. This implies that the 
activation level is actually a simple linear function of the inputs. The activation is 
then passed through a sigmoid (S-shaped) curve. The combination of the multi-
dimensional linear function and the one-dimensional sigmoid function gives the 
characteristic sigmoid cliff response of a first hidden layer MLP unit (the figure 
below illustrates the shape plotted across two inputs. An MLP unit with more 
inputs has a higher-dimensional version of this functional shape). Altering the 
weights and thresholds alters this response surface. In particular, both the 
orientation of the surface, and the steepness of the sloped section, can be 
altered. A steep slope corresponds to large weight values: doubling all weight 
values gives the same orientation but a different slope.  

 
A multi-layered network combines a number of these response surfaces 
together, through repeated linear combination and non-linear activation functions. 
The next figure illustrates a typical response surface for a network with only one 
hidden layer, of two units, and a single output unit, on the classic XOR problem. 
Two separate sigmoid surfaces have been combined into a single U-shaped 
surface.  
During network training, the weights and thresholds are first initialized to small, 
random values. This implies that the units' response surfaces are each aligned 
randomly with low slope: they are effectively uncommitted. As training 



progresses, the units' response surfaces are rotated and shifted into appropriate 
positions, and the magnitudes of the weights grow as they commit to modeling 
particular parts of the target response surface.  
In a classification problem, an output unit's task is to output a strong signal if a 
case belongs to its class, and a weak signal if it doesn't. In other words, it is 
attempting to model a function that has magnitude one for parts of the pattern-
space that contain its cases, and magnitude zero for other parts.  

 
This is known as a discriminant function in pattern recognition problems. An ideal 
discriminant function could be said to have a plateau structure, where all points 
on the function are either at height zero or height one.  
If there are no hidden units, then the output can only model a single sigmoid-cliff 
with areas to one side at low height and areas to the other high. There will 
always be a region in the middle (on the cliff) where the height is in-between, but 
as weight magnitudes are increased, this area shrinks.  
A sigmoid-cliff like this is effectively a linear discriminant. Points to one side of 
the cliff are classified as belonging to the class, points to the other as not 
belonging to it. This implies that a network with no hidden layers can only classify 
linearly-separable problems (those where a line - or, more generally in higher 
dimensions, a hyperplane - can be drawn which separates the points in pattern 
space).  
A network with a single hidden layer has a number of sigmoid-cliffs (one per 
hidden unit) represented in that hidden layer, and these are in turn combined into 
a plateau in the output layer. The plateau has a convex hull (i.e., there are no 



dents in it, and no holes inside it). Although the plateau is convex, it may extend 
to infinity in some directions (like an extended peninsular). Such a networ
practice capable of modeling adequately most real-world

k is in 
 classification problems.  

 
The figure above shows the plateau response surface developed by an MLP to 
solve the XOR problem: as can be seen, this neatly sections the space along a 
diagonal.  
A network with two hidden layers has a number of plateaus combined together - 
the number of plateaus corresponds to the number of units in the second layer, 
and the number of sides on each plateau corresponds to the number of units in 
the first hidden layer. A little thought shows that you can represent any shape 
(including concavities and holes) using a sufficiently large number of such 
plateaus.  
A consequence of these observations is that an MLP with two hidden layers is 
theoretically sufficient to model any problem (there is a more formal proof, the 
Kolmogorov Theorem). This does not necessarily imply that a network with more 
layers might not more conveniently or easily model a particular problem. In 
practice, however, most problems seem to yield to a single hidden layer, with two 
an occasional resort and three practically unknown.  
A key question in classification is how to interpret points on or near the cliff. The 
standard practice is to adopt some confidence levels (the accept and reject 
thresholds) that must be exceeded before the unit is deemed to have made a 
decision. For example, if accept/reject thresholds of 0.95/0.05 are used, an 



output unit with an output level in excess of 0.95 is deemed to be on, below 0.05 
it is deemed to be off, and in between it is deemed to be undecided.  
A more subtle (and perhaps more useful) interpretation is to treat the network 
outputs as probabilities. In this case, the network gives more information than 
simply a decision: it tells us how sure (in a formal sense) it is of that decision. 
There are modifications to MLPs that allow the neural network outputs to be 
interpreted as probabilities, which means that the network effectively learns to 
model the probability density function of the class. However, the probabilistic 
interpretation is only valid under certain assumptions about the distribution of the 
data (specifically, that it is drawn from the family of exponential distributions; see 
Bishop, 1995). Ultimately, a classification decision must still be made, but a 
probabilistic interpretation allows a more formal concept of minimum cost 
decision making to be evolved.  
Other MLP Training Algorithms  
Earlier in this section, we discussed how the back propagation algorithm 
performs gradient descent on the error surface. Speaking loosely, it calculates 
the direction of steepest descent on the surface, and jumps down the surface a 
distance proportional to the learning rate and the slope, picking up momentum as 
it maintains a consistent direction. As an analogy, it behaves like a blindfold 
kangaroo hopping in the most obvious direction. Actually, the descent is 
calculated independently on the error surface for each training case, and in 
random order, but this is actually a good approximation to descent on the 
composite error surface. Other MLP training algorithms work differently, but all 
use a strategy designed to travel towards a minimum as quickly as possible.  
More sophisticated techniques for non-linear function optimization have been in 
use for some time. These methods include conjugate gradient descent, quasi-
Newton, and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997), which 
are very successful forms of two types of algorithm: line search and model-trust 
region approaches. They are collectively known as second order training 
algorithms.  



A line search algorithm works as follows: pick a sensible direction to move in the 
multi-dimensional landscape. Then project a line in that direction, locate the 
minimum along that line (it is relatively trivial to locate a minimum along a line, by 
using some form of bisection algorithm), and repeat. What is a sensible direction 
in this context? An obvious choice is the direction of steepest descent (the same 
direction that would be chosen by back propagation). Actually, this intuitively 
obvious choice proves to be rather poor. Having minimized along one direction, 
the next line of steepest descent may spoil the minimization along the initial 
direction (even on a simple surface like a parabola a large number of line 
searches may be necessary). A better approach is to select conjugate or non-
interfering directions - hence conjugate gradient descent (Bishop, 1995).  
The idea here is that, once the algorithm has minimized along a particular 
direction, the second derivative along that direction should be kept at zero. 
Conjugate directions are selected to maintain this zero second derivative on the 
assumption that the surface is parabolic (speaking roughly, a nice smooth 
surface). If this condition holds, N epochs are sufficient to reach a minimum. In 
reality
still typ

, on a complex error surface the conjugacy deteriorates, but the algorithm 
ically requires far less epochs than back propagation, and also conve
tter minimum (to settle down thoroughly, back propagation must be run 
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Newton training is based on the observation that the direction pointing 
y towards the minimum on a quadratic surface is the so-called Newton
n. This is very expensive to calculate analytically, but quasi-Newton 
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el-trust region approach works as follows: instead of following a search
on, assume that the surface is a simple shape such that the minimum c

and see how good the suggested point is. The mo



surface is a nice well-behaved shape (e.g., a parabola), which will be true if 
sufficiently close to a minima. Elsewhere, the assumption may be grossly 
violated, and the model could choose wildly inappropriate points to move to. The 
model can only be trusted within a region of the current point, and the size of this 
region isn't known. Therefore, choose new points to test as a compromise 
between that suggested by the model and that suggested by a standard gradient-
descent jump. If the new point is good, move to it, and strengthen the role of the 
model in selecting a new point; if it is bad, don't move, and strengthen the role of 
the gradient descent step in selecting a new point (and make the step smaller). 
Levenberg-Marquardt uses a model that assumes that the underlying function is 
locally linear (and therefore has a parabolic error surface).  
Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963; Bishop, 1995) is 
typically the fastest of the training algorithms, although unfortunately it has some 
important limitations, specifically: it can only be used on single output networks, 
can only be used with the sum squared error function, and has memory 
requirements proportional to W2 (where W is the number of weights in the 
network; this makes it impractical for reasonably big networks). Conjugate 
gradient descent is nearly as good, and doesn't suffer from these restrictions.  
Back propagation can still be useful, not least in providing a quick (if not 
overwhelmingly accurate) solution. It is also a good choice if the data set is very 
large, and contains a great deal of redundant data. Back propagation's case-by-
case error adjustment means that data redundancy does it no harm (for example, 
if you double the data set size by replicating every case, each epoch will take 
twice as long, but have the same effect as two of the old epochs, so there is no 
loss). In contrast, Levenberg-Marquardt, quasi-Newton, and conjugate gradient 
descent all perform calculations using the entire data set, so increasing the 
number of cases can significantly slow each epoch, but does not necessarily 
improve performance on that epoch (not if data is redundant; if data is sparse, 
then adding data will make each epoch better). Back propagation can also be 
equally good if the data set is very small, for there is then insufficient information 



to make a highly fine-tuned solution appropriate (a more advanced algorithm may 
achieve a lower training error, but the selection error is unlikely to improve in th
ame way). Finally, the second order training algorithms seem to be very prone 

to stick in local minima in the early phases - for this reason, we recommend the
practice of starting with a short burst of back propagation, before switching to a 
second order algorithm.  
There are variations on 
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back propagation (quick propagation, Fahlman, 1988, 
and Delta-bar-Delta, Jacobs, 1988) that are designed to deal with some of the 
limitations on this technique. In most cases, they are not significantly bette
back propagation, and sometimes they

r than 
 are worse (relative performance is 

 of 

Radial Basis Function Networks  

We have seen in the last section how an MLP

application-dependent). They also require more control parameters than any
the other algorithms, which makes them more difficult to use, so they are not 
described in further detail in this section.  
 

 models the response function 
using the composition of sigmoid-cliff functions - for a classification problem, this 
corresponds to dividing the pattern space up using hyperplanes. The use of 
hyperplanes to divide up space is a natural approach - intuitively appealing, and 
based on the fundamental simplicity of lines.  
An equally appealing and intuitive approach is to divide up space using circles or 
(more generally) hyperspheres. A hypersphere is characterized by its center and 
radius. More generally, just as an MLP unit responds (non-linearly) to the 
distance of points from the line of the sigmoid-cliff, in a radial basis function 
network (Broomhead and Lowe, 1988; Moody and Darkin, 1989; Haykin, 1994) 
units respond (non-linearly) to the distance of points from the center represented 
by the radial unit. The response surface of a single radial unit is therefore a 
Gaussian (bell-shaped) function, peaked at the center, and descending 
outwards. Just as the steepness of the MLP's sigmoid curves can be altered, so 
can the slope of the radial unit's Gaussian. See the next illustration below.  



 
MLP units are defined by their weights and threshold, which together give the 
equation of the defining line, and the rate of fall-off of the function from that line. 
Before application of the sigmoid activation function, the activation level of the 
unit is determined using a weighted sum, which mathematically is the dot product 
of the input vector and the weight vector of the unit; these units are therefore 
referred to as dot product units. In contrast, a radial unit is defined by its center 
point and a radius. A point in N dimensional space is defined using N numbers, 
which exactly corresponds to the number of weights in a dot product unit, so the 
center of a radial unit is stored as weights. The radius (or deviation) value is 

s 
 

 a 

stored as the threshold. It is worth emphasizing that the weights and threshold
in a radial unit are actually entirely different to those in a dot product unit, and the
terminology is dangerous if you don't remember this: Radial weights really form
point, and a radial threshold is really a deviation.  
A radial basis function network (RBF), therefore, has a hidden layer of radial 
units, each actually modeling a Gaussian response surface. Since these 
functions are nonlinear, it is not actually necessary to have more than one hidden 
layer to model any shape of function: sufficient radial units will always be enough 
to model any function. The remaining question is how to combine the h
radial unit outputs into the

idden 
 network outputs? It turns out to be quite sufficient to 

use a linear combination of these outputs (i.e., a weighted sum of the Gaussians) 
to model any nonlinear function. The standard RBF has an output layer 
containing dot product units with indentity activation function (see Haykin, 1994; 
Bishop, 1995).  



RBF networks have a number of advantages over MLPs. First, as previously 
stated, they can model any nonlinear function using a single hidden layer, which 
removes some design-decisions about numbers of layers. Second, the simple 
linear transformation in the output layer can be optimized fully using traditional 
linear modeling techniques, which are fast and do not suffer from problems such 
as local minima which plague MLP training techniques. RBF networks can 
therefore be trained extremely quickly (i.e., orders of magnitude faster than 
MLPs).  
On the other hand, before linear optimization can be applied to the output layer of 
an RBF network, the number of radial units must be decided, and then their 
centers and deviations must be set. Although faster than MLP training, the 
algorithms to do this are equally prone to discover sub-optimal combinations. 
Other features that distinguish RBF performance from MLPs are due to the 
differing approaches to modeling space, with RBFs "clumpy" and MLPs "planey."  
Other features which distinguish RBF performance from MLPs are due to the 
differing approaches to modeling space, with RBFs "clumpy" and MLPs "planey."  
Experience indicates that the RBF's more eccentric response surface requires a 
lot more units to adequately model most functions. Of course, it is always 
possible to draw shapes that are most easily represented one way or the other, 
but the balance does not favor RBFs. Consequently, an RBF solution will tend to 
be slower to execute and more space consuming than the corresponding MLP 
(but it was much faster to train, which is sometimes more of a constraint).  
The clumpy approach also implies that RBFs are not inclined to extrapolate 
beyond known data: the response drops off rapidly towards zero if data points far 
from the training data are used. Often the RBF output layer optimization will have 
set a bias level, hopefully more or less equal to the mean output level, so in fact 
the extrapolated output is the observed mean - a reasonable working 
assumption. In contrast, an MLP becomes more certain in its response when far-
flung data is used. Whether this is an advantage or disadvantage depends 
largely on the application, but on the whole the MLP's uncritical extrapolation is 



regarded as a bad point: extrapolation far from training data is usually dangerous 
and unjustified.  
RBFs are also more sensitive to the curse of dimensionality, and have greater 
difficulties if the number of input units is large: this problem is discussed further in 
a later section.  
As mentioned earlier, training of RBFs takes place in distinct stages. First, the 
centers and deviations of the radial units must be set; then the linear output layer 
is optimized.  
Centers should be assigned to reflect the natural clustering of the data. The two 
most common methods are:  
Sub-sampling. Randomly-chosen training points are copied to the radial units. 
Since they are randomly selected, they will represent the distribution of the 
training data in a statistical sense. However, if the number of radial units is not 
large, the radial units may actually be a poor representation (Haykin, 1994).  
K-Means algorithm. This algorithm (Bishop, 1995) tries to select an optimal set of 

oints that are placed at the centroids of clusters of training data. Given K radial 
e centers so that:  

s a 

p
units, it adjusts the positions of th

• Each training point belongs to a cluster center, and is nearer to this center than to 
any other center;  

• Each cluster center is the centroid of the training points that belong to it.  

Once centers are assigned, deviations are set. The size of the deviation (also known a
smoothing factor) determines how spiky the Gaussian functions are. If the Gaussians 
too spiky, the network will not interpolate between known points, and the network lo
the ability to generalize. If the Gaussians are very broad, the network loses fine de
This is actually another manifestation of the over/under-fitting dilemma. 

are 
ses 

tail. 
Deviations 

should typically be chosen so that Gaussians overlap with a few nearby centers. Methods 
available are:  
Explicit. Choose the deviation yourself.  
Isotropic. The deviation (same for all units) is selected heuristically to reflect the 
number of centers and the volume of space they occupy (Haykin, 1994).  
K-Nearest Neighbor. Each unit's deviation is individually set to the mean dis
to its K nearest neighbors (Bishop, 1995). Hence, deviations are smalle

tance 
r in tightly 



packed areas of space, preserving detail, and higher in sparse areas of spa
(interpolating where necessary).  
Once centers and deviations have been set, the output layer can be optimized 
using the standard linear optimization technique: the pseudo-inverse (

ce 

singular 
value decomposition) algorithm (Haykin, 1994; Golub and Kahan, 1965).  
However, RBFs as described above suffer similar problems to Multilayer 
Perceptrons if they are used for classification - the output of the network is a 
measure of distance from a decision hyperplane, rather than a probabilistic 
confidence level. We may therefore choose to modify the RBF by including an 
output layer with logistic or softmax (normalized exponential) outputs, which is 
capable of probability estimation. We lose the advantage of fast linear 
optimization of the output layer; however, the non-linear output layer still has a 
relatively well-behaved error surface, and can be optimized quite quickly using a 
fast iterative algorithm such as conjugate gradient descent.  
Radial basis functions can also be hybridized in a number of ways. The radial 
layer (the hidden layer) can be trained using the Kohonen and Learned Vector 
Quantization training algorithms, which are alternative methods of assigning 
centers to reflect the spread of data, and the output layer (whether linear or 
otherwise) can be trained using any of the iterative dot product algorithms.  
 

Probabilistic Neural Networks  

Elsewhere, we briefly mentioned that, in the context of classification problems, a 
useful interpretation of network outputs was as estimates of probability of class 
membership, in which case the network was actually learning to estimate a 
probability density function (p.d.f.). A similar useful interpretation can be made in 
regression problems if the output of the network is regarded as the expected 
value of the model at a given point in input-space. This expected value is related 
to the joint probability density function of the output and inputs.  

 
Estimating probability density functions from data has a long statistical history 
(Parzen, 1962), and in this context fits into the area of Bayesian statistics.



Conventional statistics can, given a known model, inform us what the chances o
certain outcomes are (e.g., we know that a unbiased die has a 1/6th chan
coming up with a six). Bayesian statistics turns this situation on

f 
ce of 

 its head, by 

rs 

estimating the validity of a model given certain data. More generally, Bayesian 
statistics can estimate the probability density of model parameters given the 
available data. To minimize error, the model is then selected whose paramete
maximize this p.d.f.  
In the context of a classification problem, if we can construct estimates of the 
p.d.f.s of the possible classes, we can compare the probabilities of the various 
classes, and select the most-probable. This is effectively what we ask a neural 
network to do when it learns a classification problem - the network attempts to 
learn (an approximation to) the p.d.f.  
A more traditional approach is to construct an estimate of the p.d.f. from the 
The most traditional technique is to assume a certain form for the p.d.f. (typically
that it is a normal distribution), and 

data. 
, 

then to estimate the model parameters. The 
rs (meannormal distribution is commonly used as the model paramete  and 

standard deviation) can be estimated using analytical techniques. The problem is
that the assumption of normality is often not justified.  
An alternative approach to p.d.f. estimation is kernel-based approximation (see 
Parzen, 1962; Speckt, 1990; Speckt, 1991; Bishop, 1995; Patterson, 1996). We 
can reason loosely that the presence of particular case indicates some 
probability density at that point: a cluster of cases close together indicate an area
of high probability density. Close to a case, we can have high confidence in som
probability density, with a lesser and diminishing level as we move away. In 
kernel-based estimation, simple functions are located at each available case, and
added together to estimate the overall p.d.f. Typically, the kernel functions are 
each 

 

 
e 

 

Gaussians (bell-shapes). If sufficient training points are available, this will 
indeed yield an arbitrarily good approximation to the true p.d.f.  
This kernel-based approach to p.d.f. approximation is very similar to radial basis 
function networks, and motivates the probabilistic neural network (PNN) and 



generalized regression neural network (GRNN), both devised by Speckt (1990 
and 1991). PNNs are designed for classification tasks, and GRNNs for 
regression. These two types of network are really kernel-based approximatio
methods cast in the form of 

n 
neural networks.  

In the PNN, there are at least three layers: input, radial, and output layers. The 
radial units are copied directly from the training data, one per case. Each models 
a Gaussian function centered at the training case. There is one output unit per
class. Each is connected to all the radia

 
l units belonging to its class, with zero 

connections from all other radial units. Hence, the output units simply add up the 
responses of the units belonging to their own class. The outputs are each 
proportional to the kernel-based estimates of the p.d.f.s of the various classes, 
and by normalizing these to sum to 1.0 estimates of class probability are 
produced.  
The basic PNN can be modified in two ways.  
First, the basic approach assumes that the proportional representation of classes 

s the actual representation in the population being in the training data matche
modeled (the so-called prior probabilities). For example, in a disease-diagnosis 
network, if 2% of the population has the disease, then 2% of the training c
should be positives. If the prior probability is different from the level of 
representation in the

ases 

 training cases, then the network's estimate will be invalid. 
To compensate for this, prior probabilities can be given (if known), and the c
weightings are adjusted to compensate.  

lass 

s 
 may 

somebody healthy as having a disease, which simply leads to exploratory 

 
ed by the network can be weighted by loss 

Second, any network making estimates based on a noisy function will inevitably 
produce some misclassifications (there may be disease victims whose test
come out normal, for example). However, some forms of misclassification
be regarded as more expensive mistakes than others (for example, diagnosing 

surgery may be inconvenient but not life-threatening; whereas failing to spot 
somebody who is suffering from disease may lead to premature death). In such
cases, the raw probabilities generat



factors, which reflect the costs of misclassification. A fourth layer can be 
specified in PNNs which includes a loss matrix. This is multiplied by the 

layer, and the class with lowest estimated cost is 
elected. (Loss matrices may also be attached to other types of classification

probability estimates in the third 
s  
network).  

he only control factor that needs to be selected for probabilistic neural network 
aining is the smoothing factor (i.e., the radial deviation of the Gaussian

T
tr  

nctions). As with RBF networks, this factor needs to be selected to cause a 
asonable amount of overlap - too small deviations cause a very spiky 

approximation which cannot generalize, too large deviations smooth out detail. 
n appropriate figure is easily chosen by experiment, by selecting a number 
hich produces a low selection error, and fortunately PNNs

fu
re

A
w  are not too sensitive 

 the precise choice of smoothing factor.  
The greatest advantages of PNNs are the fact that the output is probabilistic 
(which makes interpretation of output easy), and the training speed. Training a 

NN actually consists mostly of copying training cases into the network, and so 
 as close to instantaneous as can be expected.  
he greatest disadvantage is network size: a PNN network actually contains the 

entire set of training cases, and is therefore space-consuming and slow to 
execute.  

NNs are particularly useful for prototyping experiments (for example, when 
eciding which input parameters to use), as the short training time allows a great 
umber of tests to be conducted in a short period of time.  

Generalized Regressio
Generalized regression neural networks (GRNNs)

to
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n Neural Networks  

 work in a similar fashion to 
PNNs, but perform regression rather than classification tasks (see Speckt, 1991; 
Patterson, 1996; Bishop, 1995). As with the PNN, Gaussian kernel functions are 
located at each training case. Each case can be regarded, in this case, as 
evidence that the response surface is a given height at that point in input space, 



with progressively decaying evidence in the immediate vicinity. The GRNN 
copies the training cases into the network to be used to estimate the response on 
new points. The output is estimated using a weighted average of the outputs of 
the training cases, where the weighting is related to the distance of the point from 
the point being estimated (so that points nearby contribute most heavily to the 
estimate).  
The first hidden layer in the GRNN contains the radial units. A second hidden 
layer contains units that help to estimate the weighted average. This is a 
specialized procedure. Each output has a special unit assigned in this layer that 
forms the weighted sum for the corresponding output. To get the weighted 
average from the weighted sum, the weighted sum must be divided through by 
the sum of the weighting factors. A single special unit in the second layer 
calculates the latter value. The output layer then performs the actual divisions 
(using special division units). Hence, the second hidden layer always has exactly 
one more unit than the output layer. In regression problems, typically only a 
single output is estimated, and so the second hidden layer usually has two uni
The GRNN can be modified by assigning radial units that represent clusters 
rather than each individual training case: this reduces the size of the network an
increases execution speed. Centers can be assigned using any appropriate 
algorithm (i.e., sub-sampling, K-means or Kohonen).  

ts.  

d 

GRNNs have advantages and disadvantages broadly similar to PNNs - the 
difference being that GRNNs can only be used for regression problems, whe
PNNs are used for 

reas 
classification problems. A GRNN trains almost instantly, but 

tends to be large and slow (although, unlike PNNs, it is not necessary to have 
one radial unit for each training case, the number still needs to be large). Like an 

n 
he data better. In terms of 

RBF network, a GRNN does not extrapolate.  
 

Linear Networks  

A general scientific principal is that a simple model should always be chosen i
preference to a complex model if the latter does not fit t



function approximation, the simplest model is the linear model, where the fitted 
function is a hyperplane. In classification, the hyperplane is positioned to divide 

 in regressionthe two classes (a linear discriminant function); , it is positioned to 
pass through the data. A linear model is typically represented using an NxN 
matrix and an Nx1 bias vector.  
A neural network with no hidden layers, and an output with dot product synaptic 
function and identity activation function, actually implements a linear model. The 
weights correspond to the matrix, and the thresholds to the bias vector. When the 
network is executed, it effectively multiplies the input by the weights matrix then 
adds the bias vector.  
The linear network provides a good benchmark against which to compare the 
performance of your neural networks. It is quite possible that a problem that is 
thought to be highly complex can actually be solved as well by linear techniques 
as by neural networks. If you have only a small number of training cases, you are 
probably anyway not justified in using a more complex model.  
 

SOFM Networks  

Self Organizing Feature Map (SOFM, or Kohonen) networks are used quite 
differently to the other networks. Whereas all the other networks are designed for 
supervised learning tasks, SOFM networks are designed primarily for 

sunsupervi ed learning (see Kohonen, 1982; Haykin, 1994; Patterson, 1996; 
Fausett, 1994).  
Whereas in supervised learning the training data set contains cases featuring 
input variables together with the associated outputs (and the network must infer a 
mapping from the inputs to the outputs), in 

 

unsupervised learning the raini
data set contains only input variables.  
At first glance this may seem strange. Withou

t ng 

t outputs, what can the network 
learn? The answer is that the SOFM network attempts to learn the structure o
the data.  

f 



One possible use is therefore in exploratory data analysis. The SOFM network 
can learn to recognize clusters of data, and can also relate similar classes to 

nding of the data, which is used to 
refine the network. As classes of data are recognized, they can be labeled, so 
that the network becomes capable of classification

each other. The user can build up an understa

 tasks. SOFM networks can 
put classes are immediately available - 

the advantage in this case is their ability to highlight similarities between classes.  
A second possible use is in novelty detection. SOFM networks can learn to 
recognize clusters in the training data, and respond to it. If new data, unlike 
previous cases, is encountered, the network fails to recognize it and this 
indicates novelty.  
A SOFM network

also be used for classification when out

 has only two layers: the input layer, and an output layer of 
radial units (also known as the topological map layer). The units in the topological 
map layer are laid out in space - typically in two dimensions (although ST Neural 
Networks also supports one-dimensional Kohonen networks).  
SOFM networks are trained using an iterative algorithm. Starting with an initially-
random set of radial centers, the algorithm gradually adjusts them to reflect the 
clustering of the training data. At one level, this compares with the sub-sampling 
and K-Means algorithms used to assign centers in RBF and GRNN networks, 
and indeed the SOFM algorithm can be used to assign centers for these types of 
networks. However, the algorithm also acts on a different level.  
The iterative training procedure also arranges the network so that units 
representing centers close together in the input space are also situated close 
together on the topological map. You can think of the network's topological layer 
as a crude two-dimensional grid, which must be folded and distorted into the N-
dimensional input space, so as to preserve as far as possible the original 
structure. Clearly any attempt to represent an N-dimensional space in two 
dimensions will result in loss of detail; however, the technique can be worthwhile 
in allowing the user to visualize data which might otherwise be impossible to 
understand.  



The basic iterative Kohonen algorithm simply runs through a number of epochs, 
on each epoch executing each training case and applying the following algorithm:  

• Select the winning neuron (the one who's center is nearest to the input case);  
• Adjust the winning neuron to be more like the input case (a weighted sum of the 

old neuron center and the training case).  

The algorithm uses a time-decaying learning rate, which is used to perform the weighted 
sum and ensures that the alterations become more subtle as the epochs pass. This ensures 
that the centers settle down to a compromise representation of the cases which cause that 
neuron to win.  
The topological ordering property is achieved by adding the concept of a 
neighborhood to the algorithm. The neighborhood is a set of neurons surrounding 
the winning neuron. The neighborhood, like the learning rate, decays over time, 
so that initially quite a large number of neurons belong to the neighborhood 
(perhaps almost the entire topological map); in the latter stages the 
neighborhood will be zero (i.e., consists solely of the winning neuron itself). In the 
Kohonen algorithm, the adjustment of neurons is actually applied not just to the 
winning neuron, but to all the members of the current neighborhood.  
The effect of this neighborhood update is that initially quite large areas of the 
network are "dragged towards" training cases - and dragged quite substantially. 
The network develops a crude topological ordering, with similar cases activating 
clumps of neurons in the topological map. As epochs pass the learning rate and 
neighborhood both decrease, so that finer distinctions within areas of the map 
can be drawn, ultimately resulting in fine-tuning of individual neurons. Often, 
training is deliberately conducted in two distinct phases: a relatively short phase 
with high learning rates and neighborhood, and a long phase with low learning 
rate and zero or near-zero neighborhood.  
Once the network has been trained to recognize structure in the data, it can be 
used as a visualization tool to examine the data. The Win Frequencies Datasheet 
(counts of the number of times each neuron wins when training cases are 
executed) can be examined to see if distinct clusters have formed on the map. 
Individual cases are executed and the topological map observed, to see if some 

is usually involves referring back to meaning can be assigned to the clusters (th



the original application area, so that the relationship between clustered cases 
can be established). Once clusters are identified, neurons in the topological map 
are labeled to indicate their meaning (sometimes individual cases may be 
labeled, too). Once the topological map has been built up in this way, new cases 
can be submitted to the network. If the winning neuron has been labeled with a 
class name, the network can perform classification. If not, the network is 
regarded as undecided.  
SOFM networks also make use of the accept threshold, when performing 
classification. Since the activation level of a neuron in a SOFM network is the 
distance of the neuron from the input case, the accept threshold acts as a 
maximum recognized distance. If the activation of the winning neuron is greater 
than this distance, the SOFM network is regarded as undecided. Thus, by 
labeling all neurons and setting the accept threshold appropriately, a SOFM 
network can act as a novelty detector (it reports undecided only if the input case 
is sufficiently dissimilar to all radial units).  
SOFM networks are inspired by some known properties of the brain. The 
cerebral cortex is actually a large flat sheet (about 0.5m squared; it is folded up 
into the familiar convoluted shape only for convenience in fitting into the skull!) 
with known topological properties (for example, the area corresponding to the 
hand is next to the arm, and a distorted human frame can be topologically 
mapped out in two dimensions on its surface).  
 

Classification in ST Neural Networks  

In classification problems, the purpose of the network is to assign each case to 
one of a number of classes (or, more generally, to estimate the probability of 
membership of the case in each class). Nominal output variables are used to 
indicate a classification problem. The nominal values correspond to the various 
classes.  
Nominal variables are normally represented in networks using one of two 
techniques, the first of which is only available for two-state variables; these 

To index



techniques are: two-state, one-of-N. In two-state representation, a single node 
, and a 
ach 

sented by 1.0 on that particular unit, and 0.0 on 
the others.  
Input nominal variables are easily converted using the above methods, both 
during training and during execution. Target outputs for units corresponding to 
nominal variables are also easily determined during training. However, more 
effort is required to determine the output class assigned by a network during 
execution.  
The output units each have continuous activation values between 0.0 and 1.0. In 
order to definitely assign a class from the outputs, the network must decide if the 
outputs are reasonably close to 0.0 and 1.0. If they are not, the class is regarded 
as undecided.  
Confidence levels

corresponds to the variable, and a value of 0.0 is interpreted as one state
value of 1.0 as the other. In one-of-N encoding, one unit is allocated for e
state, with a particular state repre

 (the accept and reject thresholds) decide how to interpret the 
network outputs. These thresholds can be adjusted to make the network more or 
less fussy about when to assign a classification. The interpretation differs slightly 
for two-state and one-of-N representation:  
Two-state. If the unit output is above the accept threshold, the 1.0 class is 
deemed to be chosen. If the output is below the reject threshold, the 0.0 class is 
chosen. If the output is between the two thresholds, the class is undecided.  
One-of-N. A class is selected if the corresponding output unit is above the accept 
threshold and all the other output units are below the reject threshold. If this 
condition is not met, the class is undecided.  
For one-of-N encoding, the use of thresholds is optional. If not used, the "winner-
takes-all" algorithm is used (the highest activation unit gives the class, and the 
network is never undecided). There is one peculiarity when dealing with one-of-N 
encoding. On first reading, you might expect a network with accept and reject 
thresholds set to 0.5 is equivalent to a "winner takes all" network. Actually, this is 
not the case for one-of-N encoded networks (it is the case for two-state). You can 



actually set the accept threshold lower than the reject threshold, and only a 
network with accept 0.0 and reject 1.0 is equivalent to a winner-takes-all network. 
This is true since the algorithm for assigning a class is actually:  

• Select the unit with the highest output. If this unit has output greater than or equal 
to the accept threshold, and all other units have output less than the reject 
threshold, assign the class represented by that unit.  

With an accept threshold of 0.0, the winning unit is bound to be accepted, and with a 
reject threshold of 1.0, none of the other units can possibly be rejected, so the algorithm 
reduces to a simple selection of the winning unit. In contrast, if both accept and reject are 
set to 0.5, the network may return undecided (if the winner is below 0.5, or any of the 
losers are above 0.5).  
Although this concept takes some getting used to, it does allow you to set some 
subtle conditions. For example, accept/reject 0.3/0.7 can be read as: "select the 
class using the winning unit, provided it has an output level at least 0.3, and none 
of the other units have activation above 0.7" - in other words, the winner must 
show s  a decision to 
be rea
If the n ssible 
output patterns is of course restricted, as they must sum to 1.0. In that case, 
winner-takes-all is equivalent to setting accept and reject both to 1/N, where N is 
the number of classes. The above discussion covers the assignment of 
classifications in most types of network: MLPs, RBFs, linear and Cluster. 
However, SOFM networks

ome significant level of activation, and the losers mustn't, for
ched.  
etwork's output unit activations are probabilities, the range of po

 work quite differently.  
In a SOFM network, the winning node in the topological map (output) layer is the 
one with the lowest activation level (which measures the distance of the input 
case from the point stored by the unit). Some or all of the units in the topological 
map may be labeled, indicating an output class. If the distance is small enough, 
then the case is assigned to the class (if one is given). The accept threshold 
indicates the largest distance which will result in a positive classification. If an 
input case is further than this distance away from the winning unit, or if the 
winning unit is unlabelled (or its label doesn't match one of the output variable's 



nominal values) then the case is unclassified. The reject threshold is not used in 
SOFM networks.  
The discussion on non-SOFM networks has assumed that a positive 
classification is indicated by a figure close to 1.0, and a negative classification by 
a figure close to 0.0. This is true if the logistic output activation function is used, 
and is convenient as probabilities range from 0.0 to 1.0. However, in some 
circumstances a different range may be used. Also, sometimes ordering is 
reversed, with smaller outputs indicating higher confidence.  
First, the range values used are actually the min/mean and max/SD values 
stored for each variable. With a logistic output activation function, the default 
values 0.0 and 1.0 are fine. Some authors actually recommend using the 
hyperbolic tangent activation function, which has the range (-1.0,+1.0) . Training 
performance may be enhanced because this function (unlike the logistic function) 
is symmetrical. Alternatively (and we recommend this practice) use hyperbolic 
tangent activation function in hidden layers, but not in the output layer.  
Ordering is typically reversed in two situations. We have just discussed one of 
these: SOFM networks, where the output is a distance measure, with a small 
value indicating greater confidence. The same is true in the closely-related 
Cluster networks. The second circumstance is the use of a loss matrix (which 
may be added at creation time to PNNs, and also manually joined to other types 
of network). When a loss matrix is used, the network outputs indicate the 
expected cost if each class is selected, and the objective is to select the class 
with the lowest cost. In this case, we would normally expect the accept threshold 
to be smaller than the reject threshold.  
Classification Statistics  
When selecting accept/reject thresholds, and assessing the classification ability 
of the y 
sprea rectly 
classif sheet to 
break ere assigned to another 

network, the most important indicator is the classification summar
dsheet. This shows how many cases were correctly classified, incor
ied, or unclassified. You can also use the confusion matrix spread
down how many cases belonging to each class w



class. All these figures can be independently reported for the training, selection 
and test sets.  
 

Regression Problems in ST Neural Networks  

In regression problems, the objective is to estimate the value of a continuous 
output variable, given the known input variables. Regression problems can be 
solved using the following network types: MLP, RBF, GRNN and Linear. 
Regression problems are represented by data sets with non-nominal (standard 
numeric) output(s).  
A particularly important issue in regression is output scaling, and extrapolation 

on neural network
effects.  
The most comm  architectures have outputs in a limited range 
(e.g., (0,1) for the logistic activation function). This presents no difficulty for 
classification problems, where the desired output is in such a range. However, for 
regression problems there clearly is an issue to be resolved, and some of the 
consequences are quite subtle.  
This subject is discussed below.  
As a first pass, we can apply a scaling algorithm to ensure that the network's 
output will be in a sensible range. The simplest scaling function is minimax: this 
finds the minimum and maximum values of a variable in the training data, and 
performs a linear transformation (using a shift and a scale factor) to convert the 
values into the target range (typically [0.0,1.0]). If this is used on a continuous 
output variable, then we can guarantee that all training values will be converted 
into the range of possible outputs of the network, and so the network can be 
trained. We also know that the network's output will be constrained to lie within 
this range. This may or may not be regarded as a good thing, which brings us to 
the subject of extrapolation.  



 
Consider the figure above. Here, we are trying to estimate the value of y from the 
value of x. A curve has to be fitted that passes through the available data points. 
We can probably easily agree on the illustrated curve, which is approximately the 
right shape, and this will allow us to estimate y given inputs in the range 
represented by the solid line where we can interpolate.  
However, what about a point well to the right of the data points? There are two 
possible approaches to estimating y for this point. First, we might decide to 
extrapolate: projecting the trend of the fitted curve onwards. Second, we might 
decide that we don't really have sufficient evidence to assign any value, and 
therefore assign the mean output value (which is probably the best estimate we 
have lacking any other evidence).  
Let us assume that we are using an MLP. Using minimax as suggested above is 
highly restrictive. First, the curve is not extrapolated, however close to the 
training data we may be (if we are only a little bit outside the training data, 
extrapolation may well be justified). Second, it does not estimate the mean either 
- it actually saturates at either the minimum or maximum, depending on whether 
the estimated curve was rising or falling as it approached this region.  
There are a number of approaches to correct this deficiency in an MLP:  
First, we can replace the logistic output activation function with a linear activation 
function, which simply passes on the activation level unchanged (N.B. only the 
activation functions in the output layer are changed; the hidden layers still use 
logistic or hyperbolic activation functions). The linear activation function does not 
saturate, and so can extrapolate further (the network will still saturate eventually 
as the hidden units saturate). A linear activation function in an MLP can cause 



some numerical difficulties for the back propagation algorithm, however, and if 
this is used a low learning rate (below 0.1) must be used. This approach may be 
appropriate if you want to extrapolate.  
Second, you can alter the target range for the minimax scaling function (for 
example, to [0.1,0.9]). The training cases are then all mapped to levels that 
correspond to only the middle part of the output units' output range. Interestingly, 
if this range is small, with both figures close to 0.5, it corresponds to the middle 

art of the sigmoid curve that is nearly linear, and the approach is then quite 
imilar to using a linear output layer. Such a network can then perform limited 

extrapolation

p
s

, but eventually saturates. This has quite a nice intuitive 
interpretation: extrapolation is justified for a certain distance, and then should be 
curtailed.  
If may have occurred to you that if the first approach is used, and linear units are 
placed in the output layer, there is no need to use a scaling algorithm at all, since 
the units can achieve any output level without scaling. However, in reality the 
entire removal of scaling presents difficulties to the training algorithms. It implies 
that different weights in the network operate on very different scales, which 
makes both initialization of weights and (some) training more complex. It is 
therefore not recommended that you turn off scaling unless the output range is 
actually very small and close to zero. The same argument actually justifies the 
use of scaling during preprocessing for MLPs (where, in principal, the first hidden 
layer weights could simply be adjusted to perform any scaling required).  
The above discussion focused on the performance of MLPs in regression, and 
particularly their behavior with respect to extrapolation. Networks using radial 
units (RBFs and GRNNs) perform quite differently, and need different treatment.  
Radial networks are inherently incapable of extrapolation. As the input case gets 
further from the points stored in the radial units, so the activation of the radial 
units decays and (ultimately) the output of the network decays. An input case 
located far from the radial centers will generate a zero output from all hidden 
units. The tendency not to extrapolate can be regarded as good (depending on 



your problem-domain and viewpoint), but the tendency to decay to a zero output 
(at first sight) is not. If we decide to eschew extrapolation, then what we would 
like to see reported at highly novel input points is the mean. In fact, the RBF has 
a bias value on the output layer, and sets this to a convenient value, which 
hopefully approximates the sample mean. Then, the RBF will always output the 
mean if asked to extrapolate.  
Using the mean/SD scaling function with radial networks in regression problems, 
the training data is scaled so that its output mean corresponds to 0.0, with other 
values scaled according to the output standard deviation, and the bias is 
expected to be approximately zero. As input points are executed outside the 
range represented in the radial units, the output of the network tends back 
towards the mean.  
The performance of a regression network can be examined in a number of ways.  

1. The output of the network for each case (or any new case you choose to test) can 
be submitted to the network. If part of the data set, the residual errors can also be 
generated.  

2. Summary statistics can be generated. These include the mean and standard 
deviation of both the training data values and the prediction error. One would 
generally expect to see a prediction error mean extremely close to zero (it is, after 
all, possible to get a zero prediction error mean simply by estimating the mean 
training data value, without any recourse to the input variables or a neural 
network at all). The most significant value is the prediction error standard 
deviation. If this is no better than the training data standard deviation, then the 
network has performed no better than a simple mean estimator. A ratio of the 
prediction error SD to the training data SD significantly below 1.0 indicates good 
regression performance, with a level below 0.1 often said (heuristically) to 
indicate good regression. This regression ratio (or, more accurately, one minus 
this ratio) is sometimes referred to as the explained variance of the model.  

The regression statistics also include the Pearson-R correlation coefficient 
between the network's prediction and the observed values. In linear 
modeling, the Pearson-R correlation between the predictor variable and 
the predicted is often used to express correlation - if a linear model is 
fitted, this is identical to the correlation between the model's prediction and 
the observed values (or, to the negative of it). Thus, this gives you a 



convenient way to compare the neural network's accuracy with that of your 
linear models.  

3. A view of the response surface can be generated. The network's actual response 
surface is, of course, constructed in N+1 dimensions, where N is the number of 
input units, and the last dimension plots the height. It is clearly impossible to 
directly visualize this surface where N is anything greater than two (which it 
invariably is). 

 
Time Series Prediction in ST Neural Networks  
In time series problems, the objective is to predict ahead the value of a variable 
that varies in time, using previous values of that and/or other variables (see 
Bishop, 1995)  
Typically the predicted variable is continuous, so that time series prediction is 
usually a specialized form of regression. However, without this restriction, time 
series can also do prediction of nominal variables (i.e,. classification).  
It is also usual to predict the next value in a series from a fixed number of 
previous values (looking ahead a single time step). When the next value in a 
series is generated, further values can be estimated by feeding the newly-
estimated value back into the network together with other previous values: time 
series projection. Obviously, the reliability of projection drops the more steps 
ahead one tries to predict, and if a particular distance ahead is required, it is 
probably better to train a network specifically for that degree of lookahead.  
Any type of network can be used for time series prediction (the network type 
must, however, be appropriate for regression or classification, depending on the 
problem type). The network can also have any number of input and output 
variables. However, most commonly there is a single variable that is both the 
input and (with the lookahead taken into account) the output. Configuring a 
network for time series usage alters the way that data is pre-processed (i.e., it is 
drawn from a number of sequential cases, rather than a single case), but the 
network is executed and trained just as for any other problem.  



The time series training data set therefore typically has a single variable, and this 
has type input/output (i.e., it is used both for network input and network output).  
The most difficult concept in time series handling is the interpretation of training, 
selection, test and ignored cases. For standard data sets, each case is 
independent, and these meanings are clear. However, with a time series network 
each pattern of inputs and outputs is actually drawn from a number of cases, 
determined by the network's Steps and Lookahead parameters. There are two 
consequences of this:  
The input pattern's type is taken from the type of the output case. For example, in 
a data set containing some cases, the first two ignored and the third test, with 
Steps=2 and Lookahead=1, the first usable pattern has type Test, and draws its 
inputs from the first two cases, and its output from the third. Thus, the first two 
cases are used in the test set even though they are marked Ignore. Further, any 
given case may be used in three patterns, and these may be any of training, 
selection and test patterns. In some sense, data actually leaks between training, 
selection and test sets. To isolate the three sets entirely, contiguous blocks of 
train, verify or test cases would need to be constructed, separated by the 
appropriate number of ignore cases.  
The first few cases can only be used as inputs for patterns. When selecting 
cases for time series use, the case number selected is always the output case. 
The first few clearly cannot be selected (as this would require further cases 
before the beginning of the data set), and are not available.  
 

Variable Selection and Dimensionality Reduction  

The most common approach to dimensionality reduction is principal components 
analysis (see Bishop, 1995; Bouland and Kamp, 1988). This is a linear 
transformation that locates directions of maximum variance in the original input 
data, and rotates the data along these axes. Typically, the first principal 
components contain most information. Principal component analysis can be 
represented in a linear network. PCA can often extract a very small number of 



components from quite high-dimensional original data and still retain the 
important structure.  
The preceding sections on network design and training have all assumed that the 
input and output layers are fixed; that is, that we know what variables will be 

 input to the network, and what output is expected. The latter is always (at least,
for supervised learning problems) known. However, the selection of inputs is far 
more difficult (see Bishop, 1995). Often, we do not know which of a set of 
candidate input variables are actually useful, and the selection of a good set of 
inputs is complicated by a number of important considerations:  
Curse of dimensionality. Each additional input unit in a network adds another 
dimension to the space in which the data cases reside. We are attempting to fit a 
response surface to this data. Thought of in this way, there must be sufficient 
data points to populate an N dimensional space sufficiently densely to be able to 
see the structure. The number of points needed to do this properly grows very 
rapidly with the dimensionality (roughly, in proportion to 2N for most modelling 
techniques). Most forms of neural network (in particular, MLPs) actually suffer 
less from the curse of dimensionality than some other methods, as they can 
concentrate on a lower-dimensional section of the high-dimensional space (for 
example, by setting the outgoing weights from a particular input to zero, an MLP 
can entirely ignore that input). Nevertheless, the curse of dimensionality is still a 
problem, and the performance of a network can certainly be improved by 
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eliminating unnecessary input variables. Indeed, even input variables tha
small amount of information may sometimes be better eliminated if this reduces 
the curse of dimensionality.  
Inter-dependency of variables. It would be extremely useful if each candidate 
input variable could be independently assessed for usefulness, so that the mos
useful ones could be extracted. Unfortunately, it is seldom possible to do this, 

nd two or more interdependent variables may together carry significant 
information that a subset would not. A classic example is the two-spirals problem
where two classes of data are laid out in a



dimensions. Either variable alone carries no useful information (the two classes 
appear wholly intermixed), but with the two variables together the two classes
can be perfectly distinguished. Thus, variables cannot, in general, be 
independently selected.  
Redundancy of variables. Often a number of variables can carry to some extent 
or other the same information. For example, the height and weight of people 
might in many circumstances carry similar information, as these two variables a
correlated. It may be sufficient to use as inputs some subset of the correlated 
variables, and the choice of subset may be arbitrary. The superiority of a subset 
of correlated variables over the full set is a consequence of the curse of 
dimensionality.  
Selection of input variables is therefore a critical part of 
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neural network design. 

 

eneralized regression 
w to execute, compared with the 

iterating through a large number of input variable combinations, you will need to 
repeatedly build networks. Moreover, PNNs and GRNNs

You can use a combination of your own expert knowledge of the problem 
domain, and standard statistical tests to make some selection of variables before
starting to use Neural Networks. Once you begin using Neural Networks, various 
combinations of inputs can be tried. You can experimentally add and remove 
various combinations, building new networks for each. You can also conduct 
Sensitivity Analysis, which rates the importance of variable with respect to a 
particular model.  
When experimenting in this fashion, the probabilistic and g
networks are extremely useful. Although slo
more compact MLPs and RBFs, they train almost instantaneously - and when 

 are both (like RBFs) 
examples of radially-based networks (i.e., they have radial units in the first layer, 
and build functions from a combination of Gaussians). This is an advantage 
when selecting input variables because radially-based networks actually suffer 
more from the curse of dimensionality than linearly-based networks.  
To explain this statement, consider the effect of adding an extra, perfectly 
spurious input variable to a network. A linearly-based network such as an MLP 



can learn to set the outgoing weights of the spurious input unit to 0, thus ignoring 
the spurious input (in practice, the initially-small weights will just stay small, while 
weights from relevant inputs diverge). A radially-based network such as a PNN or 
GRNN has no such luxury: clusters in the relevant lower-dimensional space get 

nits smeared out through the irrelevant dimension, requiring larger numbers of u
to encompass the irrelevant variability. A network that suffers from poor inputs 
actually has an advantage when trying to eliminate such inputs.  
This form of experimentation is time-consuming, and several feature selection 
algorithms exist, including the genetic algorithm (Goldberg, 1989). Genetic 
Algorithms are very good at this kind of problem, having a capability to search 
through large numbers of combinations where there may be interdependen
between v

cies 
ariables.  

e an Another approach to dealing with dimensionality problems, which may b
alternative or a complement to variable selection, is dimensionality reduction. In
dimensionality reduction, the original set of variables is processed to produce a 
new and smaller set of variables that contains (one hopes) as much informa
as possible from the original set. As an example, consider a data set whe
the points lie on a plane in a three dimensional space. The intrinsic 
dimensionality of the data is said to be two (as all the information actually resides 
in a two-dimensional sub-space). If this plane can be discovered, the 
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neural 
network can be presented with a lower dimensionality input, and stands a
chance of working correctly.  
 

Ensembles and Resampling  

We have already discussed the problem of over-learn

 better 

ing, which can compromise 
the ability of neural networks to generalize successfully to new data. An 
important approach to improve performance is to form ensembles of neural 
networks. The member networks' predictions are averaged (or combined by 
voting) to form the ensemble's prediction. Frequently, ensemble formation is 
combined with resampling of the data set. This approach can significantly 



improve generalization performance. Resampling can also be useful for improved 
estimation of network generalization performance. 
To explain why resampling and ensembles are so useful, it is helpful to formulate 
the neural network training process in statistical terms (Bishop, 1995). We regard 
the problem as that of estimating an unknown nonlinear function, which has 
additive noise, on the basis of a limited data set of examples, D. There are 
several sources of error in our neural network's predictions. First, and 
unavoidably, even a "perfect" network that exactly modeled the underlying 
function would make errors due to the noise. However, there is also error due to 
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the fact that we need to fit the neural network model using the finite sample 
set, D. This remaining error can be split into two components, the model bias a
variance. The bias is the average error that a particular model training procedur

ill make across different particular data sets (drawn from the unknown function's
distribution). The variance reflects the sensitivity of the modeling procedure to a 
particular choice of data set. 
We can trade off bias versus variance. At one extreme, we can arbitrarily select a 
function that entirely ignores the data. This has zero variance, but presumab
high bias, since we have not actually taken into account the known aspec
problem at all. At the opposite extreme, we can choose a highly complex f
that can fit every point in a particular data set, and thus has zero bias, but high 
variance as this complex function changes shape radically to reflect the exa
points in a given data set. The high bias, low variance solutions can have lo
complexity (e.g., linear models), whereas the low bias, high variance solutions 
have high complexity. In neural networks, the low complexity models have 
smaller numbers of units. 
How does this relate to ensembles and resampling? We necessarily divide the
data set into subsets for training, selection, and test. Intuitively, this is a shame, 
as not all the data gets used for training. If we resample, using a different split 
data each time, we can build multiple neural networks, and all the data gets use
for training at least some of them. If we then form th



and average the predictions, an extremely useful result occurs. Averaging across
the models reduces the variance, without increasing the bias. Arguably, we can 
afford to build higher bias models than we would otherw

 

ise tolerate (i.e., higher 
complexity models), on the basis that ensemble averaging can then mitigate the 
resulting variance. 
The generalization performance of an ensemble can be better than that of the 
best member network, although this does depend on how good the other 
networks in the ensemble are. Unfortunately, it is not possible to show whether 
this is actually the case for a given ensemble. However, there are some 
reassuring pieces of theory to back up the use of ensembles. 
First, it can be shown (Bishop, 1995) that, on the assumption that the ensemble 
members' errors have zero mean and are uncorrelated, the ensemble reduces 
the error by a factor of N, where N is the number of members. In practice, of 
course, these errors are not uncorrelated. An important corollary is that an 
ensemble is more effective when the members are less correlated, and we might 
intuitively expect that to be the case if diverse network types and structures are 
used.  
Second, and perhaps more significantly, it can be shown that the expected error 
of the ensemble is at least as good as the average expected error of the 
members, and usually better. Typically, some useful reduction in error does 
occur. There is of course a cost in processing speed, but for many applications 
this is not particularly problematic. 
There are a number of approaches to resampling available. 
The simplest approach is random (monte carlo) resampling, where the training, 
selection and test sets are simply drawn at random from the data set, keeping 
the sizes of the subsets constant. Alternatively, you CAN sometimes resample 
the training and selection set, but keep the test set the same, to support a simple 
direct comparison of results. The second approach is the popular cross-validation 
algorithm. Here, the data set is divided into a number of equal sized divisions. A 
number of neural networks are created. For each of these, one division is used 



for the test data, and the others are used for training and selection. In the most 
extreme version of this algorithm, leave-one-out cross validation, N divisions are 
made, where N is the number of cases in the data set, and on each division the 
network is trained on all bar one of the cases, and tested on the single case that 
is omitted. This allows the training algorithm to use virtually the entire data set for 
training, but is obviously very intensive. 
The third approach is bootstrap sampling. In the bootstrap, a new training set is 
formed by sampling with replacement from the available data set. In sampling 
with replacement, cases are drawn at random from the data set, with equal 
probability, and any one case may be selected any number of times. Typically 
the bootstrap set has the same number of cases as the data set, although this is 

l 
 

The bootstrap procedure replicates, insofar as is possible with limited data, the 
idea of drawing multiple data sets from the original distribution. Once again, the 
effect can be to generate a number of models with low bias, and to average out 
the variance. Ensembles can also be beneficial at averaging out bias. If we 
include different network types and configurations in an ensemble, it may be that 
different networks make systematic errors in different parts of the input space. 
Averaging these differently configured networks may iron out some of this bias. 
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not a necessity. Due to the sampling process, it is likely that some of the origina
cases will not be selected, and these can be used to form a test set, whereas
other cases will have been duplicated. 

Recommended Textbooks  
Bishop, C. (1995). Neural Networks for Pattern Recognition. O
Press. Extremely well-written, up-to-date. Requires a good mathematical 
background, but rewards careful reading, putting neural networks firmly into a 
statistical context.  
Carling, A. (1992). Introducing Neural Networks. Wilmslow, UK: Sigma Press. A 
relatively gentle introduction. Starting to show its age a little, but still a good starting 
point.  
Fausett, L. (1994). Fundamentals of Neural Networks. New York: Prentice Hall. A w
written book, with very detailed worked examples to explain how the algorithms
function.  



Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: 
Macmillan Publishing. A comprehensive book, with an engineering perspective. Requires 
a good mathematical background, and contains a great deal of background theory.  
Patterson, D. (1996). Artificial Neural Networks. Singapore: Prentice Hall. Good 

nging coverage of topics, although less detailed than some other books.  
wide-

ipley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University 
ress. A very good advanced discussion of neural networks, firmly putting them in the 

wider context of statistical modeling.  
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Nonlinear Estimation 

  
 

General Purpose  

e on 

monly 
such techniques as multiple regression (see, Multiple Regression

In the most general terms, Nonlinear Estimation will compute the relationship 
between a set of independent variables and a dependent variable. For example, 
we may want to compute the relationship between the dose of a drug and its 
effectiveness, the relationship between training and subsequent performanc
a task, the relationship between the price of a house and the time it takes to sell 
it, etc. You may recognize research issues in these examples that are com
addressed by ) 
or analysis of variance (see, ANOVA/MANOVA). In fact, you may think of 
Nonlinear Estimation as a generalization of those methods. Specifically, multiple 
regression (and ANOVA) assumes that the relationship between the independent 
variable(s) and the dependent variable is linear in nature. Nonlinear Estimation 
leaves it up to you to specify the nature of the relationship; for example, you may 
specify the dependent variable to be a logarithmic function of the independent 
variable(s), an exponential function, a function of some complex ratio of 
independent measures, etc. (However, if all variables of interest are categorical 
in nature, or can be converted into categorical variables, you may also consider 
Correspondence Analysis.)  
When allowing for any type of relationship between the independent variables 
and the dependent variable, two issues raise their heads. First, what types of 
relationships "make sense", that is, are interpretable in a meaningful manner? 
Note that the simple linear relationship is very convenient in that it allows us to 
make such straightforward interpretations as "the more of x (e.g., the higher the 
price of a house), the more there is of y (the longer it takes to sell it); and given a 
particular increase in x, a proportional increase in y can be expected." Nonlinear 
relationships cannot usually be interpreted and verbalized in such a simple 
manner. The second issue that needs to be addressed is how to exactly compute 



the relationship, that is, how to arrive at results that allow us to say whether or 
not there is a nonlinear relationship as predicted.  
Let us now discuss the nonlinear regression problem in a somewhat more formal 
manner, that is, introduce the common terminology that will allow us to examine 
the nature of these techniques more closely, and how they are used to address 
important questions in various research domains (medicine, social sciences, 
physics, chemistry, pharmacology, engineering, etc.).  
 
 

Estimating Linear and Nonlinear Models  
Technically speaking, Nonlinear Estimation is a general fitting procedure that will 
estimate any kind of relationship between a dependent (or response variable), 
and a list of independent variables. In general, all regression models may be 

A

stated as:  
y = F(x1, x2, ... , xn)  
In most general terms, we are interested in whether and how a dependent 
variable is related to a list of independent variables; the term F(x...) in the 
expression above means that y, the dependent or response variable, is a 
function of the x's, that is, the independent variables.  

n example of this type of model would be the linear multiple regression model 
as described in Multiple Regression. For this model, we assume the depend
variable to be a linear function of the independent variables, that is:  
y = a + b

ent 

I gression, you may want to read the 
1*x1 + b2*x2 + ... + bn*xn  

f you are not familiar with multiple linear re
introductory section to Multiple Regression at this point (however, it is not 

Nonlinear Estimation allows you to specify essentially any type of continuous or 
dis n nlinear models 
are probit, logit, exponential growth, and breakpoint regression. However, you 

necessary to understand all of the nuances of multiple linear regression 
techniques in order to understand the methods discussed here).  

co tinuous regression model. Some of the most common no



can also define any type of regression equation to fit to your data. Moreover, you 
can specify either standard least squares estimation, maximum likelihood 
estimation (where appropriate), or, again, define your own "loss function" (see 
below) by defining the respective equation.  
In general, whenever the simple linear regression model does not appear to 
adequately represent the relationships between variables, then the nonlinear 
regression model approach is appropriate. See the following topics for overviews 
of the common nonlinear regression models, nonlinear estimation procedures, 
and evaluation of the fit of the data to the nonlinear model.  

Common Nonlinear Regression Models  

 

Intrinsically Linear Regression Models  
Polynomial Regression. A common "nonlinear" model is polynomial regression. 
We put the term nonlinear in quotes here because the nature of this model is 
actually linear. For example, suppose we measure in a learning experiment 
subjects' physiological arousal and their performance on a complex tracking task. 
Based on the well-known Yerkes-Dodson law we could expect a curvilinear 
relationship between arousal and performance; this expectation can be 
expressed in the regression equation:  
Performance = a + b1*Arousal + b2*Arousal2  
In this equation, a represents the intercept, and b1 and b2 are regression 
coefficients. The non-linearity of this model is expressed in the term Arousal2. 
However, the nature of the model is still linear, except that when estimating it, we 
would square the measure of arousal. These types of models, where we include 
some transformation of the independent variables in a linear equation, are also 
referred to as models that are nonlinear in the variables.  
Models that are nonlinear in the parameters. To contrast the example above, 
consider the relationship between a human's age from birth (the x variable) and 
his or her growth rate (the y variable). Clearly, the relationship between these two 
variables in the first year of a person's life (when most growth occurs) is very 



different than during adulthood (when almost no growth occurs). Thus, the 
relationship could probably best be expressed in terms of some negative 
exponential function:  
Growth = exp(-b1*Age)  
If you plotted this relationship for a particular estimate of the regression 
coefficient you would obtain a curve that looks something like this.  

 
Note that the nature of this model is no longer linear, that is, the expression 
shown above does not simply represent a linear regression model, with some 
transformation of the independent variable. This type of model is said to be 
nonlinear in the parameters.  
Making nonlinear models linear. In general, whenever a regression model can be 
"made" into a linear model, this is the preferred route to pursue (for estimating 
the respective model). The linear multiple regression model (see Multiple 
Regression) is very well understood mathematically, and, from a pragmatic 
standpoint, is most easily interpreted. Therefore, returning to the simple 
exponential regression model of Growth as a function of Age shown above, we 
could convert this nonlinear regression equation into a linear one by simply 
taking the logarithm of both sides of the equations, so that:  
log(Growth) = -b1*Age  
If we now substitute log(Growth) with y, we have the standard linear regression 
model as shown earlier (without the intercept which was ignored here to simplify 
matters). Thus, we could log-transform the Growth rate data and then use 



Multiple Regression to estimate the relationship between Age and Growth, that 
is, compute the regression coefficient b1.  
Model adequacy. Of course, by using the "wrong" transformation, one could end 
up with an inadequate model. Therefore, after "linearizing" a model such as the 
one shown above, it is particularly important to use extensive residual statistics in 
Multiple Regression.  
Intrinsically Nonlinear Regression Models  
Some regression models which cannot be transformed into linear ones, can only 
be estimated via Nonlinear Estimation. In the growth rate example above, we 
purposely "forgot" about the random error in the dependent variable. Of course, 
the growth rate is affected by very many other variables (other than time), and we 
can expect a considerable amount of random (residual) fluctuation around the 
fitted line. If we add this error or residual variability to the model, we could rewrite 
it as follows:  

rowth = exp(-b1*Age) + error  
Additive error. In this model we assume that the error variability is independent of 
age, that is, that the amount of residual error variability is the same at any age. 
Because the error term in this model is additive, you can no longer linearize this 
model by taking the logarithm of both sides. If for a given data set, you were to 
log-transform variable Growth anyway and fit the simple linear model, then you 
would find that the residuals from the analysis would no longer be evenly 
distributed over the range of variable Age; and thus, the standard linear 
regression analysis (via Multiple Regression

G

) would no longer be appropriate. 
Therefore, the only way to estimate the parameters for this model is via 
Nonlinear Estimation.  
Multiplicative error. To "defend" our previous example, in this particular instance 
it is not likely that the error variability is constant at all ages, that is, that the error 
is additive. Most likely, there is more random and unpredictable fluctuation of the 

o a growth rate at the earlier ages than the later ages, when growth comes t



virtual standstill anyway. Thus, a more realistic model including the error would
be:  
Growth = exp(-b

 

smaller the term exp(-b1*Age), and, 
consequently, the smaller the resultant error variability. If we now take the log of 
both sides of the equation, the residual error term will become an additive factor 
in a linear equation, and we can go ahead and estimate b1 via standard multiple 
regression.  
Log (Growth) = -b1*Age + error  
Let us now consider some regression models (that are nonlinear in their 
parameters) which cannot be "made into" linear models through simple 
transformations of the raw data.  
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odels for Binary Responses: Probit & Logit. It is not uncommon that a 
dependent or response variable is binary in nature, that is, that it can have only 

o possible values. For example, patients either do or do not recover from an 
jury; job applicants either succeed or fail at an employment test, subscribers to 
 journal either do or do not renew a subscription, coupons may or may not be 
turned, etc. In all of these cases, one may be interested in estimating a model 
at describes the relationship between one or more continuous independent 

ariable(s) to the binary dependent variable.  

1*Age) * error  
Put in words, the greater the age, the 

General Growth Model. The general growth model, is similar to the examp
we previously considered:  
y = b0 + b1*exp(b2*x) + error  
This model is commonly used in studies of any kind of growth (y), when the ra
of growth at any given point in time (x) is proportional to the amount of growth 
remaining. The parameter b0 in this model represents the maximum growth 
value. A typical example where this model would be adequate is when one wa
to describe the concentration of a substance (e.g., in water) as a function of 
elapsed time.  
M
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Using linear regression. Of course, one could use standard multiple regression 
rocedures to compute standard regression coefficients. For example, if one 
tudied the renewal of journal subscriptions, one could create a y variable with 
's and 0's, where 1 indicates that the respective subscriber renewed, and 0 

indicates that the su a problem: Multiple 
Regression does not "know" that the response variable is binary in nature. 
Therefore, it will inevitably fit a model that leads to predicted values that are 
greater than 1 or less than 0. However, predicted values that are greater than 1 
or less than 0 are not valid; thus, the restriction in the range of the binary variable 
(e.g., between 0 and 1) is ignored if one uses the standard multiple regression 
procedure.  
Continuous response functions. We could rephrase the regression problem so 
that, rather than predicting a binary variable, we are predicting a continuous 
variable that naturally stays within the 0-1 bounds. The two most common 
regression models that accomplish exactly this are the logit and the probit 
regression models.  

Logit regression. In the logit regression model, the predicted values for 
the dependent variable will never be less than (or equal to) 0, or greater 
than (or equal to) 1, regardless of the values of the independent variables. 
This is accomplished by applying the following regression equation, 
which actually has some "deeper meaning" as we will see shortly (the term 
logit was first used by Berkson, 1944):  

y = exp(b0 + b1*x1 + ... + bn*xn)/{1 + exp(b0 + b1*x1 + ... + bn*xn)}  

One can easily recognize that, regardless of the regression 
coefficients or the magnitude of the x values, this model will always 
produce predicted values (predicted y's) in the range of 0 to 1.  

The name logit stems from the fact that one can easily linearize this 
model via the logit transformation. Suppose we think of the binary 
dependent variable y in terms of an underlying continuous 

p
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bscriber did not renew. However, there is 



probability p, ranging from 0 to 1. We can then transform that 
probability p as:  

p' = loge{p/(1-p)}  

This transformation is referred to as the logit or logistic 
transformation. Note that p' can theoretically assume any value 
between minus and plus infinity. Since the logit transform solves 
the issue of the 0/1 boundaries for the original dependent variable 
(probability), we could use those (logit transformed) values in an 
ordinary linear regression equation. In fact, if we perform the logit 
transform on both sides of the logit regression equation stated 
earlier, we obtain the standard linear regression model:  

p' = b0 + b1*x1 + b2*x2 + ... + bn*xn  

Probit regression. One may consider the binary response variable 
to be the result of a normally distributed underlying variable that 
actually ranges from minus infinity to positive infinity. For example, 

eling" or attitude we could 

to assume that these feelings are normally distributed, and that the 

a subscriber to a journal can feel very strongly about not renewing 
a subscription, be almost undecided, "tend towards" renewing the 
subscription, or feel very much in favor of renewing the 
subscription. In any event, all that we (the publisher of the journal) 
will see is the binary response of renewal or failure to renew the 
subscription. However, if we set up the standard linear regression 
equation based on the underlying "fe
write:  

feeling... = b0 + b1*x1 + ...  

which is, of course, the standard regression model. It is reasonable 



probability p of renewing the subscription is about equal to the 
relative space under the normal curve. Therefore, if we transform 
each side of the equation so as to reflect normal probabilities, we 
obtain:  

 + ...)  

where NP stands for normal probability (space under the normal 
curve), as tabulated in practically all statistics texts. The equation 
shown above is also referred to as the probit regression model. 
(The term probit was first used by Bliss, 1934.)  

General Logistic Regression Model. The general logistic model can be stated as:  
y = b0/{1 + b1*exp(b2*x)}  
You can think of this model as an extension of the logit or logistic model for 
binary responses. However, while the logit model restricts the dependent 
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)b1}  
In this model, x is the dose level (usually in some coded form, so that x

NP(feeling...) = NP(b0 + b1*x1

response variable to only two values, this model allows the response to vary
within a particular lower and upper limit. For example, suppose we are interested
in the population growth of a species that is introduced to a new habitat, as a 
function of time. The dependent variable would be the number of individuals o
that species in the respective habitat. Obviously, there is a lower limit on the 
dependent variable, since fewer than 0 individuals cannot exist in the habitat; 
however, there also is most likely an upper limit that will be reached at some 
point in time.  

rug Responsiveness and Half-Maximal Response. In pharmacology, the 
following model is often used to describe the effects of different dose levels of a 
drug:  
y = b0 - b0/{1 + (x/b2

 1) and y 
is the responsiveness, in terms of the percent of maximum possible 
responsiveness. The parameter b0 then denotes the expected response at the 



level of dose saturation and b2 is the concentration that produces a half- maximal 
response; the parameter b1 determines the slope of the function.  
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 on-line when the production output rises above 500 units per 

 a regression model for cost-per-unit as:  
y = b0 + b1*x*(x 

Discontinuous Regression Models 
Piecewise linear regression. It is not uncommon that the nature of the 
relationship between one or more independent variables and a dependent 
variable changes over the range of the independent variables. For example, 
suppose we monitor the per-unit manufacturing cost of a particular product as a 
function of the number of units manufactured (output) per month. In general, th
more units per month we produce, the lower is our per-unit cost, and this linea
relationship may hold over a wide range of different levels of productio
However, it is conceivable that above a certain point, there is a discontinuity in
the relationship between these two variables. For example, the per-unit cost may
decrease relatively less quickly when older (less efficient) machines have to be 
put on-line in order to cope with the larger volume. Suppose that the olde
machines go
month; we may specify

500) + b2*x*(x > 500)  
In this formula, y stands for the estimated per-unit cost; x is the output per month. 
The expressions (x 500) and (x > 500) denote logical conditions that evaluate 
to 0 if false, and to  if true. Thus, this model specifies a common intercept (b0), 
and a slope that is either equal to b1 (if x

1
 500 is true, that is, equal to 1) or b2 (if 

x > 500 is true, that is, equal to 1).  
Instead of specifying the point where the discontinuity in the regression line 
occurs (at 500 units per months in the example above), one could also estimate 
that point. For example, one might have noticed or suspected that there is a 
discontinuity in the cost-per-unit at one particular point; however, one may not 
know where that point is. In that case, simply replace the 500 in the equation 
above with an additional parameter (e.g., b3).  

 
 after the older machines 

Breakpoint regression. One could also adjust the equation above to reflect a
"jump" in the regression line. For example, imagine that,



are put on-line, the per-unit-cost jumps to a higher level, and then slowly goes 
down as volume continues to increase. In that case, simply specify an additional 
intercept (b3), so that:  
y = (b0 + b1*x)*(x 500) + (b3 + b2*x)*(x > 500)  
Comparing groups. The method described here to estimate different regression 
equations in different domains of the independent variable can also be used to 
distinguish between groups. For example, suppose in the example above, there 
are three different plants; to simplify the example, let us ignore the breakpoint for 
now. If we coded the three plants in a grouping variable by using the values 1, 2, 

pecifying:  
 = (xp=1)*(b10 + b11*x) + (xp=2)*(b20 + b21*x) + (xp=3)*(b30 + b31*x)  

In this equation, xp denotes the grouping variable

and 3, we could simultaneously estimate three different regression equations by 
s
y

 containing the codes that 
identify each plant, b10, b20, and b30 are the three different intercepts, and b11, b21, 
and b31 refer to the slope parameters (regression coefficients) for each plant. 
One could compare the fit of the common regression model without considering 
the different groups (plants) with this model in order to determine which model is 
more appropriate.  
 
 
Nonlinear Estimation Procedures   
Least Squares Estimation. Some of the more common nonlinear regression 
models are reviewed in Common Nonlinear Regression Models. Now, the 
question arises as to how these models are estimated. If you are familiar with 
near regression techniques (as described in Multiple Regression) or analysis of 
ariance (ANOVA) techniques (as described in ANOVA/MANOVA

li
v ), then you may 
be aware of the fact that all of those methods use so-called least squares 
estimation procedures. In the most general terms, least squares estimation is 
aimed at minimizing the sum of squared deviations of the observed values for the 



dependent variable from those predicted by the model. (The term least squares 
was first used by Legendre, 1805.)  
Loss Functions. In standard multiple regression we estimate the regression 
coefficients by "finding" those coefficients that minimize the residual variance 
(sum of squared residuals) around the regression line. Any deviation of an 
observed score from a predicted score signifies some loss in the accuracy of our 

red deviation about the 
 was first used by Wald, 1939). When this function 

is at its minimum, then we get the same parameter estimates (intercept, 
regression coefficients) as we would in Multiple Regression

prediction, for example, due to random noise (error). Therefore, we can say that 
the goal of least squares estimation is to minimize a loss function; specifically, 
this loss function is defined as the sum of the squa
predicted values (the term loss

; because of the 
particular loss functions that yielded those estimates, we can call the estimates 
least squares estimates.  
Phrased in this manner, there is no reason why you cannot consider other loss 
functions. For example, rather than minimizing the sum of squared deviations, 
why not minimize the sum of absolute deviations? Indeed, this is sometimes 
useful in order to "de-emphasize" outliers. Relative to all other residuals, a large 
residual will become much larger when squared. However, if one only takes the 
absolute value of the deviations, then the resulting regression line will most likely 
be less affected by outliers.  
There are several function minimization methods that can be used to minimize 
any kind of loss function. For more information, see:   
Weighted Least Squares. In addition to least squares and absolute deviation 
regression (see above), weighted least squares estimation is probably the most 
commonly used technique. Ordinary least squares techniques assume that the 
residual variance around the regression line is the same across all values of the 
independent variable(s). Put another way, it is assumed that the error variance in 
the measurement of each case is identical. Often, this is not a realistic 



assumption; in particular, violations frequently occur in business, economic, or 
biological applications.  
For example, suppose we wanted to study the relationship between the projected 
cost of construction projects, and the actual cost. This may be useful in order to 
gage the expected cost overruns. In this case it is reasonable to assume that the 
absolute magnitude (dollar amount) by which the estimates are off, is 
proportional to the size of the project. Thus, we would use a weighted least 
squares loss function to fit a linear regression model. Specifically, the loss 
function would be (see, for example, Neter, Wasserman, & Kutner, 1985, p. 168):  
Loss = (Obs-Pred)2 * (1/x2)  
In this equation, the loss function first specifies the standard least squares loss 
function (Observed minus Predicted squared; i.e., the squared residual), and 
then weighs this loss by the inverse of the squared value of the independent 
variable (x) for each case. In the actual estimation, you sum up the value of the 
loss function for each case (e.g., construction project), as specified above, and 
estimate the parameters that minimize that sum. To return to our example, the 
larger the project (x) the less weight is placed on the deviation from the predicted 
value (cost). This method will yield more stable estimates of the regression 
parameters (for more details, see Neter, Wasserman, & Kutner, 1985).  
Maximum Likelihood. An alternative to the least squares loss function (see 
above) is to maximize the likelihood or log-likelihood function (or to minimize the 
negative log-likelihood function; the term maximum likelihood was first used by 
Fisher, 1922a). In most general terms, the likelihood function is defined as:  

L = F(Y,Model) = in= 1 {p [yi, Model Parameters(xi)]}  
In theory, we can compute the probability (now called L, the likelihood) of the 
specific dependent variable values to occur in our sample, given the respective 
regression model. Provided that all observations are independent of each other, 

this likelihood is the geometric sum ( , across i = 1 to n cases) of probabilities 
for each individual observation (i) to occur, given the respective model and 
parameters for the x values. (The geometric sum means that we would multiply 



out the individual probabilities across cases.) It is also customary to express this 
function as a natural logarithm, in which case the geometric sum becomes a 
regular arithmetic sum ( , across i = 1 to n cases).  
Given the respective model, the larger the likelihood of the model, the larger is 
the probability of the dependent variable values to occur in the sample. 
Therefore, the greater the likelihood, the better is the fit of the model to the data. 
The actual computations for particular models here can become quite 
complicated because w eed to "track" (compute) the probabilities of the y-

x- values). As it turns out, if 
all assumptions for standard multiple regression are met (as described in the 
Multiple Regression chapter in the manual), then the standard least squares 
estimation method (see above) will yield results identical to the maximum 
likelihood method. If the assumption of equal error variances across the range of 
the x variable(s) is violated, then the weighted least squares method described 
earlier will yield maximum likelihood estimates.  
Maximum Likelihood and Probit/Logit Models. The maximum likelihood function 
has been "worked out" for probit and logit regression models

e n
values to occur (given the model and the respective 

. Specifically, the 
loss function for these models is computed as the sum of the natural log of the 
logit or probit likelihood so that:  
log(L1) = 

L1 

in= 1 [yi*log(pi ) + (1-yi )*log(1-pi )]  
where 
log(L1) is the natural log of the (logit or probit) likelihood (log-likelihood) for the 
current model 
yi is the observed value for case i 
pi is the expected (predicted or fitted) probability (between 0 and 1)  
The log-likelihood of the null model (L0), that is, the model containing the 
intercept only (and no regression coefficients) is computed as:  
log(L0) = n0*(log(n0/n)) + n1*(log(n1/n))  
where 
log(L0) is the natural log of the (logit or probit) likelihood of the null model 



(intercept only) 
n0 is the number of observations with a value of 0 (zero) 
n1 is the number of observations with a value of 1 
n is the total number of observations  
Function Minimization Algorithms. Now that we have discussed different 
regression models, and the loss functions that can be used to estimate them, the 
only "mystery" that is left is how to minimize the loss functions (to find the best 
fitting set of parameters), and how to estimate the standard errors of the 
parameter estimates. There is one very efficient algorithm (quasi-Newton) that 
approximates the second-order derivatives of the loss function to guide the 
search for the minimum (i.e., for the best parameter estimates, given the 
respective loss function). In addition, there are several more general function 
minimization algorithms that follow different search strategies (which do not 
depend on the second-order derivatives). These strategies are sometimes more 
effective for estimating loss functions with local minima; therefore, these methods 
are often particularly useful to find appropriate start values for the estimation via 
the quasi-Newton method.  
In all cases, you can compute the standard errors of the parameter estimates. 
These standard errors are based on the second-order partial derivatives for the 
parameters, which are computed via finite difference approximation.  
If you are not interested in how the minimization of the loss function is done, only 
that it can be done, you may skip the following paragraphs. However, you may 
find it useful to know a little about these procedures in case your regression 
model "refuses" to be fit to the data. In that case, the iterative estimation 
procedure will fail to converge, producing ever "stranger" (e.g., very large or very 
small) parameter estimates.  
In the following paragraphs we will first discuss some general issues involved in 
unconstrained optimization, and then briefly review the methods used. For more 
detailed discussions of these procedures you may refer to Brent (1973), Gill and 
Murray (1974), Peressini, Sullivan, and Uhl (1988), and Wilde and Beightler 



(1967). For specific algorithms, see Dennis and Schnabel (1983), Eason and 
Fenton (1974), Fletcher (1969), Fletcher and Powell (1963), Fletcher and Reeves 
(1964), Hooke and Jeeves (1961), Jacoby, Kowalik, and Pizzo (1972), and 
Nelder and Mead (1964).  
Start Values, Step Sizes, Convergence Criteria. A common aspect of all 
estimation procedures is that they require the user to specify some start values, 
initial step sizes, and a criterion for convergence . All methods will begin with a 
particular set of initial estimates (start values), which will be changed in some 
systematic manner from iteration to iteration; in the first iteration, the step size 
determines by how much the parameters will be moved. Finally, the convergence 
criterion determines when the iteration process will stop. For example, the 
process may stop when the improvements in the loss function from iteration to 
iteration are less than a specific amount.  
Penalty Functions, Constraining Parameters. These estimation procedures are 
unconstrained in nature. When this happens, it will move parameters around 
without any regard for whether or not permissible values result. For example, in 
the course of logit regression we may get estimated values that are equal to 0.0, 
in which case the logarithm cannot be computed (since the log of 0 is undefined). 
When this happens, it will assign a penalty to the loss function, that is, a very 
large value. As a result, the various estimation procedures usually move away 
from the regions that produce those functions. However, in some circumstances, 
the estimation will "get stuck," and as a result, you would see a very large value 
of the loss function. This could happen, if, for example, the regression equation 
involves taking the logarithm of an independent variable which has a value of 
zero for some cases (in which case the logarithm cannot be computed).  
If you wish to constrain a procedure, then this constraint must be specified in the 
loss function as a penalty function (assessment). By doing this, you may control 
what permissible values of the parameters to be estimated may be manipulated. 
For example, if two parameters (a and b) are to be constrained to be greater than 
or equal to zero, then one must assess a large penalty to these parameters if this 



condition is not met. Below is an example of a user-specified regression and loss 
function, including a penalty assessment designed to "penalize" the parameters a 
and/or b if either one is not greater than or equal to zero:  
Estimated function: v3 = a + b*v1 + (c*v2) 

ome 
er, regardless of how a particular parameter is moved. However, if the 

parameter were to be moved into a completely different place, the loss function 
may actually become smaller. You can think of such local minima as local 
"valleys" or minor "dents" in the loss function. However, in most practical 
applications, local minima will produce "outrageous" and extremely large or small 
parameter estimates with very large standard errors. In those cases, specify 
different start values and try again. Also note, that the Simplex method (see 
below) is particularly "smart" in avoiding such minima; therefore, this method may 
be particularly suited in order to find appropriate start values for complex 
functions.  
Quasi-Newton Method. As you may remember, the slope of a function at a 
particular point can be computed as the first- order derivative of the function (at 
that point). The "slope of the slope" is the second-order derivative, which tells us 
how fast the slope is changing at the respective point, and in which direction. The 
quasi-Newton method will, at each step, evaluate the function at different points 
in order to estimate the first-order derivatives and second-order derivatives. It will 
then use this information to follow a path towards the minimum of the loss 
function.  
Simplex Procedure. This algorithm does not rely on the computation or 
estimation of the derivatives of the loss function. Instead, at each iteration the 
function will be evaluated at m+1 points in the m dimensional parameter space. 
For example, in two dimensions (i.e., when there are two parameters to be 
estimated), it will evaluate the function at three points around the current 

Loss function: L = (obs - pred)**2 + (a<0)*100000 + (b<0)*100000  
Local Minima. The most "treacherous" threat to unconstrained function 
minimization is local minima. For example, a particular loss function may bec
slightly larg



optimum. These three points would define a triangle; in more than two 
dimensions, the "figure" produced by these points is called a Simplex. Intuitively, 
in two dimensions, three points will allow us to determine "which way to go," that 
is, in which direction in the two dimensional space to proceed in order to 
minimize the function. The same principle can be applied to the multidimensional 
parameter space, that is, the Simplex will "move" downhill; when the current step 
sizes become too "crude" to detect a clear downhill direction, (i.e., the Simplex is 
too large), the Simplex will "contract" and try again.  
An additional strength of this method is that when a minimum appears to have 
been found, the Simplex will again be expanded to a larger size to see whether 
the respective minimum is a local minimum. Thus, in a way, the Simplex moves 
like a smooth single cell organism down the loss function, contracting and 
expanding as local minima or significant ridges are encountered.  
Hooke-Jeeves Pattern Moves. In a sense this is the simplest of all algorithms. At 
each iteration, this method first defines a pattern of points by moving each 
parameter one by one, so as to optimize the current loss function. The entire 
pattern of points is then shifted or moved to a new location; this new location is 
determined by extrapolating the line from the old base point in the m dimensional 
parameter space to the new base point. The step sizes in this process are 
constantly adjusted to "zero in" on the respective optimum. This method is 
usually quite effective, and should be tried if both the quasi-Newton and Simplex 
methods (see above) fail to produce reasonable estimates.  
Rosenbrock Pattern Search. Where all other methods fail, the Rosenbrock 
Pattern Search method often succeeds. This method will rotate the parameter 
space and align one axis with a ridge (this method is also called the method of 
rotating coordinates); all other axes will remain orthogonal to this axis. If the loss 
function is unimodal and has detectable ridges pointing towards the minimum of 
the function, then this method will proceed with sure-footed accuracy towards the 
minimum of the function. However, note that this search algorithm may terminate 



early when there are several constraint boundaries (resulting in the penalty 
value; see above) that intersect, leading to a discontinuity in the ridges.  
Hessian Matrix and Standard Errors. The matrix of second-order (partial) 
derivatives is also called the Hessian matrix. It turns out that the inverse of the 
Hessian matrix approximates the variance/covariance matrix of parameter 
estimates. Intuitively, there should be an inverse relationship between the 
second-order derivative for a parameter and its standard error: If the change of 
the slope around the minimum of the function is very sharp, then the second-
order derivative will be large; however, the parameter estimate will be quite 
stable in the sense that the minimum with respect to the parameter is clearly 
identifiable. If the second-order derivative is nearly zero, then the change in the 
slope around the minimum is zero, meaning that we can practically move the 
parameter in any direction without greatly affecting the loss function. Thus, the 
standard error of the parameter will be very large.  
The Hessian matrix (and asymptotic standard errors for the parameters) can be 
computed via finite difference approximation. This procedure yields very precise 
asymptotic standard errors for all estimation methods.  
 
 

Evaluating the Fit of the Model  
After estimating the regression parameters, an essential aspect of the analysis is 
to test the appropriateness of the overall model. For example, if one specified a 
linear regression model, but the relationship is intrinsically non-linear, then the 
parameter estimates (regression coefficients) and the estimated standard errors 
of those estimates may be significantly "off." Let us review some of the ways to 
evaluate the appropriateness of a model.   
Proportion of Variance Explained. Regardless of the model, one can always 
compute the total variance of the dependent variable (total sum of squares, 
SST), the proportion of variance due to the residuals (error sum of squares, 
SSE), and the proportion of variance due to the regression model (regression 



sum of squares, SSR=SST-SSE). The ratio of the regression sum of squares to 
the total sum of squares (SSR/SST) explains the proportion of variance 
accounted for in the dependent variable (y) by the model; thus, this ratio is 
equivalent to the R-square (0 R-square  1, the coefficient of determination). 
Even when the dependent variable is not normally distributed across cases, this 

bit and logit regression models, you may use 
maximum likelihood estimation (i.e., maximize the likelihood function). As it turns 

ull model where all slope 
 likelihood L1 of the fitted model. Specifically, one 

measure may help evaluate how well the model fits the data.  
Goodness-of-fit Chi-square. For pro

out, one can directly compare the likelihood L0 for the n
parameters are zero, with the
can compute the Chi-square statistic for this comparison as:  
Chi-square = -2 * (log(L0) - log(L1))  
The degrees of freedom for this Chi-square value are equal to the difference 
the number of parameters for the null and the fitted model; thus, the degr
freedom will be equal to the number of independent variables in the logit or probit 
regression. If the p- level associated with this Chi-square is significant, then we 

in 
ees of 

the null model, that is, that the regression parameters are statistically significant.  
Plot of Observed vs. Predicted Values. It is always a good idea to inspect a 
scatterplot

can say that the estimated model yields a significantly better fit to the data than 

 of predicted vs. observed values. If the model is appropriate for the 
data, then we would expect the points to roughly follow a straight line; if the 
model is incorrectly specified, then this plot will indicate a non-linear pattern.  
Normal and Half-Normal Probability Plots. The normal probability plot of residual 
will give us an indication of whether or not the residuals (i.e., errors) are norm
distributed.  

ally 

olving two or three variables (one or 
two predictors) it is useful to plot the fitted function using the final parameter 
estimates. Here is an example of a 3D plot with two predictor variables:  

Plot of the Fitted Function. For models inv



 
This type of plot represents the most direct visual check of whether or not a 
model fits the data, and whether there are apparent outliers.  
Variance/Covariance Matrix for Parameters. When a model is grossly 
misspecified, or the estimation procedure gets "hung up" in a local minimum, the 
standard errors for the parameter estimates can become very large. This means 
that regardless of how the parameters were moved around the final values, the 
resulting loss function did not change much. Also, the correlations between 
parameters may become very large, indicating that parameters are very 
redundant; put another way, when the estimation algorithm moved one 
parameter away from the final value, then the increase in the loss function could 
be almost entirely compensated for by moving another parameter. Thus, the 
effect of those two parameters on the loss function was very redundant.  
 
 

 
 
  

 
 
 
 
 
 
 
 
 
 
 



Nonparametric Statistics 

  
 

General Purpose  
Brief review of the idea of significance testing. To understand the idea of 
nonparametric statistics (the term nonparametric was first used by Wolfowitz, 
1942) first requires a basic understanding of parametric statistics. The 
Elementary Concepts chapter of the manual introduces the concept of statistical 
significance testing based on the sampling distribution of a particular statistic 
(you may want to review that chapter before reading on). In short, if we have a 
basic knowledge of the underlying distribution of a variable, then we can make 
predictions about how, in repeated samples of equal size, this particular statistic 
will "behave," that is, how it is distributed. For example, if we draw 100 random 
samples of 100 adults each from the general population, and compute the mean 

egrees of freedom; see below). Now imagine that we take 

 population.  
Are most variables normally distributed? In the above example we relied on our 
knowledge that, in repeated samples of equal size, the standardized means (for 
height) will be distributed following the t distribution (with a particular mean and 
variance). However, this will only be true if in the population the variable of 
interest (height in our example) is normally distributed, that is, if the distribution of 
people of particular heights follows the normal distribution (the bell-shape 

height in each sample, then the distribution of the standardized means across 
samples will likely approximate the normal distribution (to be precise, Student's t 
distribution with 99 d
an additional sample in a particular city ("Tallburg") where we suspect that 
people are taller than the average population. If the mean height in that sample 
falls outside the upper 95% tail area of the t distribution then we conclude that, 
indeed, the people of Tallburg are taller than the average

distribution).  



 
t, we simply do not knowFor many variables of interes  for sure that this is the 

case. For example, is income distributed normally in the population? -- probably 
 diseases are not normally distributed in the 

population, the number of car accidents is also not normally distributed, and 
neither are very many other variables in which a researcher might be interested.  
For more information on the normal distribution, see Elementary Concepts

not. The incidence rates of rare

; for 
information on tests of normality, see Normality tests.  
Sample size. Another factor that often limits the applicability of tests based on the 
assumption that the sampling distribution is normal is the size of the sample of 
data available for the analysis (sample size; n). We can assume that the 
sampling distribution is normal even if we are not sure that the distribution of the 
variable in the population is normal, as long as our sample is large enough (e.g., 

 
re 

ple, 

en 

t only allows us to establish a rank ordering of students from 
"good" students to "poor" students. This general measurement issue is usually 

100 or more observations). However, if our sample is very small, then those tests
can be used only if we are sure that the variable is normally distributed, and the
is no way to test this assumption if the sample is small.  
Problems in measurement. Applications of tests that are based on the normality 
assumptions are further limited by a lack of precise measurement. For exam
let us consider a study where grade point average (GPA) is measured as the 
major variable of interest. Is an A average twice as good as a C average? Is the 
difference between a B and an A average comparable to the difference betwe
a D and a C average? Somehow, the GPA is a crude measure of scholastic 
accomplishments tha



d

e 

iscussed in statistics textbooks in terms of types of measurement or scale of 
measurement. Without going into too much detail, most common statistical 
techniques such as analysis of variance (and t- tests), regression, etc. assum
that the underlying measurements are at least of interval, meaning that eq
spaced intervals on the scale can be compared in a meaningful manner (e.g, B 
minus A is equal to D minus C). Howe

ually 

ver, as in our example, this assumption is 
ery often not tenable, and the data rather represent a rank ordering of 
bservations (ordinal

v
o ) rather than precise measurements.  

engthy 
ess 

amples, on variables about which nothing is 

re, 

Basically, there is at least one nonparametric equivalent for each parametric 
general type of test. In general, these tests fall into the following categories:  

• Tests of differences between groups (independent samples);  
• Tests of differences between variables (dependent samples);  
• Tests of relationships between variables.  

Differences between independent groups. Usually, when we have two samples that we 
want to compare concerning their mean value for some variable of interest, we would use 
the t-test for independent samples); nonparametric alternatives for this test are the Wald-
Wolfowitz runs test, the Mann-Whitney U test, and the Kolmogorov-Smirnov two-sample 
test. If we have multiple groups, we would use analysis of variance (see 
ANOVA/MANOVA

Parametric and nonparametric methods. Hopefully, after this somewhat l
introduction, the need is evident for statistical procedures that allow us to proc
data of "low quality," from small s
known (concerning their distribution). Specifically, nonparametric methods were 
developed to be used in cases when the researcher knows nothing about the 
parameters of the variable of interest in the population (hence the name 
nonparametric). In more technical terms, nonparametric methods do not rely on 
the estimation of parameters (such as the mean or the standard deviation) 
describing the distribution of the variable of interest in the population. Therefo
these methods are also sometimes (and more appropriately) called parameter-
free methods or distribution-free methods. 
 
Brief Overview of Nonparametric Methods  

; the nonparametric equivalents to this method are the Kruskal-Wallis 
analysis of ranks and the Median test.  



Differences between dependent groups. If we want to compare two variables 
measured in the same sample we would customarily use the t-test for dependent 
samples (in Basic Statistics for example, if we wanted to compare students' math 
skills at the beginning of the semester with their skills at the end of the semester). 
Nonparametric alternatives to this test are the Sign test and Wilcoxon's matched 
pairs test. If the variables of interest are dichotomous in nature (i.e., "pass" vs. 
"no pass") then McNemar's Chi-square test is appropriate. If there are more tha
two variables that were measured in the same sample, then we would 
customarily use repeated measures ANOVA. Nonparametric a

n 

lternatives to this 
method are Friedman's two-way analysis of variance and Cochran Q test (if the 
variable was measured in terms of categories, e.g., "passed" vs. "failed"). 
Cochran Q is particularly useful for measuring changes in frequencies 
(proportions) across time.  
Relationships between variables. To express a relationship between two 
variables one usually computes the correlation coefficient. Nonparametric 
equivalents to the standard correlation coefficient are Spearman R, Kendall Tau, 
and coefficient Gamma (see Nonparametric correlations). If the two variabl
interest are categorical in nature (e.g., "passed" vs. "failed" by "male" vs. 

es of 

een "female") appropriate nonparametric statistics for testing the relationship betw
the two variables are the Chi-square test, the Phi coefficient, and the Fisher 
exact test. In addition, a simultaneous test for relationships between multiple 

r 
 

metimes not 
the most informative way to summarize the data. For example, in the area of 
psychometrics it is well known that the rated intensity of a stimulus (e.g., 
perceived brightness of a light) is often a logarithmic function of the actual 

cases is available: Kendall coefficient of concordance. This test is often used fo
expressing inter-rater agreement among independent judges who are rating
(ranking) the same stimuli.  
Descriptive statistics. When one's data are not normally distributed, and the 
measurements at best contain rank order information, then computing the 
standard descriptive statistics (e.g., mean, standard deviation) is so



intensity of the stimulus (brightness as measured in objective units of Lux). In t
example, the simple mean rating (sum of ratings divided by the number of 
stimuli) is not an adequate summary of the average actual intensity of the stimu
(In this example, one would probably rather comput

his 

li. 
e the geometric mean.) 

Nonparametrics and Distributions will compute a wide variety of measures of 
location (mean, median, mode, etc.) and dispersion (variance, average deviation, 
quartile range, etc.) to provide the "complete picture" of one's data.  
 
 

When to Use Which Method  

It is not easy to give simple advice concerning the use of nonparametric 
procedures. Each nonparametric procedure has its peculiar sensitivities and blind 
spots. For exa ogorov-Smirnov two-sample test is not only 
sensitive to differences in the location of distributions (for example, differences in 
means) but is also greatly affected by differences in their shapes. The Wilcoxon 
matched pairs test assumes that one can rank order the magnitude of differences 
in matched observatio eaningful manner. If this is not the case, one 
should rather use the Sign test. In general, if the result of a study is important 
(e.g., does a very expensive and painful drug therapy help people get better?), 
then it is always advisable to run different nonparametric tests; should 
discrepancies in the results occur contingent upon which test is used, one should 
try to understand why some tests give different results. On the other hand, 
nonparametric statistics are less statistically powerful (sensitive) than their 
parametric counterparts, and if it is important to detect even small effects (e.g., is 
this food additive harmful to people?) one should be very careful in the choice of 
a test statistic.  
Large data sets and nonparametric methods. Nonparametric methods are most 
appropriate when the sample sizes are small. When the data set is large (e.g., n 
> 100) it often makes little sense to use nonparametric statistics at all. The 
Elementary Concepts

mple, the Kolm

ns in a m

 chapter of the manual briefly discusses the idea of the 



central limit theorem. In a nutshell, when the samples become very large, then 
the sample means will follow the normal distribution even if the respective 
variable is not normally distributed in the population, or is not measured very 
well. Thus, parametric methods, which are usually much more sensitive (i.e., 
have more statistical power) are in most cases appropriate for large samples. 
However, the tests of significance of many of the nonparametric statistics 
described here are based on asymptotic (large sample) theory; therefore, 
meaningful tests can often not be performed if the sample sizes become too 
small. Please refer to the descriptions of the specific tests to learn more about 
their power and efficiency. 

 

 
 

Nonparametric Correlations  

The following are three types of commonly used nonparametric correlation
coefficients (Spearman R, Kendall Tau, and Gamma coefficients). Note that the 
chi-square statistic computed for two-way frequency tables, also provides a 
careful measure of a relation between the two (tabulated) variables, and unlike 
the correlation measures listed below, it can be used for variables that are 
measured on a simple nominal scale.  
Spearman R. Spearman R (Siegel & Castellan, 1988) assumes that the variables 
under consideration were measured on at least an ordinal (rank order) scale, that 
is, that the individual observations can be ranked into two ordered series. 
Spearman R can be thought of as the regular Pearson product moment 
correlation coefficient, that is, in terms of proportion of variability accounted for, 
except that Spearman R is computed from ranks.  
Kendall tau. Kendall tau is equivalent to Spearman R with regard to the 
underlying assumptions. It is also comparable in terms of its statistical power. 
However, Spearman R and Kendall tau are usually not identical in magnitude 
because their underlying logic as well as their computational formulas are very 
different. Siegel and Castellan (1988) express the relationship of the two 
measures in terms of the inequality:  



-1 ≤ 3 * Kendall tau - 2 * Spearman R ≤ 1  
More importantly, Kendall tau and Spearman R imply different interpretations: 
Spearman R can be thought of as the regular Pearson product moment 
correlation coefficient, that is, in terms of proportion of variability accounted for, 
except that Spearman R is computed from ranks. Kendall tau, on the other hand, 
represents a probability, that is, it is the difference between the probability that in 
the observed data the two variables are in the same order versus the probability 
that the two variables are in different orders.  
Gamma. The Gamma statistic (Siegel & Castellan, 1988) is preferable to 
Spearman R or Kendall tau when the data contain many tied observations. In 
terms of the underlying assumptions, Gamma is equivalent to Spearman R or 
Kendall tau; in terms of its interpretation and computation it is more similar to 
Kendall tau than Spearman R. In short, Gamma is also a probability; specifically, 
it is computed as the difference between the probability that the rank ordering of 
the two variables agree minus the probability that they disagree, divided by 1 
minus the probability of ties. Thus, Gamma is basically equivalent to Kendall tau, 
except that ties are explicitly taken into account.  

 
 
  

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 



 

Partial Least Squares (PLS) 

  
 

Thi res regression analysis. If you 
are be 
useful to fir

s chapter describes the use of partial least squa
 unfamiliar with the basic methods of regression in linear models, it may 

st review the information on these topics in Elementary Concepts. The 
ifferent designs discussed in this chapter are also described in the context of d

General Linear Models, Generalized Linear Models, and General Stepwise 
Regression.  

 

Basic Ideas 
Part  odel 
(se

ial least squares regression is an extension of the multiple linear regression m
e, e.g., Multiple Regression or General Stepwise Regression). In its simplest form, a 
ar model specifies the (linear) relationship between a line dependent (response) variable Y, 

et of predictor variables, the X's, so that  
+ b

and a s
Y = b0 .. + bpXp  
In this equation b0 is the regression coefficient for the intercept and the bi values 
are the regression coefficients (for variables 1 through p) computed from the 
data.  
So for example, one could estimate (i.e., predict) a person's weight as a function 

f the person's height and gender. You could use linear regression to estimate 
e respective regression coefficients from a sample of data, measuring height, 

 
 between variables are adequate to describe 

1X1 + b2X2 + .

o
th
weight, and observing the subjects' gender. For many data analysis problems,
estimates of the linear relationships
the observed data, and to make reasonable predictions for new observations 
(see Multiple Regression or General Stepwise Regression for additional deta
The multiple linear regression model has been extended in a number of ways
address more sophisticated 

ils).  
 to 

data analysis problems. The multiple linear 
regression model serves as the basis for a number of multivariate methods such 
as discriminant analysis (i.e., the prediction of group membership from the levels 
of continuous predictor variables), principal components regression (i.e., the 



prediction of responses on the dependent variables from factors underlying the 
levels of the predictor variables), and canonical correlation (i.e., the prediction of 
factors underlying responses on the dependent variables from factors underlying 
the levels of the predictor variables). These multivariate methods all have two 
important properties in common. These methods impose restrictions such that (1) 
factors underlying the Y and X variables are extracted from the Y'Y and X'X 
matrices, respectively, and never from cross-product matrices involving both the 
Y and X variables, and (2) the number of prediction functions can never exceed 
the minimum of the number of Y variables and X variables.  
Partial least squares regression extends multiple linear regression without 
imposing the restrictions employed by discriminant analysis, principal 
components regression, and canonical correlation. In partial least squares 
regression, prediction functions are represented by factors extracted from the 
Y'XX'Y matrix. The number of such prediction functions that can be extracted 
typically will exceed the maximum of the number of Y and X variables.  
In short, partial least squares regression is probably the least restrictive of the 
various multivariate extensions of the multiple linear regression model. This 
flexibility allows it to be used in situations where the use of traditional multivariate 
methods is severely limited, such as when there are fewer observations than 
predictor variables. Furthermore, partial least squares regression can be used as 
an exploratory analysis tool to select suitable predictor variables and to identify 
outliers before classical linear regression.  
Partial least squares regression has been used in various disciplines such as 
chemistry, economics, medicine, psychology, and pharmaceutical science where 
predictive linear modeling, especially with a large number of predictors, is 
necessary. Especially in chemometrics, partial least squares regression has 
become a standard tool for modeling linear relations between multivariate 
measurements (de Jong, 1993).  
 
 

 



Computational Approach  

Basic Model  
As in multiple linear regression, the main purpose of partial least squares 
regression is to build a linear model, Y=XB+E, where Y is an n cases by m 
variables response matrix, X is an n cases by p variables predictor (design) 
matrix, B is a p by m regression coefficient matrix, and E is a noise term for the 
model which has the same dimensions as Y. Usually, the variables in X and Y 
are centered by subtracting their means and scaled by dividing by their standard 
deviations. For more information about centering and scaling in partial least 
squares regression, you can refer to Geladi and Kowalsky(1986).  
Both principal components regression and partial least squares regression 
produce factor scores as linear combinations of the original predictor variables, 
so that there is no correlation between the factor score variables used in the 
predictive regression model. For example, suppose we have a data set with 
response variables Y (in matrix form) and a large number of predictor variables X 
(in matrix form), some of which are highly correlated. A regression using factor 
extraction for this type of data computes the factor score matrix T=XW for an 
appropriate weight matrix W, and then considers the linear regression model 
Y=TQ+E, where Q is a matrix of regression coefficients (loadings) for T, and E is 
an error (noise) term. Once the loadings Q are computed, the above regression 
model is equivalent to Y=XB+E, where B=WQ, which can be used as a predictive 
regression model.  
Principal components regression and partial least squares regression differ in the 
methods used in extracting factor scores. In short, principal components 
regression produces the weight matrix W reflecting the covariance structure 
between the predictor variables, while partial least squares regression produces 
the weight matrix W reflecting the covariance structure between the predictor and 
response variables.  
For establishing the model, partial least squares regression produces a p by c 
weight matrix W for X such that T=XW, i.e., the columns of W are weight vectors 



for the X columns producing the corresponding n by c factor score matrix T. 
These weights are computed so that each of them maximizes the covariance 
between responses and the corresponding factor scores. Ordinary least squares 
procedures for the regression of Y on T are then performed to produce Q, the 

l 

IPALS). 
There are many variants of the NIPALS algorithm which normalize or do not 
normalize certain vectors. The following algorithm, which assumes that the X and 
Y variables have been transformed to have means of zero, is considered to be 
one of most efficient NIPALS algorithms.  
For each h=1,…,c, where A0=X'Y, M0=X'X, C0=I, and c given,  

1. compute qh, the dominant eigenvector of Ah'Ah  
2. wh=GhAhqh, wh=wh/||wh||, and store wh into W as a column  
3. ph=Mhwh, ch=wh'Mhwh, ph=ph/ch, and store ph into P as a column  
4. qh=Ah'wh/ch, and store qh into Q as a column  
5. Ah+1=Ah - chphqh' and Bh+1=Mh - chphph'  
6. Ch+1=Ch - whph'  

The factor scores matrix T is then computed as T=XW and the partial least squares 
regression coefficients B of Y on X are computed as B=WQ.  

SIMPLS Algorithm  

 

loadings for Y (or weights for Y) such that Y=TQ+E. Once Q is computed, we 
have Y=XB+E, where B=WQ, and the prediction model is complete.  
One additional matrix which is necessary for a complete description of partia
least squares regression procedures is the p by c factor loading matrix P which 
gives a factor model X=TP+F, where F is the unexplained part of the X scores. 
We now can describe the algorithms for computing partial least squares 
regression.  

NIPALS Algorithm  

The standard algorithm for computing partial least squares regression 
components (i.e., factors) is nonlinear iterative partial least squares (N

An alternative estimation method for partial least squares regression components
is the SIMPLS algorithm (de Jong, 1993), which can be described as follows.  
For each h=1,…,c, where A0=X'Y, M0=X'X, C0=I, and c given,  



1. compute qh, the dominant eigenvector of Ah'Ah  
2. wh=Ahqh, ch=wh'Mhwh, wh=wh/sqrt(ch), and store w  into W as a column  
3. p

h

sion 

 

h=Mhwh, and store ph into P as a column  
4. qh=Ah'wh, and store qh into Q as a column  
5. vh=Chph, and vh=vh/||vh||  
6. Ch+1=Ch - vhvh' and Mh+1=Mh - phph'  
7. Ah+1=ChAh  

Similarly to NIPALS, the T of SIMPLS is computed as T=XW and B for the regres
of Y on X is computed as B=WQ'.  
 

 

ethods 
1) 

dependent variables

Training (Analysis) and Verification (Cross-Validation) 
Samples  
A very important step when fitting models to be used for prediction of future 
observation is to verify (cross-validate) the results, i.e., to apply the current 
results to a new set of observations that was not used to compute those results 
(estimate the parameters). Some software programs offer very flexible m
for computing detailed predicted value and residual statistics for observations (
that were not used in the computations for fitting the current model and have 
observed values for the  (the so-called cross-validation 
sample), and (2) that were not used in the computations for fitting the current 
model, and have missing data for the dependent variables (prediction sample).  
 
 

 
Types of analyses  
The design for an analysis can include effects for continuous as well as 
categorical predictor variables. Designs may include polynomials for continuous 
predictors (e.g., squared or cubic terms) as well as interaction effects (i.e., 
product terms) for continuous predictors. For categorical predictor, one can fit 
ANOVA-like designs, including full factorial, nested, and fractional factorial 
designs, etc. Designs can be incomplete (i.e., involve missing cells), and effects 
for categorical predictor variables can be represented using either the sigma-



restricted parameterization or the overparameterized (i.e., indicator variable) 

an be 

scribe 

or an analysis, we are referring to the nature, number, and arrangement 
of the predictor variables.  

oncerning the nature or typ r variables, between designs which 
contain only categorical predictor

representation of effects.  
The topics below give complete descriptions of the types of designs that c
analyzed using partial least squares regression, as well as types of designs that 
can be analyzed using the general linear model.  
Between-Subject Designs   
Overview. The levels or values of the predictor variables in an analysis de
the differences between the n subjects or the n valid cases that are analyzed. 
Thus, when we speak of the between subject design (or simply the between 
design) f

C e of predicto
 variables can be called ANOVA (analysis of 

designs which contain only continuous predictor 
ssion designs, and between designs which contain 

al and continuous predictor variables can be called ANCOVA 
e) designs. Further, continuous predictors are always 

e fixed values, but the ls of categorical predictors

variance) designs, between 
variables can be called regre
both categoric
(analysis of covarianc
considered to hav  leve  can be 

to vary randomly. Designs which contain random considered to be fixed or 
categorical factors are called mixed-model designs (see the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter).  
Between designs may involve only a single predictor variable and therefore b
described as simple (e.g., simple regression) or may employ numerous predicto
variables (e.g., 

e 
r 

multiple regression).  
Concerning the arrangement of predictor variables, some between designs 
employ only "main effect" or first-order terms for predictors, that is, the values for 
different predictor variables are independent and raised only to the first power. 
Other between designs may employ higher-order terms for predictors by raising 
the values for the original predictor variables to a power greater than 1 (e.g., in 
polynomial regression designs), or by forming products of different predictor 



variables (i.e., interaction terms). A common arrangement for ANOVA designs is 
the full-factorial design, in which every combination of levels for each of the 
categorical predictor variables is represented in the design. Designs with some 
but not all combinations of levels for each of the categorical predictor variables 
are aptly called fractional factorial designs. Designs with a hierarchy of 
combinations of levels for the different categorical predictor variables are called 
nested designs.  
These basic distinctions about the nature, number, and arrangement of predictor 
variables can be used in describing a variety of different types of between 

 designs. Some of the more common between designs can now be described. 
One-Way ANOVA. A design with a single categorical predictor variable is called
a one-way ANOVA design. For example, a study of 4 different fertilizers use
different individual plants could be analyzed via one-way ANOVA, with four le
for the factor Fertilizer.  
In genera, consider a single 

 
d on 

vels 

categorical predictor variable A with 1 case in each 
of its 3 categories. Using the sigma-restricted coding of A into 2 quantitative 
contrast variables, the matrix X defining the between design is  

 
That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the 
intercept), the case in group A1 is assigned a value of 1 on X1 and a value 0 o
X

n 

 -1 on X1 and a value -1 on X2. Of 
 If 

ase in group A3, the X 
matrix would be  

2, the case in group A2 is assigned a value of 0 on X1 and a value 1 on X2, and 
the case in group A3 is assigned a value of
course, any additional cases in any of the 3 groups would be coded similarly.
there were 1 case in group A1, 2 cases in group A2, and 1 c

 



w
group. For brevity, replicates usually are not shown when describing ANOVA 

here the first subscript for A gives the replicate number for the cases in each 

design matrices.  
Note that in one-way designs with an equal number of cases in each group, 
sigma-restricted coding yields X1 … Xk variables all of which have means of 0.  
Using the overparameterized model to represent A, the X matrix defining the 
between design is simply  

 
These simple examples show that the X matrix actually serves two purposes. It
specifies (1) the coding for the levels of the original predictor variables on the
variables used in the analysis as well as (2) the nature, number, and 
arrangement of the X variables, that is, the between design.  
Main Effect ANOVA. Main effect ANOVA designs contain separate one-way 
ANOVA designs for 2 or more 

 
 X 

categorical predictors. A good example of mai
effect ANOVA would be the typical analysis performed on 

n 
screening designs as 

described in the context of the Experimental Design chapter.  
Consider 2 categorical predictor variables A and B each with 2 categories. U
the 

sing 
sigma-restricted coding, the X matrix defining the between design is  

 
Note that if there are equal numbers of cases in each group, the sum of the 
cross-products of values for the X1 and X2 columns is 0, for example, with 1 case 
in each group (1*1)+(1*-1)+(-1*1)+(-1*-1)=0. Using the overparameterized model, 
the matrix X defining the between design is  



 
Comparing the two types of coding, it can be seen that the overparameterized 
coding takes almost twice as many values as the sigma-restricted coding to 
convey the same information.  
Factorial ANOVA. Factorial ANOVA designs contain X variables representing 
combinations of the levels of 2 or more categorical predictors (e.g., a study of 

oys and girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) 
esign). In particular, full-factorial designs represent all possible combinations of 

b
d
the levels of the categorical predictors. A full-factorial design with 2 categorical 
predictor variables A and B each with 2 levels each would be called a 2 x 2 full-
factorial design. Using the sigma-restricted coding, the X matrix for this design 
would be  

 
Several features of this X matrix deserve comment. Note that the X1 and X2 
columns represent main effect contrasts for one variable, (i.e., A and B, 
respectively) collapsing across the levels of the other variable. The X3 column 
instead represents a contrast between different combinations of the levels of A 
and B. Note also that the values for X3 are products of the corresponding values 
for X1 and X2. Product variables such as X3 represent the multiplicative or 
interaction effects of their factors, so X3 would be said to represent the 2-way 
interaction of A and B. The relationship of such product variables to the 
dependent variables indicate the interactive influences of the factors on 
responses above and beyond their independent (i.e., main effect) influences on 
responses. Thus, factorial designs provide more information about the 
relationships between categorical predictor variables and responses on the 



dependent variables than is provided by corresponding one-way or main effect 
designs.  
When many factors are being investigated, however, full-factorial designs 
sometimes require more data than reasonably can be collected to represent all 
possible combinations of levels of the factors, and high-order interactions 
between many factors can become difficult to interpret. With many factors, a 
useful alternative to the full-factorial design is the fractional factorial design. As 
an example, consider a 2 x 2 x 2 fractional factorial design to degree 2 with 3 
categorical predictor variables each with 2 levels. The design would inc
main effects for each variable, and all 2-way 

lude the 
interactions between the three 

variables, but would not include the 3-way interaction between all three variables.
Using the 

 
overparameterized model, the X matrix for this design is  

 
The 2-way interactions are the highest degree effects included in the design. 
These types of designs are discussed in detail the 2**(k-p) Fractional Factorial 
Designs section of the Experimental Design chapter.  
Nested ANOVA Designs. Nested designs are similar to fractional factorial 
designs in that all possible combinations of the levels of the categorical predictor 

nted in the design. In nested designs, however, the variables are not represe
omitted effects are lower-order effects. Nested effects are effects in which the 
nested variables never appear as main effects. Suppose that for 2 variables 
and B with 3 and 2 levels, respectively, the design includes the main effect for 
and the effect of B 

A 
A 

nested within the levels of A. The X matrix for this design 
using the overparameterized model is  



 
Note that if the sigma-restricted coding were used, there would be only 2 
columns in the X matrix for the B nested within A effect instead of the 6 columns 
in the X matrix for this effect when the overparameterized model codin
(i.e., columns X

g is used 

4 through X9). The sigma-restricted coding method is overly-
restrictive for nested designs, so only the overparameterized model is used to 
epresent r nested designs.  

S
p
say, 7, 4, and 9, and the design is for the first-order effect of P, the X matrix 
would be  

imple Regression. Simple regression designs involve a single continuous 
redictor variable. If there were 3 cases with values on a predictor variable P of, 

 
and using P for X1 the regression equation would be  
Y = b0 + b1P  
If the simple regression design is for a higher-order effect of P, say the quadratic
effect, the values in the X

 

1 column of the design matrix would be raised to the 
2nd power, that is, squared  

 
and using P2 for X1 the regression equation would be  
Y = b0 + b1P2  
The sigma-restricted and overparameterized coding methods do not apply to 
simple regression designs and any other design containing only continuous 
predictors (since there are no categorical predictors to code). Regardless of 



which coding method is chosen, values on the continuous predictor variables ar
raised to the desired power and used as the values for the X variables. No 
recoding is performed. It is therefore sufficient, in describing regression de

e 

signs, 
 simply describe the regression equation without explicitly describing the design to

matrix X.  
Multiple Regression. Multiple regression designs are to continuous predictor 
variables as main effect ANOVA designs are to categorical predictor variables, 
that is, multiple regression designs contain the separate simple regression 
designs for 2 or more continuous predictor variables. The regression equation for 
a multiple regression design for the first-order effects of 3 continuous predictor 
variables P, Q, and R would be  
Y = b0 + b1P + b2Q + b3R  
Factorial Regression. Factorial regression designs are similar to factorial ANOVA 
designs, in which combinations of the levels of the factors are represented in the 
design. In factorial regression designs, however, there may be many more such 
possible combinations of distinct levels for the continuous predictor variables 
than there are cases in the data set. To simplify matters, full-factorial regression 
designs are defined as designs in which all possible products of the continuous 
predictor variables are represented in the design. For example, the full-factorial 
regression design for two continuous predictor variables P and Q would include 
the main effects (i.e., the first-order effects) of P and Q and their 2-way P by Q 
interaction effect, which is represented by the product of P and Q scores for each 
case. The regression equation would be  
Y = b0 + b1P + b2Q + b3P*Q  
Factorial regression designs can also be fractional, that is, higher-order effects 
can be omitted from the design. A fractional factorial design to degree 2 for 3 
continuous predictor variables P, Q, and R would include the main effects and all 
2-way interactions between the predictor variables  
Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  



Polynomial Regression. Polynomial regression designs are designs which 
contain main effects and higher-order effects for the continuous predictor 
variables but do not include interaction effects between predictor variables. For 
example, the polynomial regression design to degree 2 for three continuous 
predictor variables P, Q, and R would include the main effects (i.e., the fir
effects) of P, Q, and R and their quadratic (i.e., second-order) effects, but not the
2-way 

st-order 
 

interaction effects or the P by Q by R 3-way interaction effect.  

me 
ubic 

ts 
  

tic response surface regression designs 

Y = b0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2  
Polynomial regression designs do not have to contain all effects up to the sa
degree for every predictor variable. For example, main, quadratic, and c
effects could be included in the design for some predictor variables, and effec
up the fourth degree could be included in the design for other predictor variables.
Response Surface Regression. Quadra
are a hybrid type of design with characteristics of both polynomial regression 
designs and fractional factorial regression designs. Quadratic response surf
regression designs contain all the same effects of polynomial regression desig
to degree 2 and additionally the 2-way 

ace 
ns 

interaction effects of the predictor 
variables. The regression equation for a quadratic response surface regres
design for 3 continuous predictor variables P, Q, and R would be  
Y = b

sion 

 is 

0 + b1P + b2P2 + b3Q + b4Q2 + b5R + b6R2 + b7P*Q + b8P*R + b9Q*R  
These types of designs are commonly employed in applied research (e.g., in 
industrial experimentation), and a detailed discussion of these types of designs
also presented in the Experimental Design chapter (see Central composite 
designs).  
Analysis of Covariance. In general, between designs which contain both 
categorical and continuous predictor variables can be called ANCOVA designs. 
Traditionally, however, ANCOVA designs have referred more specifically to 
designs in which the first-order effects of one or more continuous predictor 
variables are taken into account when assessing the effects of one or more 
categorical predictor variables. A basic introduction to analysis of covariance can 



also be found in the Analysis of covariance (ANCOVA) topic of the 
ANOVA/MANOVA chapter.  
To illustrate, suppose a researcher wants to assess the influences of a 
categorical predictor variable A with 3 levels on some outcome, and that 
measurements on a continuous predictor variable P, known to covary wi
outcome, are available.

th the 
 If the data for the analysis are  

 
then the sigma-restricted X matrix for the design that includes the separate first-

rder effects of P and A would be  o

 
The b2 and b3 coefficients in the regression equation  

 = b0 + b1X1 + b2X2 + b3X3  
present the influences of group membership on the A categorical predictor

Y
re  
ariable, controlling for the influence of scores on the P continuous predictor 
ariable. Similarly, the b1 coefficient represents the influence of scores on P 
ontrolling for the in raditional 

ANCOVA analysis g f A to the extent 
that P reduces the prediction error, that is, the residuals for the outcome variable.  

he X matrix for the same design using the overparameterized model

v
v

fluences of group membership on A. This t
ives a more sensitive test of the influence o

c

T  would be  



 
The interpretation is unchanged except that the influences of group membe
on the A 

rship 
categorical predictor variables are represented by the b2, b3 and b4 
ts in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4  
Separate Slope Designs. The traditional analysis of covariance (ANCOVA)

coefficien

 
design for categorical and continuous predictor variables is inappropriate when 
the categorical and continuous predictors interact in influencing responses on the 
outcome. The appropriate design for modeling the influences of the predictors in 
this situation is called the separate slope design. For the same example data 
used to illustrate traditional ANCOVA, the overparameterized X matrix for the 
design that includes the main effect of the three-level categorical predictor A and 
the 2-way interaction of P by A would be  

 
The b4, b5, and b6 coefficients in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6  
give the separate slopes for the regression of the outcome on P within each 
group on A, controlling for the main effect of A.  
As with nested ANOVA designs, the sigma-restricted coding of effects for 
separate slope designs is overly restrictive, so only the overparameterized model 
is used to represent separate slope designs. In fact, separate slope designs are 



identical in form to nested ANOVA designs, since the main effects for continuous 
predictors are omitted in separate slope designs.  

omogeneity of Slopes. The appropriate design for modeling the influences of 
ontinuous and categorical predictor

H
c  variables depends on whether the 

 categorical predictorscontinuous and  interact in influencing the outcome. The 
traditional analysis of covariance (ANCOVA) design for continuous and 
categorical predictor variables is appropriate when the continuous and 
categorical predictors do not interact in influencing responses on the outcome, 
and the separate slope design is appropriate when the continuous and 
categorical predictors do interact in influencing responses. The homogeneity of
slopes designs can be used to test whether the continuous and 

 
categorical 

predictors interact in influencing responses, and thus, whether the traditional 
ANCOVA design or the separate slope design is appropriate for modeling the 
effects of the predictors. For the same example data used to illustrate the 
traditional ANCOVA and separate slope designs, the overparameterized X matrix 
for the design that includes the main effect of P, the main effect of the three-level 
categorical predictor A, and the 2-way interaction of P by A would be  

 
If the b5, b6, or b7 coefficient in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7  
is non-zero, the separate slope model should be used. If instead all 3 of these 
regression coefficients are zero the traditional ANCOVA design should be used.  
The sigma-restricted X matrix for the homogeneity of slopes design would be  



 
Using this X matrix, if the b4, or b5 coefficient in the regression equation  
Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  
is
re

 non-zero, the separate slope model should be used. If instead both of these 
gression coefficients are zero the traditional ANCOVA design should be used.  

raphs  

s a 

Distance G
A graphic technique that is useful in analyzing Partial Least Squares designs i
distance graph. These graphs allow you to compute and plot distances from the 
origin (zero for all dimensions) for the predicted and residual statistics, loadings, 
and weights for the respective number of components.  

 
Based on Euclidean distances, these observation plots can be helpful in 
determining major contributors to the prediction of the conceptual variable(s) 
(plotting weights) as well as outliers that have a disproportionate influence 
(relative to the other observation) on the results (plotting residual values).  

 

 
 

 
 
 
 

 



 

Power Analysis 
 

  

General Purpose  
The techniques of statistical power analysis, sample size estimation, and 
advanced techniques for confidence interval estimation are discussed here. T
main goal of first the two techniques is to allow you to decide, while in the 
process of designing an experiment, (a) how large a sample is needed to e
statistical judgments that are accurate and reliable and (b) how likely your 
statistical test will be to detect effects of a given size in a particular situation. Th
third technique is useful in implementing objectives a and b and in evaluating 
size of experimental effects in practice.  
Performing power analysis and sample size estimation is an important aspe
experimental design, because without these calculations, sample size may be 
too high or too low. If sample size is too low, the experiment will lack the 
precision to provide reliable answers to the questions it is investigating. If sample 
size is too large, time and resources will be wasted, often for minimal gain. 
In some power analysis software programs, a number of graphica

he 

nable 

e 
the 

ct of 

 
l and analytical 

d 
 most commonly encountered statistical analyses. 

his information can be crucial to the design of a study that is cost-effective and 
cientifically useful.  

 estimation procedures and other sophisticated confidence 

tools are available to enable precise evaluation of the factors affecting power an
sample size in many of the
T
s
Noncentrality interval
interval procedures provide some sophisticated confidence interval methods for 
analyzing the importance of an observed experimental result. An increasing 
number of influential statisticians are suggesting that confidence interval 
estimation should augment or replace traditional hypothesis testing approaches 
in the analysis of experimental data.  



 
 

Power Analysis and Sample Size Calculation in 
Experimental Design  

There is a growing recognition of the importance of power analysis and sample 
size calculation in the proper design of experiments. Click on the links below for a 
discussion of the fundamental ideas behind these methods.   
Sampling Theory. In most situations in statistical analysis, we do not have access to an 
entire statistical population of interest, either because the population is too large, is not 
willing to be measured, or the measurement process is too expensive or time-consuming 
to allow more than a small segment of the population to be observed. As a result, we 
often make important decisions about a statistical population on the basis of a relatively 
small amount of sample data.  
Typically, we take a sample and compute a quantity called a statistic in order to 
estimate some characteristic of a population called a parameter.  
For example, suppose a politician is interested in the proportion of people who 
currently favor her position on a particular issue. Her constituency is a large city 

eter with a population of about 1,500,000 potential voters. In this case, the param
of interest, which we might call , is the proportion of people in the entire 
population who favor the politician's position. The politician is going to 
commission an opinion poll, in which a (hopefully) random sample of people
be asked whether or not they favor her position. The number (call it N) of people 

 will 

to be polled will be quite small, relative to the size of the population. Once these 
eople have been polled, the proportion of them favoring the politician's position 
ill be computed. This proportion, which is a statistic, can be called p.  

tain before the study is ever performed: p will not be 
equal to 

p
w
One thing is virtually cer

! Because p involves "the luck of the draw," it will deviate from . The 
amount by which p is wrong, i.e., the amount by which it deviates from , is 
called sampling error.  
In any one sample, it is virtually certain there will be some sampling error (except 
in some highly unusual circumstances), and that we will never be certain exactly 



how large this error is. If we knew the amount of the sampling error, this would 
imply that we also knew the exact value of the parameter, in which case we 
would not need to be doing the opinion poll in the first place.  

 general, the larger the sample size N, the smaller sampling error tends to be. 
ne can never be sure what will happen in a particular experiment, of course.) If 

ions about a parameter like 

In
(O
we are to make accurate decis , we need to have 

N 
 will 

 
ig 

l of precision?"  

r 
sic 

Hypothesis Testing. Suppose that the politician was interested in showing that 

more than the majority of people supported her position. Her question, in 
statistical terms: "Is 

an N large enough so that sampling error will tend to be "reasonably small." If 
is too small, there is not much point in gathering the data, because the results
tend to be too imprecise to be of much use.  
On the other hand, there is also a point of diminishing returns beyond which 
increasing N provides little benefit. Once N is "large enough" to produce a 
reasonable level of accuracy, making it larger simply wastes time and money.  
So some key decisions in planning any experiment are, "How precise will my
parameter estimates tend to be if I select a particular sample size?" and "How b
a sample do I need to attain a desirable leve
The purpose of Power Analysis and Sample Size Estimation is to provide you 
with the statistical methods to answer these questions quickly, easily, and 
accurately. A good statistical software program will provide simple dialogs fo
performing power calculations and sample size estimation for many of the clas
statistical procedures as well as special noncentral distribution routines to allow 
the advanced user to perform a variety of additional calculations.  

> .50?" Being an optimist, she believes that it is.  
In statistics, the following strategy is quite common. State as a "statistical null 
hypothesis" something that is the logical opposite of what you believe. Call this 
hypothesis H0. Gather data. Then, using statistical theory, show from the data 
that it is likely H0 is false, and should be rejected.  
By rejecting H0, you support what you actually believe. This kind of situation, 
which is typical in many fields of research, for example, is called "Reject-Support 



testing," (RS testing) because rejecting the null hypothesis supports the 
experimenter's theory.  

he null hypothesis is either true or false, and the statistical decision process is 
et up so that there are no "ties." The null hypothesis is either rejected or not 

ndertaking the experiment, we can be certain 
  

T
s
rejected. Consequently, before u
that only 4 possible things can happen. These are summarized in the table below

State of the World   
HO H1 

H0 Correct 
Acceptance 

Type II Error

 Decision 
H1 

Type I Error 

 
Correct 

Rejection 

Note that there are two kinds of errors represented in the table. Many statistics
textbooks present a point of view that is common in the social sciences, i.e., that 

 

, the Type I error rate, must be kept at or below .05, and that, if at all possible, 
, the Type II error rate, must be kept low as well. "Statistical power," which is 

equal to 1 - , must be kept correspondingly high. Ideally, power should be at 
least .80 to detect a reasonable departure from the null hypothesis.  
The conventions are, of course, much more rigid with respect to than with 
respect to . For example, in the social sciences seldom, if ever, is allowe
stray above the magical .05 mark.  
Significance Testing (RS/AS). In the context of significance testing, we can 
define two basic kinds of situations, reject-support (RS) (discussed above) and 
accept-support (AS). In RS testing, the null hypothesis is the opposite of what the
researcher actually believes, and rejecting it supports the researcher's theo

d to 

 
ry. In 

a two group RS experiment involving comparison of the means of an 
experimental and control group, the experimenter believes the treatment has an 
effect, and seeks to confirm it through a significance test that rejects the null 
hypothesis.  
In the RS situation, a Type I error represents, in a sense, a "false positive" for t
researcher's theory. From society's standpoint, such false positives are 

he 



particularly undesirable. They result in much wasted effort, especially when t
false positive is interesting from a theoretical or political standpoint (or both), and
as a result stimulates a substantial amount of research. Such follow-up research 
will usually not replicate the (incorrect) original work, and much confusion and 
frustration will result.  

he 
 

e 
experimenter's worthwhile idea will be 

quence, in RS on of journal editors and 
revie s e

In RS testing, a Type II error is a tragedy from the researcher's standpoint, 
because a theory that is true is, by mistake, not confirmed. So, for example, if a 
drug designed to improve a medical condition is found (incorrectly) not to 
produce an improvement relative to a control group, a worthwhile therapy will b
lost, at least temporarily, and an 
discounted. 
As a conse

 
 testing, society, in the pers

wers, in ists on k eping low. The statistic
makes it a top priority to keep 
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nthinkable, and that it is up to the researcher to make sure statistical power
 a certa

u  is 
dequate. One might argue how appropriate these views are in the context of RS a

testing, but they are not altogether unreasonable.  
In AS testing, the common view on error rates we described above is clearly 
inappropriate. In AS testing, H0 is what the researcher actually believes, so
accepting it supports the researcher's theory. In this case, a 

 
Type I error is a 

false 
 

false negative for the researcher's theory, and a Type II error constitutes a 
positive. Consequently, acting in a way that might be construed as highly virtuous
in the RS situation, for example, maintaining a very low Type I error rate like 
.001, is actually "stacking the deck" in favor of the researcher's theory in AS 
testing.  



In both AS and RS situations, it is easy to find examples where significance 
testing seems strained and unrealistic. Consider first the RS situation. In some 

 
s 

In such a case, it 

such situations, it is simply not possible to have very large samples. An example
that comes to mind is social or clinical psychological field research. Researcher
in these fields sometimes spend several days interviewing a single subject. A 
year's research may only yield valid data from 50 subjects. Correlational tests, in 
particular, have very low power when samples are that small. 
probably makes sense to relax beyond .05, if it means that reasonable power 
can be achieved.  
On the other hand, it is possible, in an important sense, to have power that is too
high. For example, one might be testing the hypothesis that two population 
means are equal (i.e., Mu1 = Mu2) with sample sizes of a million in each group. 
In this case, even with trivial differences between groups, the null hypothesis
would virtually always be rejected.  

 

 

he situation becomes even more unnatural in AS testingT . Here, if N is too high, 
the researcher almost inevitably decides against the theory, even when it turns 

ut, in an important sense, to be an excellent approximation to the data. It seems 
aradoxical indeed that in this context experimental precision seems to work 
gainst the researcher.  
o summarize:  

In Reject-Support researc

1. The researcher wants to reject H0.  

o
p
a
T

h:  

2. Society wants to control Type I error.  
3. The researcher must be very concerned about Type II error.  
4. High sample size works for the researcher.  
5. If there is "too much power," trivial effects become "highly significant." 

In Accept-Support research:  

1. The researcher wants to accept H0.  
2. "Society" should be worrying about controlling Type II error, although it 

sometimes gets confused and retains the conventions applicable to RS testing.  
3. The researcher must be very careful to control Type I error.  
4. High sample size works against the researcher.  



5. If there is "too much power," the researcher's theory can be "rejected" by a 
significance test even though it fits the data almost perfectly. 

 
 
Calculating Power. Properly designed experiments must ensure that power will be 
reasonably high to detect reasonable departures from the null hypothesis. Otherwis
experiment is hardly worth doing. Elementary textbooks contain detailed discussions of 
the factors influencing power in a statistical test. These include  

e, an 

 

large enough," but not 
wastefully large.  

3. The size of experimental effects. If the null hypothesis is wrong by a substantial 
 higher than if it is wrong by a small amount.  

xperimental measurements. Measurement error acts like 

e 

1. What kind of statistical test is being performed. Some statistical tests are 
inherently more powerful than others.  

2. Sample size. In general, the larger the sample size, the larger the power. However,
generally increasing sample size involves tangible costs, both in time, money, and 
effort. Consequently, it is important to make sample size "

amount, power will be
4. The level of error in e

"noise" that can bury the "signal" of real experimental effects. Consequently, 
anything that enhances the accuracy and consistency of measurement can increas
statistical power. 

 
 
Calculating Required Sample Size To ensure a statistical test will have adequ
power, one usually must perform special analyses prior to running the experim
calculate how large an N is required.  
Let's briefly examine the kind of statistical theory that lies at the foundation of th
calculations used to estimate power and sample size. Return to the original 
example of the politician, contemplating how large an opinion poll s

ate 
ent, to 

e 

hould be 
ken to suit her purposes.  
tatistical theory, of course, cannot tell us what will happen with any particular 

ng distribution, it can tell 
pinion polls of a 

rticular size.  
 repeated samples. 

m an opinion poll of size N, in the 

ta
S
opinion poll. However, through the concept of a sampli
us what will tend to happen in the long run, over many o
pa
A sampling distribution is the distribution of a statistic over
Consider the sample proportion p resulting fro
situation where the population proportion is exactly .50. Sampling distributio
theory tells us that p will have a distribution that can be calculated from the 

n 



binomial theorem. This distribution, for reasonably large N, and for values of p 
not too close to 0 or 1, looks very much like a normal distribution with a mean of 

and a standard deviation (called the "standard error of the proportion") of  

00. 
σp = (π(1-π)/N)**1/2  
Suppose, for example, the politician takes an opinion poll based on an N of 1
Then the distribution of p, over repeated samples, will look like this if = .5.  

 
The values are centered around .5, but a small percentage of values are greater 

 than .6 or less than .4. This distribution of values reflects the fact that an opinion
poll based on a sample of 100 is an imperfect indicator of the population 
proportion .  
If p were a "perfect" estimate of , the standard error of the proportion would be 

 of 
l" 

zero, and the sampling distribution would be a spike located at 0.5. The spread
the sampling distribution indicates how much "noise" is mixed in with the "signa
generated by the parameter.  
Notice from the equation for the standard error of the proportion that, as N 
increases, the standard error of the proportion gets smaller. If N becomes large 
enough, we can be very certain that our estimate p will be a very accurate on
Suppose the politician uses a decision criterion as follows. If the observed
of p is greater than .58, she will decide that the null hypothesis that 

e.  
 value 

is less th
or equal to .50 is false. This rejection rule is diagrammed below.  

an 



 
One may, by adding up all the probabilities (computable from the binomial 
distribution), determine that the probability of rejecting the null hypothesis whe
= .50 is .044. Hence, this decision rule controls the 

n p 
Type I Error rate, , at or 

elow .044. It turns out, this is the lowest decision criterion that maintains b at 
below .05.  
However, the politician is also concerned about power in this situation, beca
is by rejecting the null hypothesis that she is able to support the notion that sh
has public opinion on her side.  
Suppose that 55% of the people support the politician, that is, that 

or 

use it 
e 

= .55 and 
the null hypothesis is actually false. In this case, the correct decision is to reject 
the null hypothesis. What is the probability that she will obtain a sample 
proportion greater than the "cut-off" value of .58 required to reject the null 
hypothesis?  
In the figure below, we have superimposed the sampling distribution for p when 

= .55. Clearly, only a small percentage of the time will the politician reach the
correct decision that she has majority support. The probability of obtaining a p 
greater than .58 is only .241.  

 



 
Needless to say, there is no point in conducting an experiment in which, if your 
position is correct, it will only be verified 24.1% of the time! In this case a 
statistician would say that the significance test has "inadequate power to detect a 
departure of 5 percentage points from the null hypothesized value."  
The crux of the problem lies in the width of the two distributions in the preceding 
figure. If the sample size were larger, the standard error of the proportion would 
be smaller, and there would be little overlap between the distributions. Then it 
would be possible to find a decision criterion that provides a low and high 
power.  
The question is, "How large an N is necessary to produce a power that is 
reasonably high" in this situation, while maintaining at a reasonably low value.  
One could, of course, go through laborious, repetitive calculations in order to 

ng 

quires a power of .80 to detect a p of .80. It turns 
out, a sample size of 607 will yield a power of exactly .8009. (The actual alpha of 
this test, which has a nominal level of .05, is .0522 in this situation.)  

arrive at such a sample size. However, a good software program will perform 
them automatically, with just a few clicks of the mouse. Moreover, for each 
analytic situation that it handles, it will provide extensive capabilities for analyzi
and graphing the theoretical relationships between power, sample size, and the 
variables that affect them. Assuming that the user will be employing the well 
known chi-square test, rather than the exact binomial test, suppose that the 
politician decides that she re



 
 

Graphical Approaches to Power Analysis. In the preceding discussion, we 

arrived at a necessary sample size of 607 under the assumption that p is 
precisely .80. In practice, of course, we would be foolish to perform only one 
power calculation, based on one hypothetical value. For example, suppose the 
function relating required sample size to p is particularly steep in this case. It 
might then be that the sample size required for a p of .70 is much different than 
that required to reliably detect a p of .80.  
Intelligent analysis of power and sample size requires the construction, and 
careful evaluation, of graphs relating power, sample size, the amount by which 
the null hypothesis is wrong (i.e., the experimental effect), and other factors such 
as Type I error rate.  
In the example discussed in the preceding section, the goal, from the standpoint 
of the politician, is to plan a study that can decide, with a low probability of error, 
whether the support level is greater than .50. Graphical analysis can shed a 

a

 

considerable amount of light on the capabilities of a statistical test to provide the 
desired information under such circumstances.  
For example, the researcher could plot power against sample size, under the 

ssumption that the true level is .55, i.e., 55%. The user might start with a graph 
that covers a very wide range of sample sizes, to get a general idea of how the 
statistical test behaves. The following graph shows power as a function of
sample sizes ranging from 20 to 2000, using a "normal approximation" to the 
exact binomial distribution.  



 
The previou
considered to

s graph demonstrates that power reaches an acceptable level (often 
 be between .80 and .90) at a sample size of approximately 600.  

emember, however, that this calculation is based on the supposition that the 
ue value of p is .55. It may be that the shape of the curve relating power and 

sample size is very sensitive to this value. The question immediately arises, "how 
sensitive is the slope of this graph to changes in the actual value of p?  
There are a number of ways to address this question. One can plot power vs. 
sample size for other values of p, for example. Below is a graph of power vs. 
sample size for p = .6.  

R
tr

 
One can see immediately in the preceding graph that the improvement in power 
for increases in N occurs much more rapidly for p = .6 than for p = .55. The 

 shown below.  difference is striking if you merge the two graphs into one, as



 
In planning a study, particularly when a grant proposal must be submitted with a 
proposed sample size, one must estimate what constitutes a reasonable 
minimum effect that one wishes to detect, a minimum power to detect that effect, 
and the sample size that will achieve that desired level of power. This sample 
size can be obtained by analyzing the above graphs (additionally, some software 
packages can calculate it directly). For example, if the user requests the 
minimum sample size required to achieve a power of .90 when p = .55, some 
programs can calculate this directly. The result is reported in a spreadsheet, as 
below,  

One Proportion, Z 
(or Chi-Square) Test
H0: Pi < = Pi0   

Value 
Null Hypothesized Proportion (Pi0) .5000

Population Proportion (Pi) .5500

Alpha (Nominal) .0500

Required Power .9000

Required Sample Size (N) 853.0000

Actual Alpha (Exact) .0501

Power (Normal Approximation) .9001

Power (Exact) .9002

For a given level of power, a graph of sample size vs. p can show how sensitive 
the required sample size is to the actual value of p. This can be important in 
gauging how sensitive the estimate of a required sample size is. For example, 



the following graph shows values of N needed to achieve a power of .90 for 
various values of p, when the null hypothesis is that p = .50  

 
The preceding graph demonstrates how the required N drops off rapidly as p 
varies from .55 to .60. To be able to reliably detect a difference of .05 (from the 
null hypothesized value of .50) requires an N greater than 800, but reliable 
detection of a difference of .10 requires an N of only around 200. Obviously, 
then, required sample size is somewhat difficult to pinpoint in this situation. It is 
much better to be aware of the overall performance of the statistical test against 
a range of possibilities before beginning an experiment, than to be informed of an 
unpleasant reality after the fact. For example, imagine that the experimenter had 
estimated the required sample size on the basis of reliably (with power of .90) 
detecting a p of .6. The experimenter budgets for a sample size of, say, 220, and 
imagines that minor departures of p from .6 will not require substantial 
differences in N. Only later does the experimenter realize that a small change in 
requires a huge increase in N , and that the planning for the experiment was 
optimistic. In some such situations, a "window of opportunity" may close before 
the sample size can be adjusted upward.  
Across a wide variety of analytic situations, Power analysis and sample size 
estimation involve steps that are fundamentally the same.  

1. The type of analysis and null hypothesis are specified  
2. Power and required sample size for a reasonable range of effects is investigated.  



3. The sample size required to detect a reasonable experimental effect (i.e., departure 
from the null hypothesis), with a reasonable level of power, is calculated, while 
allowing for a reasonable margin of error.  

 
 
Noncentrality Interval Estimation and the Evaluation of 
Statistical Models  
Power Analysis and Interval Estimation includes a number of confidence intervals 
that are not widely available in general purpose statistics packages. Several of 
these are discussed within a common theoretical framework, called "noncentrality 
interval estimation," by Steiger and Fouladi (1997). In this section, we briefly 
review some of the basic rationale behind the emerging popularity of confidence 
intervals.  

Inadequacies of the Hypothesis Testing Approach. Strictly speaking, the 

outcome of a significance test is the dichotomous decision whether or not to 
reject the null hypothesis. This dichotomy is inherently dissatisfying to many 
scientists who use the null hypothesis as a statement of no effect, and are more 
interested in knowing how big an effect is than whether it is (precisely) zero. This 
has led to behavior like putting one, two, or three asterisks next to results in 
tables, or listing p levels next to results, when, in fact, such numbers, across (or 
sometimes even within!) studies need not be monotonically related to the best 
estimates of strength of experimental effects, and hence can be extremely 
misleading. Some writers (e.g., Guttman, 1977) view asterisk-placing behavior as 
inconsistent with the foundations of significance testing logic.  
Probability levels can deceive about the "strength" of a result, especially when 
presented without supporting information. For example, if, in an ANOVA table, 
one effect had a p level of .019, and the other a p level of .048, it might be an 
error to conclude that the statistical evidence supported the view that the first 
effect was stronger than the second. A meaningful interpretation would require 
additional information. To see why, suppose someone reports a p level of .001. 
This could be representative of a trivial population effect combined with a huge 



sample size, or a powerful population effect combined with a moderate sample 
size, or a huge population effect with a small sample. Similarly a p level of .075 

a powerful effect operating with a small sample, or a tiny effect could represent 
with a huge sample. Clearly then, we need to be careful when comparing p 
levels.  
In Accept-Support testing, which occurs frequently in the context of model fitting 
in factor analysis or "causal modeling," significance testing logic is basically
inappropriate. Rejection of an "almost true" null hypothesis in such situations 
frequently has been followed by vague statements that the rejection shouldn't be 
taken too seriously. Failure to reject a null hypothesis usually results in a demand 
by a vigilant journal editor for cumbersome power calculations. Such problems
can be avoided to some extent by using confidence intervals.  
 
 

Advantages of Interval Estimation. Much research is exploratory. The 

fundamental questions in exploratory research are "What is our best guess 
the size of the population effect?" and "How precisely have we determined the
population effect size from our sample data?" Significance t
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esting fails to answer 
these questions directly. Many a
rejection" of a null hypothesis, cannot resist the temptation to report that it was 
"sig
foll
lea
Confid
tes
between means. Recall first that the significance test rejects at the 

 researcher, faced with an "overwhelming 

nificant well beyond the .001 level." Yet it is widely agreed that a p level 
owing a significance test can be a poor vehicle for conveying what we have 

d about the strength of population efferne cts.  
ence interval estimation provides a convenient alternative to significance 

ting in most situations. Consider the 2-tailed hypothesis of no difference 
significance 

level if and only if the 1 - confidence interval for the mean difference excludes
the value zero. Thus the significance test can be performed with the confidence 
interval. Most undergraduate texts in behavioral statistics show how to compute 
such a confidence interval. The interval is exact under the assumptions of the 

 



standard t test. However, the confidence interval contains information about 
experimental precision that is not available from the result of a significance test. 
Assuming we are reasonably confident about the metric of the data, it is much 

 the 

 a more 

 several studies are 
graphed alongside one another, as in the figure below  

more informative to state a confidence interval on Mu1 - Mu2 than it is to give
p level for the t test of the hypothesis that Mu1 - Mu2 = 0 In summary, we might 
say that, in general, a confidence interval conveys more information, in
naturally usable form, than a significance test.  
This is seen most clearly when confidence intervals from

 
The figure shows confidence intervals for the difference between means for 3 
experiments, all performed in the same domain, using measures with 
approximately the same variability. Experiments 1 and 3 yield a confidence 
interval that fails to include zero. For these experiments, the null hypothesis was 
rejected. The second experiment yields a confidence interval that includes zero, 
so the null hypothesis of no difference is not rejected. A significance testing 
approach would yield the impression that the second experiment did not agree 
with the first and the third.  
The confidence intervals suggest a different interpretation, however. The first 
experiment had a very large sample size, and very high precision of 
measurement, reflected in a very narrow confidence interval. In this experiment, 
a small effect was found, and determined with such high precision that the null 
hypothesis of no difference could be rejected at a stringent significance level.  



The second experiment clearly lacked precision, and this is reflected in the very 
wide confidence interval. Evidently, the sample size was too small. It may well be 
that the actual effect in conditions assessed in the second experiment was larger 
than that in the first experiment, but the experimental precision was simply 
inadequate to detect it.  
The third experiment found an effect that was statistically significant, and 

g sections, there are several extremely useful 
s 

 

 

estimates are reported, they are often not the optimal ones. There are several 

perhaps substantially higher than the first experiment, although this is partly 
masked by the lower level of precision, reflected in a confidence interval that, 
though narrower than Experiment 2, is substantially wider than Experiment 1.  
Suppose the 3 experiments involved testing groups for differences in IQ. In the 
final analysis, we may have had too much power in Experiment 1, as we are 
declaring "highly significant" a rather miniscule effect substantially less than a 
single IQ point. We had far too little power in Experiment 2. Experiment 3 seems 
about right.  
Many of the arguments we have made on behalf of confidence intervals have 
been made by others as cogently as we have made them here. Yet, confidence 
intervals are seldom reported in the literature. Most important, as we 
demonstrate in the succeedin
confidence intervals that virtually never are reported. In what follows, we discus
why the intervals are seldom reported.  
 
 

Reasons Why Interval Estimates are Seldom Reported. In spite of the

obvious advantages of interval estimates, they are seldom employed in published
articles in many areas of science. On those infrequent occasions when interval 

reasons for this status quo:  
Tradition. Traditional approaches to statistics emphasize significance testing 
much more than interval estimation.  



Pragmatism. In RS situations, interval estimates are sometimes embarrassing.
When they are narrow but close to zero, they suggest that a "highly significant" 
result may be statistic

 

ally significant but trivial. When they are wide, they betray a 
lack of experimental precision.  
Ignorance. Many people are simply unaware of some of the very valuable interval 
estimation procedures that are available. For example, many textbooks on 
multivariate analysis never mention that it is possible to compute a confidence 
interval on the squared multiple correlation coefficient.  
Lack of availability. Some of the most desirable interval estimation procedures 
are computer intensive, and have not been implemented in major statistical 
packages. This has made it less likely that anyone will try the procedure.  
 
 

Replacing Traditional Hypothesis Tests with Interval Estimates. There 

are a number of confidence interval procedures that can replace and/or augment 
sting situations. For a review of 

 is 

 
fects?  

Fleischman (1980) discusses a technique for setting a confidence interval on the 
erall effect size in the Analysis of Variance. This technique allows one to set a 

confidence interval on the RMSSE, the root-mean-square standardized effect

the traditional hypothesis tests used in classical te
these techniques, see Steiger & Fouladi (1997).  
Analysis of Variance. One area where confidence intervals have seldom been 
employed is in assessing strength of effects in the Analysis of Variance 
(ANOVA).  
For example, suppose you are reading a paper, which reports that, in a 1-Way 
ANOVA, with 4 groups, and N = 60 per group, an F statistic was found that
significant at the .05 level ("F = 2.70, p =.0464"). This result is statistically 
significant, but how meaningful is it in a practical sense? What have we learned
about the size of the experimental ef

ov
. 

Standardized effects are reported in standard deviation units, and are hence 
measurement changes. So, for example, an remain constant when the unit of 



experimental effect reported in pounds would be different from the same effect 
ported in kilograms, whereas the standardized effectre  would be the same in 

 the data mentioned above, the F statistic that is each case. In the case of
significant at the .05 level yields a 90% confidence interval for the RMSSE that 
ranges from .0190 to .3139. The lower limit of this interval stands for a truly 
mediocre effect, less than 1/50th of a standard deviation. The upper limit of the 
interval represents effects on the order of 1/3 of a standard deviation, mo
but not overwhelming. It seems, then, that the results from this study need
imply really strong experimental effects, even though the effects are statistica
"significant."  
Multiple Regression. The squared multiple correlation is reported frequently as
an index of the overall strength of a prediction equation. After fitting a regression 
equation, the most natural questions t

derate 
 not 

lly 

 

o ask are, (a) "How effective is the 
is 

 multiple regression analysis. Publishing an observed 
squared multiple R together with the result of a hypothesis test that the 
population squared multiple correlation is zero, conveys little of the available 
statistical information. A confidence interval on the populations squared multiple 
correlation is much more informative.  
One software package computes exact confidence intervals for the population 
squared multiple correlation, following the approach of Steiger and Fouladi 
(1992). As an example, suppose a criterion is predicted from 45 independent 
observations on 5 variables and the observed squared multiple correlation is .40. 
In this case a 95% confidence interval for the population squared multiple 
correlation ranges from .095 to .562! A 95% lower confidence limit is at .129. On 
the other hand the sample multiple correlation value is significant "beyond the 
.001 level," because the p level is .0009, and the shrunken estimator is .327. 
Clearly, it is far more impressive to state that "the squared multiple R value is 

regression equation at predicting the criterion?" and (b) "How precisely has th
effectiveness been determined?"  
Hence, one very common statistical application that practically cries out for a 
confidence interval is



significant at the .001 level" than it is to state that "we are 95% confident that the 
population squared multiple correlation is between .095 and .562." But we 
believe the latter statement conveys the quality and meaning of the statistical 
result more accurately than the former.  
Some writers, like Lee (1972), prefer a lower confidence limit, or "statistical lower 
bound" on the squared multiple correlation to a confidence interval. The rationale, 
apparently, is that one is primarily interested in assuring that the percentage of 
variance "accounted for" in the regression equation exceeds some value. 
Although we understand the motivation behind this view, we hesitate to accept it. 
The confidence interval, in fact, contains a lower bound, but also includes an 
upper bound, and, in the interval width, a measure of precision of estimation. It 
seems to us that adoption of a lower confidence limit can lead to a false sense of 
security, and reduces that amount of information available in the model 

 
 
 
 
 
 
 
 
 
 
 
 

assessment process.  
 
 
 
 
 
 
 

 
 
 
 
 



 

Reliability and Item Analysis 

  
 

 
General Introduction  
In many areas of research, the precise measurement of hypothesized processes 
or variables (theoretical constructs) poses a challenge by itself. For example, in 
psychology, the precise measurement of personality variables or attitudes is 
usually a necessary first step before any theories of personality or attitudes can 
be considered. In general, in all social sciences, unreliable measurements of 

ly hamper efforts to predict their 
behavior. The issue of precision of measurement will also come up in applied 
research, whenever variables are difficult to observe. For example, reliable 
measurement of employee performance is usually a difficult task; yet, it is 
obviously a necessary precursor to any performance-based compensation 
system.  
In all of these cases, Reliability & Item Analysis may be used to construct reliable 
measurement scales, to improve existing scales, and to evaluate the reliability of 
scales already in use. Specifically, Reliability & Item Analysis will aid in the 
design and evaluation of sum scales, that is, scales that are made up of multiple 
individual measurements (e.g., different items, repeated measurements, different 

eory 
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ns 

people's beliefs or intentions will obvious

measurement devices, etc.). You can compute numerous statistics that allows 
you to build and evaluate scales following the so-called classical testing th
model.  
The assessment of scale reliability is based on the correlations between th
individual items or measurements that make up the scale, relative to the 
variances of the items. If you are not familiar with the correlation coefficient or the
variance statistic, we recommend that you review the respective discussio
provided in the Basic Statistics section.  
The classical testing theory model of scale construction has a long history, and 
there are many textbooks available on the subject. For additional detailed 



discussions, you may refer to, for example, Carmines and Zeller (1980), De 
Gruitjer and Van Der Kamp (1976), Kline (1979, 1986), or Thorndyke and Hag
(1977). A widely acclaimed "classic" in this area, with an 

en 
emphasis on 

psychological and educational testing, is Nunally (1970).  
Testing hypotheses about relationships between items and tests. Using 
Structural Equation Modeling and Path Analysis (SEPATH), you can test specific 
hypotheses about the relationship between sets of items or different tests (e.g., 
test whether two sets of items measure the same construct, analyze multi-trait, 
multi-method matrices, etc.).  
 
 

Basic Ideas  
Suppose we want to construct a questionnaire to measure people's prejudices 
against foreign- made cars. We could start out by generating a number of items 
such as: "Foreign cars lack personality," "Foreign cars all look the same," etc. We 
could then submit those questionnaire items to a group of subjects (for example, 

heir agreement with these statements on 9-point scales, anchored at 
1=disagree and 9=agree.  
True scores and error. Let us now consider more closely what we mean by 
precise measurement in this case. We hypothesize that there is such a thing 
(theoretical construct) as "prejudice against foreign cars," and that each item 
"taps" into this concept to some extent. Therefore, we may say that a subject's 
response to a particular item reflects two aspects: first, the response reflects the 
prejudice against foreign cars, and second, it will reflect some esoteric aspect of 
the respective question. For example, consider the item "Foreign cars all look the 
same." A subject's agreement or disagreement with that statement will partially 
depend on his or her general prejudices, and partially on some other aspects of 
the question or person. For example, the subject may have a friend who just 
bought a very different looking foreign car.  

people who have never owned a foreign-made car). We could ask subjects to 
indicate t



Testing hypotheses about relationships between items and tests. To test specific 
hypotheses about the relationship between sets of items or different tests (e.g., 
whether two sets of items measure the same construct, analyze multi- trait, multi-
method matrices, etc.) use Structural Equation Modeling (SEPATH).  
 
 

Classical Testing Model  
To summarize, each measurement (response to an item) reflects to some extent 
the true score for the intended concept (prejudice against foreign cars), and to 
some extent esoteric, random error. We can express this in an equation as: 
X = tau + error 
In this equation, X refers to the respective actual measurement, that is, subject's 
response to a particular item; tau is commonly used to refer to the true score, 
and error refers to the random error component in the measurement.  
 

 
reliable 

f reliability. From the above discussion, one can easily infer a 
measure or statistic to describe the reliability of an item or scale. Specifically, we 
may define an index of reliability in terms of the proportion of true score variability 
that is captured across subjects or respondents, relative to the total observed 
variability. In equation form, we can say:  

 

Reliability  
In this context the definition of reliability is straightforward: a measurement is 
reliable if it reflects mostly true score, relative to the error. For example, an item
such as "Red foreign cars are particularly ugly" would likely provide an un
measurement of prejudices against foreign- made cars. This is because there 
probably are ample individual differences concerning the likes and dislikes of 
colors. Thus, this item would "capture" not only a person's prejudice but also his 
or her color preference. Therefore, the proportion of true score (for prejudice) in 
subjects' response to that item would be relatively small.  
Measures o



Reliability = 2(true score) / 2(total observed)  
 
 

Sum Scales  
What will happen when we sum up several more or less reliable items designed 
to measure prejudice against foreign-made cars? Suppose the items were written 
so as to cover a wide range of possible prejudices against foreign-made cars. If 
the error component in subjects' responses to each question is truly random, 
then we may expect that the different components will cancel each other out 
across items. In slightly more technical terms, the expected value or mean of the 
error component across items will be zero. The true score component remains 
the same when summing across items. Therefore, the more items are added, the 
more true score (relative to the error score) will be reflected in the sum scale.  
Number of items and reliability. This conclusion describes a basic principle of test 
design. Namely, the more items there are in a scale designed to measure a 
particular concept, the more reliable will the measurement (sum scale) be. 
Perhaps a somewhat more practical example will further clarify this point. 
Suppose you want to measure the height of 10 persons, using only a crude stick 
as the measurement device. Note that we are not interested in this example in 
the absolute correctness of measurement (i.e., in inches or centimeters), but 
rather in the ability to distinguish reliably between the 10 individuals in terms of 

0 times, and then take the 
average of those 100 measurements as the summary of the respective person's 
height, then you will be able to make very precise and reliable distinctions 
between people (based solely on the crude measurement stick).  
Let us now look at some of the common statistics that are used to estimate the 
reliability of a sum scale.  

their height. If you measure each person only once in terms of multiples of 
lengths of your crude measurement stick, the resultant measurement may not be 
very reliable. However, if you measure each person 10



 
 

Cronbach's Alpha  
To return to the prejudice example, if there are several subjects who respond to 
our items, then we can compute the variance for each item, and the variance for 
the sum scale. The variance of the sum scale will be smaller than the sum of item 
variances if the items measure the same variability between subjects, that is, if 
they measure some true score. Technically, the variance of the sum of two items 
is equal to the sum of the two variances minus (two times) the covariance, that is, 
the amount of true score variance common to the two items.  
We can estimate the proportion of true score variance that is captured by the 
items by comparing the sum of item variances with the variance of the sum scale. 
Specifically, we can compute:  

= (k/(k-1)) * [1- (s2i)/s2sum]  
This is the formula for the most common index of reliability, namely, Cronbach's 
coefficient alpha ( ). In this formula, the si**2's denote the variances for the k 
individual items; **2 denotes the variance for the sum of all items. If there is 
no true score but only error in the items (which is esoteric and unique, and, 
therefore, uncorrelated across subjects), then the variance of the sum will be the 
same as the sum of variances of the individual items. Therefore, coefficient alpha 
will be equal to zero. If all items are perfectly reliable and measure the same 
thing (true score), then coefficient alpha is equal to 1. (Specifically, 1-

ssum

(si**2)/ssum**2 will become equal to (k-1)/k; if we multiply this by k/(k-1) we obtain 
1.)  
Alternative terminology. Cronbach's alpha, when computed for binary (e.g., 
true/false) items, is identical to the so-called Kuder-Richardson-20 formula of 
reliability for sum scales. In either case, because the reliability is actually 
estimated from the consistency of all items in the sum scales, the reliability 
coefficient computed in this manner is also referred to as the internal-consistency 
reliability.  



 
 

Split-Half Reliability  
An alternative way of computing the reliability of a sum scale is to divide it in 
some random manner into two halves. If the sum scale is perfectly reliable, we 
would expect that the two halves are perfectly correlated (i.e., r = 1.0). Less than 
perfect reliability will lead to less than perfect correlations. We can estimate the 
reliability of the sum scale via the Spearman-Brown split half coefficient:  
rsb = 2rxy /(1+rxy)  
In this formula, rsb is the split-half reliability coefficient, and rxy represents the 
correlation between the two halves of the scale.  
 
 

Correction for Attenuation  
Let us now consider some of the consequences of less than perfect reliability. 
Suppose we use our scale of prejudice against foreign-made cars to predict 
some other criterion, such as subsequent actual purchase of a car. If our scale 
orrelates with such a criterion, it would raise our confidence in the validity of the 
cale, that is, that it really measures prejudices against foreign-made cars, and 

 scale 

various external criteria that, in theory, should be related to the concept that is 
pposedly being measured by the scale.  

cted by less than perfect scale reliability? The random 
error portion of the scale is unlikely to correlate with some external criterion. 
Therefore, if the proportion of true score in a scale is only 60% (that is, the 
reliability is only .60), then the correlation between the scale and the criterion 
variable will be attenuated, that is, it will be smaller than the actual correlation of 
true scores. In fact, the validity of a scale is always limited by its reliability.  

c
s
not something completely different. In actual test design, the validation of a

 a lengthy process that requires the researcher to correlate the scale with is

su
How will validity be affe



Given the reliability of the two measures in a correlation (i.e., the scale and the 
criterion variable), we can estimate the actual correlation of true scores in both 
measures. Put another way, we can correct the correlation for attenuation:  
rxy,corrected = rxy /(rxx*ryy)½  
In this formula, rxy,corrected stands for the corrected correlation coefficient, that is, it 
is the estimate of the correlation between the true scores in the two measures x 
and y. The term rxy denotes the uncorrected correlation, and rxx and ryy denote 
the reliability of measures (scales) x and y. You can compute the attenuation 
correction based on specific values, or based on actual raw data (in which case 
the reliabilities of the two measures are estimated from the data).  
 
 

Designing a Reliable Scale  
After the discussion so far, it should be clear that, the more reliable a scale, the 
better (e.g., more valid) the scale. As mentioned earlier, one way to make a sum 
scale more valid is by adding items. You can compute how many items would 
have to be added in order to achieve a particular reliability, or how reliable the 
scale would be if a certain number of items were added. However, in practice, 
the number of items on a questionnaire is usually limited by various other factors 
(e.g., respondents get tired, overall space is limited, etc.). Let us return to our 
prejudice example, and outline the steps that one would generally follow in order 
to design the scale so that it will be reliable:  
Step 1: Generating items. The first step is to write the items. This is essentially a 
creative process where the researcher makes up as many items as possible that 
seem to relate to prejudices against foreign-made cars. In theory, one should 
"sample items" from the domain defined by the concept. In practice, for example 
in marketing research, focus groups are often utilized to illuminate as many 
aspects of the concept as possible. For example, we could ask a small group of 
highly committed American car buyers to express their general thoughts and 
feelings about foreign-made cars. In educational and psychological testing, one 



commonly looks at other similar questionnaires at this stage of the scale de
again, in order to gain as wide a perspective on the concept as possible.  
Step 2: Choosing items of optimum difficulty. In the first draft of our prejudice 
questionnaire, we will include as many items as possible. We then administer thi
questionnaire to an initial sample of typical respondents, and examine the re
for each item. First, we would look at various characteristics of the items, for 
example, in order to identify floor or ceiling effects. If all respondents agree o
disagree with an item, then it obviously does not help us discriminate between 
respondents, and thus, it is useless for the design of a reliable scale. In test 
construction, the proportion of respondents who agree or disagree with an item, 
or who answer a test item correctly, is often referred to as the item difficulty. 
essence, we would look at the item means and standard deviations and eliminate
those items that show extreme means, and zero or nearly zero variances.  
Step 3: Choosing internally consistent items. Remember that a reliable scale is 
made up of items that proportionately measure mostly true score; in our exam
we would like to select items that measure mostly prejudice against foreign-m
cars, and few esoteric aspects we consider random error. To do so, we wou
look at the following:  
STATISTICA 
RELIABL. 
ANALYSIS 

Summary for scale: Mean=46.1100 Std.Dv.=8.26444 Valid n:100
Cronbach alpha: .794313 Standardized alpha: .800491 
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Average inter-item corr.: .297818 
  

variable 
Mean if 
deleted 

Var. if 
deleted 

StDv. if
deleted

Itm-Totl
Correl.

Squared
Multp. R

Alpha if
deleted

ITEM1 
ITEM2 
ITEM3 
ITEM4 
ITEM5 
ITEM6 
ITEM7 
ITEM8 
ITEM9 

ITEM10 

41.61000 
41.37000 
41.41000 
41.63000 
41.52000 
41.56000 
41.46000 
41.33000 
41.44000 
41.66000 

51.93790 
53.79310 
54.86190 
56.57310 
64.16961 
62.68640 
54.02840 
53.32110 
55.06640 
53.78440 

7.206795
7.334378
7.406882
7.521509
8.010593
7.917474
7.350401
7.302130
7.420674
7.333785

.656298

.666111

.549226

.470852

.054609

.118561

.587637

.609204

.502529

.572875

.507160

.533015

.363895

.305573

.057399

.045653

.443563

.446298

.328149

.410561

.752243

.754692

.766778

.776015

.824907

.817907

.762033

.758992

.772013

.763314

 
 



Shown above are the results for 10 items. Of most interest to us are the three 
right-most columns. They show us the correlation between the respective item
and the total sum score (without th

 
e respective item), the squared multiple 

n the respective item and all others, and the internal 

 
e scale. Their correlations with the sum scale are .05 and .12, 

respectively, while all other items correlate at .45 or better. In the right-most 
column, we can see that the reliability of the scale would be about .82 if either of 
the two items were to be deleted. Thus, we would probably delete the two items 
from this scale.  
Step 4: Returning to Step 1. After deleting all items that are not consistent with 
the scale, we may not be left with enough items to make up an overall reliable 
scale (remember that, the fewer items, the less reliable the scale). In practice, 
one often goes through several rounds of generating items and eliminating items, 
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he tetrachoric 

 

eling). 

ime Series Analysis 

correlation betwee
consistency of the scale (coefficient alpha) if the respective item would be 
deleted. Clearly, items 5 and 6 "stick out," in that they are not consistent with the
rest of th

until one arrives at a final set that makes up a reliable scale.  
Tetrachoric correlations. In educational and psychological testing, it is common to
use yes/no type items, that is, to prompt the respondent to answer either yes or 
no to a question. An alternative to the regular correlation coefficient in that
is the so-called tetrachoric correlation coefficient. Usually, t
correlation coefficient is larger than the standard correlation coefficient, therefore,
Nunally (1970, p. 102) discourages the use of this coefficient for estimating 
reliabilities. However, it is a widely used statistic (e.g., in mathematical mod
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g and curve fitting techniques and autocorrelations), then we 

d 

n 
n. For more information on these topics, see the topic name below.  

   

General Introduction  
In the following topics, we will review techniques that are useful for analyzing 
time series data, that is, sequences of measurements that follow non-random 
orders. Unlike the analyses of random samples of observations that are 
discussed in the context of most other statistics, the analysis of time series is 
based on the assumption that successive values in the data file represent 
consecutive measurements taken at equally spaced time intervals.  

d in 
kins (1976), Kendall (1984), Kendall and Ord 

(1990), Montgomery, Johnson, and Gardiner (1990), Pankratz (1983), Shumway 
(1988), Vandaele (1983), Walker (1991), and Wei (1989).  
   

Two Main Goals  
There are two main goals of time series analysis: (a) identifying the nature of the 

casting 
 

the pattern is established, we can interpret and 
tegrate it with other data (i.e., use it in our theory of the investigated 
henomenon, e.g., sesonal commodity prices). Regardless of the depth of our 

understanding and the validity of our interpretation (theory) of the phenomenon, 
we can extrapolate the identified pattern to predict future events.  

In the following topics, we will first review techniques used to identify patterns in tim
series data (such as smoothin
will introduce a general class of models that can be used to represent time series data an
generate predictions (autoregressive and moving average models). Finally, we will 
review some simple but commonly used modeling and forecasting techniques based o
linear regressio

Detailed discussions of the methods described in this section can be foun
Anderson (1976), Box and Jen

phenomenon represented by the sequence of observations, and (b) fore
(predicting future values of the time series variable). Both of these goals require
that the pattern of observed time series data is identified and more or less 
formally described. Once 
in
p



 
 

 
Identifying Patterns in Time Series Data  

  

Systematic Pattern and Random Noise  
As in most other analyses, in time series analysis it is assumed that the data 
consist of a systematic pattern (usually a set of identifiable components) and 
random noise (error) which usually makes the pattern difficult to identify. Most 
time series analysis techniques involve some form of filtering out noise in order to 
make the pattern more salient.  

Two General Aspects of Time Series Patterns  
 series patterns can be described in terms of two basic classes of 

components: trend and seasonality. The former represents a general systematic 
linear or (most often) nonlinear component that changes over time and does not 
repeat or at least does not repeat within the time range captured by our data 
(e.g., a plateau followed by a period of exponential growth). The latter may have 
a formally similar nature (e.g., a plateau followed by a period of exponential 
growth), however, it repeats itself in systematic intervals over time. Those two 
general classes of time series components may coexist in real-life data. For 
example, sales of a company can rapidly grow over years but they still follow 
consistent seasonal patterns (e.g., as much as 25% of yearly sales each year are 
made in December, whereas only 4% in August).  

Most time



 
This general pattern is well illustrated in a "classic" Series G data set (Box and 
Jenkins, 1976, p. 531) representing monthly international airline passenger totals 
(measured in thousands) in twelve consecutive years from 1949 to 1960 (see 
example data file G.sta and graph above). If you plot the successive 
observations (months) of airline passenger totals, a clear, almost linear trend 
emerges, indicating that the airline industry enjoyed a steady growth over the 
years (approximately 4 times more passengers traveled in 1960 than in 1949). At 
the same time, the monthly figures will follow an almost identical pattern each 
year (e.g., more people travel during holidays then during any other time of the 
year). This example data file also illustrates a very common general type of 
pattern in time series data, where the amplitude of the seasonal changes 

 

stant 

 

ess 

such that the nonsystematic components of individual observations cancel each 

increases with the overall trend (i.e., the variance is correlated with the mean
over the segments of the series). This pattern which is called multiplicative 
seasonality indicates that the relative amplitude of seasonal changes is con
over time, thus it is related to the trend.  

Trend Analysis  
There are no proven "automatic" techniques to identify trend components in the 
time series data; however, as long as the trend is monotonous (consistently
increasing or decreasing) that part of data analysis is typically not very difficult. If 
the time series data contain considerable error, then the first step in the proc
of trend identification is smoothing.  
Smoothing. Smoothing always involves some form of local averaging of data 



other out. The most common technique is moving average smoothing which 
replaces each element of the series by either the simple or weighted average
n surrounding elements, where n is the width of the smoothing "window" (see 
Box & Jenkins, 1976; Velleman & Hoaglin, 1981). Medians can be used instead 
of means. The main advantage of median as compared to moving average 
smoothing is that its results are less biased by outliers (within the smoothing 
window). Thus, if there are outliers in the data (e.g., due to measurement erro
median smoothing typically produces smoother or at least more "reliable" cu
than moving average based on the same window width. The main disadvanta
of median smoothing is that in the absence of clear outliers it may produce more 
"jagged" cur

 of 

rs), 
rves 

ge 

ves than moving average and it does not allow for weighting.  

relatively 
 

 

Seasonal dependency (seasonality) is another general component of the time 
series pattern. The concept was illustrated in the example of the airline 
passengers data above. It is formally defined as correlational dependency of 
order k between each i'th element of the series and the (i-k)'th element (Kendall, 
1976) and measured by autocorrelation (i.e., a correlation between the two 
terms); k is usually called the lag. If the measurement error is not too large, 

In the relatively less common cases (in time series data), when the measurement 
error is very large, the distance weighted least squares smoothing or negative 
exponentially weighted smoothing techniques can be used. All those methods 
will filter out the noise and convert the data into a smooth curve that is 
unbiased by outliers (see the respective sections on each of those methods for
more details). Series with relatively few and systematically distributed points can
be smoothed with bicubic splines.  
Fitting a function. Many monotonous time series data can be adequately 
approximated by a linear function; if there is a clear monotonous nonlinear 
component, the data first need to be transformed to remove the nonlinearity. 
Usually a logarithmic, exponential, or (less often) polynomial function can be 
used.  

Analysis of Seasonality  



seasonality can be visually identified in the series as a pattern that repeats every 
k elements.  
Autocorrelation correlogram. Seasonal patterns of time series can be examined 

e 

via correlograms. The correlogram (autocorrelogram) displays graphically and 
numerically the autocorrelation function (ACF), that is, serial correlation 
coefficients (and their standard errors) for consecutive lags in a specified rang
of lags (e.g., 1 through 30). Ranges of two standard errors for each lag are 
usually marked in correlograms but typically the size of auto correlation is of 
more interest than its reliability (see Elementary Concepts) because we are 
usually interested only in very strong (and thus highly significant) 
autocorrelations.  
Examining correlograms. While examining correlograms one should keep in m
that autocorrelations for consecutive lags are formally dependent. Consider the 
following example. If the first element is closely related to the second, and the 
second to the third, then the first element must also be somewhat related to the 
third one, etc. This implies that the pattern of serial dependencies can change
considerably after removing the first order auto correlation (i.e., after differencing
the series with a lag of 1).  

ind 

 
 



 
 autocorrelations. Another useful method to examine serial dependen
amine the partial autocorrelation function (PACF) - an extension of 
rrelation, where the dependence on the intermediate elements (those 
the lag) is removed. In other words the partial autocorrelation is similar to 
rrelation, except that when calculating it, th

Partial cies 
is to ex
autoco
within 
autoco e (auto) correlations with all the 
ele
McDow i.e., there 
are
equiva
"cle
other s
Removing serial dependency. Serial dependency for a particular lag of k can be 
removed by differencing the series, that is converting each i'th element of the 
series into its difference from the (i-k)''th element. There are two major reasons 
for such transformations.  

ments within the lag are partialled out (Box & Jenkins, 1976; see also 
all, McCleary, Meidinger, & Hay, 1980). If a lag of 1 is specified (

 no intermediate elements within the lag), then the partial autocorrelation is 
lent to auto correlation. In a sense, the partial autocorrelation provides a 

aner" picture of serial dependencies for individual lags (not confounded by 
erial dependencies).  
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t, one can identify the hidden nature of seasonal dependencies in the series. 
ber that, as mentioned in the previous paragraph, autocorrelations for 

utive lags are interdependent. Therefore, removing some of the 
rrelations will change other a

t may make some other seasonalities more apparent.  
her reason for removing seasonal dependen

 which is necessary for ARIMA and other techniques.  
 
 

 
ARIMA  

  

 

General Introduction  
The modeling and forecasting procedures discussed in the Identifying Patterns in 
Time Series Data, involved knowledge about the mathematical model of the 
process. However, in real-life research and practice, patterns of the data are 
unclear, individual observations involve considerable error, and we still need not 
only to uncover the hidden patterns in the data but also generate forecasts. The 
ARIMA methodology developed by Box and Jenkins (1976) allows us to do just 

e 
. 

H

oduce the basic 
ideas of this methodology. For those interested in a brief, applications-oriented 
(non- mathematical), introduction to ARIMA methods, we recommend McDowall, 
McC

Two

that; it has gained enormous popularity in many areas and research practic
confirms its power and flexibility (Hoff, 1983; Pankratz, 1983; Vandaele, 1983)

owever, because of its power and flexibility, ARIMA is a complex technique; it is 
not easy to use, it requires a great deal of experience, and although it often 
produces satisfactory results, those results depend on the researcher's level of 
expertise (Bails & Peppers, 1982). The following sections will intr

leary, Meidinger, and Hay (1980).  

 Common Processes  



Aut t of elements that are serially 
dependent in the sense that one can estimate a coefficient or a set of coefficients 
that e-lagged 
(previous) elements. This can be summarized in the equation:  
xt = 

oregressive process. Most time series consis

 describe consecutive elements of the series from specific, tim

+ 1*x(t-1) + 2*x(t-2) + 3*x(t-3) + ... +  
Where: 
                 is a constant (intercept), and 
 1, 2, 3   are the autoregressive model parameters.  
Put e up of a random error component 
(ran

in words, each observation is mad
dom shock, ) and a linear combination of prior observations.  

Stat  process will only be stable 
if the parameters are within a certain range; for example, if there is only one 
autoregressive parameter then is must fall within the interval of -1 < 

ionarity requirement. Note that an autoregressive

< 1. 
Otherwise, past effects would accumulate and the values of successive xt' s 
would move towards infinity, that is, the series would not be stationary. If there is 
more than one autoregressive parameter, similar (general) restrictions on the 
parameter values can be defined (e.g., see Box & Jenkins, 1976; Montgomery, 
199
Mov autoregressive process, each 
elem ) 
that ponent, that is:  
xt =

0).  
ing average process. Independent from the 
ent in the series can also be affected by the past error (or random shock

 cannot be accounted for by the autoregressive com
 µ + t - 1* (t-1) - 2* (t-2) - 3* (t-3) - ...  

Whe
 µ   

re: 
             is a constant, and 

 1, 2, 3  are the moving average model parameters.  
Put in words, each observation is made up of a random error component 
(random shock, ) and a linear combination of prior random shocks.  
Inve g into too much detail, there is a "duality" 
between the moving average process and the autoregressive process (e.g., see 
Box 6; Montgomery, Johnson, & Gardiner, 1990), that is, the 

rtibility requirement. Without goin

 & Jenkins, 197



moving average equation above can be rewritten (inverted) into an 
auto owever, analogous to the stationarity 
condition described above, this can only be done if the moving average 
parameters follow certain conditions, that is, if the model is invertible. Otherwise, 
the series will not be stationary

regressive form (of infinite order). H

.  

ARIMA Methodology  
Autoregress x 
and e as well as moving average 
parameters, and explicitly includes differencing in the formulation of the model. 
Specifically, the three types of parameters in the model are: the autoregressive 
parameters (p), the number of differencing passes (d), and moving average 
parameters (q). In the notation introduced by Box and Jenkins, models are 
sum , 2) 
means that it contains 0 (zero) autoregressive (p) parameters and 2 moving 
ave ters which were computed for the series after it was 
diffe
Iden  earlier, the input series for ARIMA needs to be 
stat

ive moving average model. The general model introduced by Bo
 Jenkins (1976) includes autoregressiv

marized as ARIMA (p, d, q); so, for example, a model described as (0, 1

rage (q) parame
renced once.  
tification. As mentioned

ionary, that is, it should have a constant mean, variance, and autocorrelation 
thro ds to be differenced until it is 
stat

ugh time. Therefore, usually the series first nee
ionary (this also often requires log transforming the data to stabilize the 

vari e series needs to be differenced to achieve 
stat e the previous paragraph). In order 
to determine the necessary level of differencing, one should examine the plot of 
the ificant changes in level (strong upward or 
dow  non seasonal (lag=1) differencing; 
stro al differencing. 
Sea ng (see below). If the 
esti rder 
diffe , one should keep in mind that some time 

ance). The number of times th
ionarity is reflected in the d parameter (se

data and autocorrelogram. Sign
nward changes) usually require first order
ng changes of slope usually require second order non season
sonal patterns require respective seasonal differenci
mated autocorrelation coefficients decline slowly at longer lags, first o
rencing is usually needed. However



series may require little or no differencing, and that over differenced series 
produce less stable coefficient estimates.  
At this stage (which is usually called Identification phase, see below) we also 
need to decide how many autoregressive (p) and moving average (q) parameters 
are necessary to yield an effective but still parsimonious model of the process 
(parsimonious means that it has the fewest parameters and greatest number of 
degrees of freedom among all models that fit the data). In practice, the numbers 
of the p or q parameters very rarely need to be greater than 2 (see below for 
more specific recommendations).  
Estimation and Forecasting. At the next step (Estimation), the parameters are 
estimated (using function minimization procedures, see below; for more 
information on minimization procedures see also Nonlinear Estimation), so that 
the sum of squared residuals is minimized. The estimates of the parameters are 
used in the last stage (Forecasting) to calculate new values of the series (beyond 
those included in the input data set) and confidence intervals for those predicted 
values. The estimation process is performed on transformed (differenced) data; 
before the forecasts are generated, the series needs to be integrated (integration 
is the inverse of differencing) so that the forecasts are expressed in values 
compatible with the input data. This automatic integration feature is represented 
by the letter I in the name of the methodology (ARIMA = Auto-Regressive 
Integrated Moving Average).  
The constant in ARIMA models. In addition to the standard autoregressive and 
moving average parameters, ARIMA models may also include a constant, as 
described above. The interpretation of a (statistically significant) constant 
depends on the model that is fit. Specifically, (1) if there are no autoregressive 
parameters in the model, then the expected value of the constant is , the mean 
of the series; (2) if there are autoregressive parameters in the series, then the 
constant represents the intercept. If the series is differenced, then the constant 
represents the mean or intercept of the differenced series; For example, if the 
series is differenced once, and there are no autoregressive parameters in the 



model, then the constant represents the mean of the differenced series, and 
therefore the linear trend slope of the un-differenced series.  

Identification  
Number of parameters to be estimated. Before the estimation can begin, we 
need to decide on (identify) the specific number and type of ARIMA parameters 
to be estimated. The major tools used in the identification phase are plots of the 
series, correlograms of auto correlation (ACF), and partial autocorrelation 
(PACF). The decision is not straightforward and in less typical cases requires not 
only experience but also a good deal of experimentation with alternative models 
(as well as the technical parameters of ARIMA). However, a majority of empirical 
time series patterns can be sufficiently approximated using one of the 5 basic 
models that can be identified based on the shape of the autocorrelogram (ACF) 
and partial auto correlogram (PACF). The following brief summary is based on 
practical recommendations of Pankratz (1983); for additional practical advice, 
see also Hoff (1983), McCleary and Hay (1980), McDowall, McCleary, Meidinger, 
and Hay (1980), and Vandaele (1983). Also, note that since the number of 
parameters (to be estimated) of each kind is almost never greater than 2, it is 
often practical to try alternative models on the same data.  

1. One autoregressive (p) parameter: ACF - exponential decay; PACF - spike at lag 
1, no correlation for other lags.  

2. Two autoregressive (p) parameters: ACF - a sine-wave shape pattern or a set of 
exponential decays; PACF - spikes at lags 1 and 2, no correlation for other lags.  

3. One moving average (q) parameter: ACF - spike at lag 1, no correlation for other 
lags; PACF - damps out exponentially.  

4. Two moving average (q) parameters: ACF - spikes at lags 1 and 2, no correlation 
for other lags; PACF - a sine-wave shape pattern or a set of exponential decays.  

5. One autoregressive (p) and one moving average (q) parameter: ACF - 
exponential decay starting at lag 1; PACF - exponential decay starting at lag 1.  

Seasonal models. Multiplicative seasonal ARIMA is a generalization and extension of 
the method introduced in the previous paragraphs to series in which a pattern repeats 
seasonally over time. In addition to the non-seasonal parameters, seasonal parameters for 
a specified lag (established in the identification phase) need to be estimated. Analogous 
to the simple ARIMA parameters, these are: seasonal autoregressive (ps), seasonal 
differencing (ds), and seasonal moving average parameters (qs). For example, the model 
(0,1,2)(0,1,1) describes a model that includes no autoregressive parameters, 2 regular 



moving average parameters and 1 seasonal moving average parameter, and these 
parameters were computed for the series after it was differenced once with lag 1, and 
once seasonally differenced. The seasonal lag used for the seasonal parameters is usually 
determined during the identification phase and must be explicitly specified.  
The general recommendations concerning the selection of parameters to be 
estimated (based on ACF and PACF) also apply to seasonal models. The main 
difference is that in seasonal series, ACF and PACF will show sizable 

ll patterns 

m 

coefficients at multiples of the seasonal lag (in addition to their overa
reflecting the non seasonal components of the series).  

Parameter Estimation  
There are several different methods for estimating the parameters. All of the
should produce very similar estimates, but may be more or less efficient for any 
given model. In general, during the parameter estimation phase a function 
minimization algorithm is used (the so-called quasi-Newton method; refer to the 
description of the Nonlinear Estimationmethod) to maximize the likelihood 
(probability) of the observed series, given the parameter values. In practice, this 
requires the calculation of the (conditional) sums of squares (SS) of the 

nt methods have been 
proposed to compute the SS for the residuals: (1) the approximate maximum 
likelihood method according to McLeod and Sales (1983), (2) the approximate 
maximum likelihood method with backcasting, and (3) the exact maximum 
likelihood method according to Melard (1984).  
Comparison of methods. In general, all methods should yield very similar 
parameter estimates. Also, all methods are about equally efficient in most real-
world time series applications. However, method 1 above, (approximate 
maximum likelihood, no backcasts) is the fastest, and should be used in 
particular for very long time series (e.g., with more than 30,000 observations). 
Melard's exact maximum likelihood method (number 3 above) may also become 
inefficient when used to estimate parameters for seasonal models with long 
seasonal lags (e.g., with yearly lags of 365 days). On the other hand, you should 
always use the approximate maximum likelihood method first in order to establish 
initial parameter estimates that are very close to the actual final values; thus, 

residuals, given the respective parameters. Differe



usually only a few iterations with the exact maximum likelihood method (3, 
above) are necessary to finalize the parameter estimates.  
Parameter standard errors. For all parameter estimates, you will compute so-
called asymptotic standard errors. These are computed from the matrix of 
second-order partial derivatives that is approximated via finite differencing (see 
also the respective discussion in Nonlinear Estimation).  
Penalty value. As mentioned above, the estimation procedure requires that the 
(conditional) sums of squares of the ARIMA residuals be minimized. If the model 
is inappropriate, it may happen during the iterative estimation process that the 
parameter estimates become very large, and, in fact, invalid. In that case, it will 
assign a very large value (a so-called penalty value) to the SS. This usually 
"entices" the iteration process to move the parameters away from invalid ranges. 

er, in some cases even this strategy fails, and you may see on the screen 
(during the Estimation procedure) very large values for the SS in consecutive 

s of your model. If 
rs, and perhaps an intervention component 

ee below), you may try again with different parameter start values.  

Evaluation of the Model  
Parameter estimates. You will report approximate t values, computed from the 
parameter standard errors (see above). If not significant, the respective 
parameter can in most cases be dropped from the model without affecting 
substantially the overall fit of the model.  
Other quality criteria. Another straightforward and common measure of the 
reliability of the model is the accuracy of its forecasts generated based on partial 

tions.  
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iterations. In that case, carefully evaluate the appropriatenes
your model contains many paramete
(s

data so that the forecasts can be compared with known (original) observa



 
However, a good model should not only provide sufficiently accurate forecasts, it 
should also be parsimonious and produce statistically independent residuals that 
contain only noise and no systematic components (e.g., the correlogram of 

ial dependencies). A good test of the model is 
als and inspect them for any systematic trends, and (b) to 

hould be no serial dependency 
between residuals).  
Analysis of residuals. The major concern here is that the residuals are 
systematically distributed across the series (e.g., they could be negative in the 
first part of the series and approach zero in the second part) or that they contain 
some serial dependency which may suggest that the ARIMA model is 

esiduals constitutes an important test of the 
d h imation procedure assumes that the residual are not (auto-) 
r d  that they are normally distributed.  

e ARIMA method is appropriate only for a time series that is 
ti

residuals should not reveal any ser
(a) to plot the residu
examine the autocorrelogram of residuals (there s

inadequate. The analysis of ARIMA r
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cor
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onary
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sta  (i.e., its mean, variance, and autocorrelation should be approximately 
onstant through time) and it is recommended that there are at least 50 
bservations in the input data. It is also assumed that the values of the estimated 

A common research questions in time series analysis is whether an outside 
event affected subsequent observations. For example, did the implementation of 

c
o
parameters are constant throughout the series.  

Interrupted Time Series ARIMA  



a new economic policy improve economic performance; did a new anti-crime law
affect subsequent cri

 
me rates; and so on. In general, we would like to evaluate 

ne or more discrete events on the values in the time series. This 
type of interrupted time series analysis is described in detail in McDowall, 
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xponential Smoothing  

  

 

General Introduction  
Exponential smoothing has become very popular as a forecasting method for a 
wide variety of time series data. Historically, the method was independently 
developed by Brown and Holt. Brown worked for the US Navy during World War 
II, where his assignment was to design a tracking system for fire-control 
information to compute the location of submarines. Later, he applied this 
technique to the forecasting of demand for spare parts (an inventory control 
problem). He described those ideas in his 1959 book on inventory control. Holt's 
research was sponsored by the Office of Naval Research; independently, he 
developed exponential smoothing models for constant processes, processes with 
linear trends, and for seasonal data.  
Gardner (1985) proposed a "unified" classification of exponential smoothing 
methods. Excellent introductions can also be found in Makridakis, Wheelwright, 
and McGee (1983), Makridakis and Wheelwright (1989), Montgomery, Johnson, 
& Gardiner (1990).  

Simple Exponential Smoothing  

E



A simple and pragmatic model for a time series would be to consider each 
observation as consisting of a constant (b) and an error component (epsilon), 
that is: Xt = b + t. The constant b is relatively stable in each segment of the 
series, but may change slowly over time. If appropriate, then one way to isolate 
the true value of b, and thus the systematic or predictable part of the series, is to 
compute a kind of moving average, where the current and immediately preceding 
("younger") observations are assigned greater weight than the respective older 
observations. Simple exponential smoothing accomplishes exactly such 
weighting, where exponentially smaller weights are assigned to older 
observations. The specific formula for simple exponential smoothing is:  
St = *Xt + (1- )*St-1  
When applied recursively to each successive observation in the series, each new 
smoothed value (forecast) is computed as the weighted average of the current 
observation and the previous smoothed observation; the previous smoothed 
observation was computed in turn from the previous observed value and the 

h 
, where the 

smoothed value before the previous observation, and so on. Thus, in effect, eac
smoothed value is the weighted average of the previous observations
weights decrease exponentially depending on the value of parameter (alpha)
If 

. 
is equal to 1 (one) then the previous observations are ignored entirely; if is 

 

equal to 0 (zero), then the current observation is ignored entirely, and the 
smoothed value consists entirely of the previous smoothed value (which in turn is 
computed from the smoothed observation before it, and so on; thus all smoothed
values will be equal to the initial smoothed value S0). Values of in-between will 

Even though significant work has been done to study the theoretical properties of 
(simple and complex) exponential smoothing (e.g., see Gardner, 1985; Muth, 
1960; see also McKenzie, 1984, 1985), the method has gained popularity mostly 
because of its usefulness as a forecasting tool. For example, empirical research 

n simple exponential 
e recasting, from among 

produce intermediate results.  

by Makridakis et al. (1982, Makridakis, 1983), has show
smoothing to be the best choice for one-p riod-ahead fo



24 other time series methods and using a variety of accuracy measures (see als
Gross and Craig, 1974, for additional empirical evidence). Thu

o 
s, regardless of 

ocess underlying the observed time series, simple 
xponential smoothing will often produce quite accurate forecasts.  

the theoretical model for the pr
e

Choosing the Best Value for Parameter (alpha)  
ardner (1985) discusses various theoretical and empirical arguments G for 

oothing parameter. Obviously, looking at the formula 
presented above, 
selecting an appropriate sm

should fall into the interval between 0 (zero) and 1 (although, 
see Brenner et al., 1968, for an ARIMA perspective, implying 0< <2). Gardner 
(1985) reports that among practitioners, an smaller than .30 is usually 
recommended. However, in the study by Makridakis et al. (1982), values 
above .30 frequently yielded the best forecasts. After reviewing the literature on 
this topic, Gardner (1985) concludes that it is best to estimate an optimum from 
the data (see below), rather than to "guess" and set an artificially low value.  
Estimating the best value from the data. In practice, the smoothing parameter 
is often chosen by a grid search of the parameter space; that is, different 
solutions for are tried starting, for example, with = 0.1 to = 0.9, with 
increments of 0.1. Then is chosen so as to produce the smallest sums of 
squares (or mean squares) for the residuals (i.e., observed values minus one-
step-ahead forecasts; this mean squared error is also referred to as ex post 
mean squared error, ex post MSE for short).  

Indices of Lack of Fit (Error)  
The most straightforward way of evaluating the accuracy of the forecasts based 
on a particular value is to simply plot the observed values and the one-step-
ahead forecasts. This plot can also include the residuals (scaled against the right 
Y-axis), so that regions of better or worst fit can also easily be identified.  



 
This visual check of the accuracy of forecasts is often the most powerful method 
for determining whether or not the current exponential smoothing model fits the 
data. In addition, besides the ex post MSE criterion (see previous paragraph), 
there are other statistical measures of error that can be used to determine the 
optimum parameter (see Makridakis, Wheelwright, and McGee, 1983):  
Mean error: The mean error (ME) value is simply computed as the average error 
value (average of observed minus one-step-ahead forecast). Obviously, a 
drawback of this measure is that positive and negative error values can cancel 
each other out, so this measure is not a very good indicator of overall fit.  
Mean absolute error: The mean absolute error (MAE) value is computed as the 
average absolute error value. If this value is 0 (zero), the fit (forecast) is perfect. 
As compared to the mean squared error value, this measure of fit will "de-

uted as 
ost commonly 

 

 
ng to 

month, we may be satisfied if our prediction "hits the target" with about ±10% 

emphasize" outliers, that is, unique or rare large error values will affect the MAE 
less than the MSE value.  
Sum of squared error (SSE), Mean squared error. These values are comp
the sum (or average) of the squared error values. This is the m
used lack-of-fit indicator in statistical fitting procedures.  
Percentage error (PE). All the above measures rely on the actual error value. It
may seem reasonable to rather express the lack of fit in terms of the relative 
deviation of the one-step-ahead forecasts from the observed values, that is,
relative to the magnitude of the observed values. For example, when tryi
predict monthly sales that may fluctuate widely (e.g., seasonally) from month to 



accuracy. In other words, the absolute errors may be not so much of interest a
are the relative errors in the forecasts. To assess the relative error, vario
indices have been proposed (see Makridakis, Wheelwright, and McGee, 1983). 
The first one, the percentage error value, is computed as:  
PE

s 
us 

ced 

quared 

tely 

est parameter. A quasi-Newton function minimization 

t = 100*(Xt - Ft )/Xt  
where Xt is the observed value at time t, and Ft is the forecasts (smoothed 
values).  
Mean percentage error (MPE). This value is computed as the average of the PE 
values.  
Mean absolute percentage error (MAPE). As is the case with the mean error 
value (ME, see above), a mean percentage error near 0 (zero) can be produ
by large positive and negative percentage errors that cancel each other out. 
Thus, a better measure of relative overall fit is the mean absolute percentage 
error. Also, this measure is usually more meaningful than the mean s
error. For example, knowing that the average forecast is "off" by ±5% is a useful 
result in and of itself, whereas a mean squared error of 30.8 is not immedia
interpretable.  
Automatic search for b
procedure (the same as in ARIMA is used to minimize either the mean
error, mean absolute error, or mean absolute percentage error. In most cases, 
this procedure is more efficient than the grid search (particularly when more than
one parameter must be determined), and the optimum 

 squared 

 
parameter can quickly 

  
The first smoothed value S0. A final issue that we have neglected up to this point 
is the problem of the initial value, or how to start the smoothing process. If you 
look back at the formula above, it is evident that one needs an S0 value in order 
to compute the smoothed value (forecast) for the first observation in the series. 
Depending on the choice of the 

be identified.

parameter (i.e., when is close to zero), the 
cess can affect the quality of the forecasts for 

many observations. As with most other aspects of exponential smoothing it is 
initial value for the smoothing pro
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end  t e al value that produces the best forecasts. On the 
n  p e en e are many leading observations prior to a 
c fo  in alue will not affect that forecast by much, since 

t w a e m the smoothed series (due to the 
t e , the older an observation the less it will 

fluence the forecast).  

duced 
the 

g, more 
 have been developed to accommodate time series with 

seasonal and trend components. The general idea here is that forecasts are not 
only computed from consecutive previous observations (as in simple exponential 
smoothing), but an independent (smoothed) trend and seasonal component can 
be added. Gardner (1985) discusses the different models in terms of seasonality 
(none, additive, or multiplicative) and trend (none, linear, exponential, or 
damped).  
Additive and multiplicative seasonality. Many time series data follow recurring 
seasonal patterns. For example, annual sales of toys will probably peak in the 
months of November and December, and perhaps during the summer (with a 
much smaller peak) when children are on their summer break. This pattern will 
likely repeat every year, however, the relative amount of increase in sales during 
December may slowly change from year to year. Thus, it may be useful to 
smooth the seasonal component independently with an extra parameter, usually 
denoted as
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Seasonal and Non-seasonal Models With or Without Trend  
The discussion above in the context of simple exponential smoothing intro
the basic procedure for identifying a smoothing parameter, and for evaluating 
goodness-of-fit of a model. In addition to simple exponential smoothin
complex models

 (delta). Seasonal components can be additive in nature or 
multiplicative. For example, during the month of December the sales for a 
particular toy may increase by 1 million dollars every year. Thus, we could add to 

ber the amount of 1 million dollars (over the 

 sales 

our forecasts for every Decem
respective annual average) to account for this seasonal fluctuation. In this case, 
the seasonality is additive. Alternatively, during the month of December the



for a particular toy may increase by 40%, that is, increase by a factor of 1.4. 
Thus, when the sales for the toy are generally weak, than the absolute (dollar) 
increase in sales during December will be relatively weak (but the percenta
be constant); if the sales of the toy are strong, than the absolute (dollar) increas
in sales will be proportionately greater. Again, in this case the sales increase by a 
certain factor, and the seasonal component is thus multiplicative in nature (i.
the multipl

ge will 
e 

e., 
icative seasonal component in this case would be 1.4). In plots of the 

series, the distinguishing charac
com o al 
fluc a
case, the size of the seasonal fluctuations vary, depending on the overall level of 

mete

teristic between these two types of seasonal 
p nents is that in the additive case, the series shows steady season

tu tions, regardless of the overall level of the series; in the multiplicative 

the series.  
rThe seasonal smoothing para . In general the one-step-ahead forecasts 

moothed seasonal factor at time t minus p 
on). Thus, compared to simple exponential smoothing, the 
 by adding or multiplying the simple smoothed value by the 

predicted seasonal component. This seasonal component is derived analogous 
to the St value from simple exponential smoothing as:  
Additive model:  
It = It-p + 

are computed as (for no trend models, for linear and exponential trend models a 
trend component is added to the model; see below):  
Additive model:  
Forecastt = St + It-p  
Multiplicative model:  
Forecastt = St*It-p  
In this formula, St stands for the (simple) exponentially smoothed value of the 
series at time t, and It-p stands for the s
(the length of the seas
forecast is "enhanced"

*(1- )*et  
Multiplicative model:  
It = It-p + *(1- )*et/St  



Put in words, the predicted seasonal component at time t is computed as the 
respective seasonal component in the last seasonal cycle plus a portion of the 

 t). Considering the error (et; the observed minus the forecast value at time
formulas above, it is clear that parameter can assume values between 0 and 1
If it is zero, then the seasonal component for a particular point in time is predicted
to be identical to the predicted seasonal component for the respective time 
during the previous seasonal cycle, which in turn is predicted to be identical to 
that from the previous cycle, and so on. Thus, if 

. 
 

is zero, a constant unchan
easonal component is used to generate the one-step-ahead forecasts. If the 

ging 
s
parameter is equal to 1, then the seasonal component is modified "maximally" a
every step by the respective forecast error (times (1-

t 
), which we will ignore for 

the purpose of this brief introduction). In most cases, when seasonality is present 
n the time series, the optimum i parameter will fall somewhere between 0 (zer
and 1(one).  

o) 

e 
b ear sales increase by 1 
million dollars; during the second year the increase is only 80% over the previous 
year, i.e., $800,000; during the next year it is again 80% less than the previous 
year, i.e., $800,000 * .8 = $640,000; etc.). Each type of trend leaves a clear 
"signature" that can usually be identified in the series; shown below in the brief 
discussion of the different models are icons that illustrate the general patterns. In 
general, the trend factor may change slowly over time, and, again, it may make 
sense to smooth the trend component with a separate parameter (denoted 

Linear, exponential, and damped trend. To remain with the toy example above, 
the sales for a toy can show a linear upward trend (e.g., each year, sales 
increase by 1 million dollars), exponential growth (e.g., each year, sales increas

y a factor of 1.3), or a damped trend (during the first y

[gamma] for linear and exponential trend models, and [phi] for damped trend 
models).  

The trend smoothing parameters (linear and exponential trend) and (damped 
trend). Analogous to the seasonal component, when a trend component is 
included in the exponential smoothing process, an independent trend component 



is computed for each time, and modified as a function of the forecast error and 
the respective parameter. If the parameter is 0 (zero), than the trend 
component is constant across all values of the time series (and for all forecasts). 
If the parameter is 1, then the tr d component is modified "maximally" from 
observation to observation by the espective forecast error. Parameter values 

that fall in-between represent m tures of those two extremes. Parameter 

en
r

ix is a 
trend modification parameter, and affects how strongly changes in the trend will 
affect estimates of the trend for subsequent forecasts, that is, how quickly the 
trend will be "damped" or increased.  
 
 

 

  

General Introduction  
Suppose you recorded the monthly passenger load on international flights for a 
period of 12 years ( see Box & Jenkins, 1976). If you plot those data, it is 
apparent that (1) there appears to be a linear upwards trend in the passenger 
loads over the years, and (2) there is a recurring pattern or seasonality within 
each year (i.e., most travel occurs during the summer months, and a minor peak 
occurs during the December holidays). The purpose of the seasonal 
decomposition method is to isolate those components, that is, to de-compose the 
series into the trend effect, seasonal effects, and remaining variability. The 
"classic" technique designed to accomplish this decomposition is known as the 
Census I method. This technique is described and discussed in detail in 
Makridakis, Wheelwright, and McGee (1983), and Makridakis and Wheelwright 
(1989).  
General model. The general idea of seasonal decomposition is straightforward. 
In general, a time series like the one described above can be thought of as 

Classical Seasonal Decomposition (Census Method 1)  
  



consisting of four different components: (1) A seasonal component (denoted as 
St, where t stands for the particular point in time) (2) a trend component (Tt), (3) a 
cyclical component (Ct), and (4) a random, error, or irregular component (It). The 
difference between a cyclical and a seasonal component is that the latter occurs 
at regular (seasonal) intervals, while cyclical factors have usually a longer 
duration that varies from cycle to cycle. In the Census I method, the trend and 
cyclical components are customarily combined into a trend-cycle component 
(TCt). The specific functional relationship between these components can 
assume different forms. However, two straightforward possibilities are that they 
combine in an additive or a multiplicative fashion:  
Additive model:  
Xt = TCt + St + It  
Multiplicative model:  

t = Tt*Ct*St*It  
ere Xt stands for the observed value of the time series at time t. Given some a 

affecting the series (e.g., business 
onents can be used to compute 

forecasts for future observations. (However, the Exponential smoothing

X
H
priori knowledge about the cyclical factors 
cycles), the estimates for the different comp

 method, 
which can also incorporate seasonality and trend components, is the preferred 
technique for forecasting purposes.)  
Additive and multiplicative seasonality. Let us consider the difference between an 
additive and multiplicative seasonal component in an example: The annual sales 
of toys will probably peak in the months of November and December, and 
perhaps during the summer (with a much smaller peak) when children are on 
their summer break. This seasonal pattern will likely repeat every year. Seasonal 
components can be additive or multiplicative in nature. For example, during the 
month of December the sales for a particular toy may increase by 3 million 
dollars every year. Thus, we could add to our forecasts for every December the 
amount of 3 million to account for this seasonal fluctuation. In this case, the 
seasonality is additive. Alternatively, during the month of December the sales for 



a particular toy may increase by 40%, that is, increase by a factor of 1.4. Thus, 
when the sales for the toy are generally weak, then the absolute (dollar) increase 
in sales during December will be relatively weak (but the percentage will be 
constant); if the sales of the toy are strong, then the absolute (dollar) increase in 
sales will be proportionately greater. Again, in this case the sales increase by a 

erall level of 

., a 
); as with the seasonal 

lical 
r 

ditive 

certain factor, and the seasonal component is thus multiplicative in nature (i.e., 
the multiplicative seasonal component in this case would be 1.4). In plots of 
series, the distinguishing characteristic between these two types of seasonal 
components is that in the additive case, the series shows steady seasonal 
fluctuations, regardless of the overall level of the series; in the multiplicative 
case, the size of the seasonal fluctuations vary, depending on the ov
the series.  
Additive and multiplicative trend-cycle. We can extend the previous example to 
illustrate the additive and multiplicative trend-cycle components. In terms of our 
toy example, a "fashion" trend may produce a steady increase in sales (e.g
trend towards more educational toys in general
component, this trend may be additive (sales increase by 3 million dollars per 
year) or multiplicative (sales increase by 30%, or by a factor of 1.3, annually) in 
nature. In addition, cyclical components may impact sales; to reiterate, a cyc
component is different from a seasonal component in that it usually is of longe
duration, and that it occurs at irregular intervals. For example, a particular toy 
may be particularly "hot" during a summer season (e.g., a particular doll which is 
tied to the release of a major children's movie, and is promoted with extensive 
advertising). Again such a cyclical component can effect sales in an ad
manner or multiplicative manner.  

Computations  
The Seasonal Decomposition (Census I) standard formulas are shown in 
Makridakis, Wheelwright, and McGee (1983), and Makridakis and Wheelwright 
(1989).  



 
Moving average. First a moving average is computed for the series, with the 

oving average window width equal to the length of one season. If the length of 
e season is even, then the user can choose to use either equal weights for the 
oving average or unequal weights can be used, where the first and last 

bservation in the moving average window are averaged.  
atios or differences. In the moving average series, all seasonal (within-season) 
ariability will be eliminated; thus, the differences (in additive models) or ratios (in 
ultiplicative models) of the observed and smoothed series will isolate the 

easonal component (plus irregular component). Specifically, the moving 
verage is subtracted from the observed series (for additive models) or the 

ed by the moving average values (for multiplicative 
models).  
Seasonal components. The seasonal component is then computed as the 
average (for additive models) or medial average (for multiplicative models) for 
each point in the season.  

m
th
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o
R
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observed series is divid

 



(The medial average of a set of values is the mean after the smallest and largest 
values are excluded). The resulting values represent the (average) seasonal 
component of the series.  
Seasonally adjusted series. The original series can be adjusted by subtracting 
from it (additive models) or dividing it by (multiplicative models) the seasonal 
component.  

 
The resulting series is the seasonally adjusted series (i.e., the seasonal 
component will be removed).  
Trend-cycle component. Remember that the cyclical component is different from 
the seasonal component in that it is usually longer than one season, and different 
cycles can be of different lengths. The combined trend and cyclical component 
can be approximated by applying to the seasonally adjusted series a 5 point 
(centered) weighed moving average smoothing transformation with the weights 
of 1, 2, 3, 2, 1.  
Random or irregular component. Finally, the random or irregular (error) 
component can be isolated by subtracting from the seasonally adjusted series 
(additive models) or dividing the adjusted series by (multiplicative models) the 
trend-cycle component.  
 
 

 
X-11 Census Method II Seasonal Adjustment  



The general ideas of seasonal decomposition and adjustment are discussed in 
the context of the Census I seasonal adjustment method (Seasonal 
Decomposition (Census I)). The Census method II (2) is an extension and 

djustment method. Over the years, different versions of 
the nsus m hod lved at the Census Bureau; the method that has 
bec e most pula d is used most widely in government and business is the 
so-called X-1 arian the Census method II (see Hiskin, Young, & Musgrave, 
1967). Subsequently, the term X-11 has become synonymous with this refined 
ver n of the ensu . In addition to the documentation that can be 
obtained from the Census Bureau, a detailed summary of this method is also 
provided in Makridakis, Wheelwright, and McGee (1983) and Makridakis and 
Wheelwright (1989).  

  

Seasonal Adjustment: Basic Ideas and Terms.  
Suppose you recorded the monthly passenger load on international flights for a 
period of 12 years ( see Box & Jenkins, 1976). If you plot those data, it is 
apparent that (1) there appears to be an upwards linear trend in the passenger 
loads over the years, and (2) there is a recurring pattern or seasonality within 
each year (i.e., most travel occurs during the summer months, and a minor peak 

ays). The purpose of seasonal decomposition 
d adjustm  t la o om ents that is, to de-compose the series 

ct e effects, and remaining variability. The "classic" 
technique designed to accomplish this decomposition was developed in the 
1920's and is also known as the Census I method (see the Census I
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section). This technique is also described and discussed in detail in Makridakis, 
Wheelwright, and McGee (1983), and Makridakis and Wheelwright (1989).  
General model. The general idea of seasonal decomposition is straightforward. 
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cyclical componen ) d rro r irre lar component (It). The 
a c  that the latter occurs 

at regular (seasonal) intervals, while cyclical factors usually have a longer 
duration that varies from cycle to cycle. The trend and cyclical components are 
customarily combined into a trend-cycle component (TCt). The specific functional 
relationship between these components can assume different forms. However, 
two straightforward possibilities are that they combine in an additive or a 

Additive Mo
Ct + St

l: 

t t t*St t

Where:  
Xt represents the observed value of the time series at time t.  
Given some a priori knowledge about the cyclical factors affecting the series 
(e.g., business cycles), the estimates for the different components can be used to 
compute forecasts for future observations. (However, the Exponential smoothing

t (Ct), and (4  a ran om, e r, o gu
difference between  cy lical and a seasonal component is

multiplicative fashion:  
del:  

Xt = T  + It  
Multiplicativ
X  = T *C

e Mode
*I   

 

 
method, which can also incorporate seasonality and trend components, is the 
preferred technique for forecasting purposes.)  
Additive and multiplicative seasonality. Consider the difference between an 
additive and multiplicative seasonal component in an example: The annual sales 
of toys will probably peak in the months of November and December, and 

s during the s ith a much smaller peak) when children are on 
mer break. Th onal pattern will likely repeat every year. Seasonal 

components can be additive or multiplicative in nature. For example, during the 
month of December the sales for a particular toy may increase by 3 million 
dollars every year. Thus, you could add to your forecasts for every December the 
amount of 3 million to account for this seasonal fluctuation. In this case, the 

onth of December the sales for 
a particular toy may increase by 40%, that is, increase by a factor of 1.4. Thus, 
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les for the toy are generally weak, then the absolute (dollar) increase 
es during December will be relatively weak (but the percentage will be 

constant); if the sales of the toy are strong, then the absolute (dollar) increase in 
sales will be proportionately greater. Again, in this case the sales increase by a 
certain factor, and the seasonal component is thus multiplicative in nature (i.e., 
the multiplicative seasonal component in this case would be 1.4). In plots of 
series, the distinguishing characteristic between these two types of seasonal 
components is that in the additive case, the series shows steady seasonal 
fluctuations, regardless of the overall level of the series; in the multiplicative 
case, the size of the seasonal fluctuations vary, depending on the overall level of 
the series.  
Additive and multiplicative trend-cycle. The previous example can be extended to 
illustrate the additive and multiplicative trend-cycle components. In terms of the 
toy example, a "fashion" trend may produce a steady increase in sales (e.g., a 
trend towards more educational toys in general); as with the seasonal 
component, this trend may be additive (sales increase by 3 million dollars per 
year) or multiplicative (sales increase by 30%, or by a factor of 1.3, annually) in 
nature. In addition, cyclical components may impact sales. To reiterate, a cyclical 
component is different from a seasonal component in that it usually is of longer 
duration, and that it occurs at irregular intervals. For example, a particular toy 
may be particularly "hot" during a summer season (e.g., a particular doll which is 
tied to the release of a major children's movie, and is promoted with extensive 
advertising). Again such a cyclical component can effect sales in an additive 
manner or multiplicative manner.  

The Census II Method  
The basic method for seasonal decomposition and adjustment outlined in the 
Basic Ideas and Terms topic can be refined in several ways. In fact, unlike many 
other time-series modeling techniques (e.g., ARIMA) which are grounded in 
some theoretical model of an underlying process, the X-11 variant of the Census 
II method simply contains many ad hoc features and refinements, that over the 



years have proven to provide excellent estimates for many real-world 
applications (see Burman, 1979, Kendal & Ord, 1990, Makridakis & Wheelwright, 
1989; Wallis, 1974). Some of the major refinements are listed below.  
Trading-day adjustment. Different months have different numbers of days, and 
different numbers of trading-days (i.e., Mondays, Tuesdays, etc.). When 
analyzing, for example, monthly revenue figures for an amusement park, the 
fluctuation in the different numbers of Saturdays and Sundays (peak days) in the 
different months will surely contribute significantly to the variability in monthly 
revenues. The X-11 variant of the Census II method allows the user to test 
whether such trading-day variability exists in the series, and, if so, to adjust the 
series accordingly.  
Extreme values. Most real-world time series contain outliers, that is, extreme 
fluctuations due to rare events. For example, a strike may affect production in a 
particular month of one year. Such extreme outliers may bias the estimates of the 
seasonal and trend components. The X-11 procedure includes provisions to deal 
with extreme values through the use of "statistical control principles," that is, 
values that are above or below a certain range (expressed in terms of multiples 
of sigma, the standard deviation) can be modified or dropped before final 
estimates for the seasonality are computed.  

ement for outliers, extreme values, and different 
mbers of  applied more than once, in order to obtain 

sively th ponents. The X-11 method applies a 
ates to arrive at the final trend-

 seasonal, a  irregular components, and the seasonally adjusted series.  
Tests and summary statistics. In addition to estimating the major components of 
the series, various summary statistics can be computed. For example, analysis of 
variance tables can be prepared to test the significance of seasonal variability 
and trading-day variability (see above) in the series; the X-11 procedure will also 
compute the percentage change from month to month in the random and trend-
cycle components. As the duration or span in terms of months (or quarters for 
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quarterly X-11) increases, the change in the trend-cycle component will likely 
also increase, while the change in the random component should remain about 
the same. The width of the average span at which the changes in the random 
component are about equal to the changes in the trend-cycle component is 
called the month (quarter) for cyclical dominance, or MCD (QCD) for short. For 
example, if the MCD is equal to 2 then one can infer that over a 2 month span 
the trend-cycle will dominate the fluctuations of the irregular (random) 
component. These and various other results are discussed in greater detail 
below.  

Result Tables Computed by the X-11 Method  
The computations performed by the X-11 procedure are best discussed in the 
context of the results tables that are reported. The adjustment process is divided 
into seven major steps, which are customarily labeled with consecutive letters A 
through G.  

A. Prior adjustment (monthly seasonal adjustment only). Before any seasonal 
adjustment is performed on the monthly time series, various prior user- defined 
adjustments can be incorporated. The user can specify a second series that 
contains prior adjustment factors; the values in that series will either be subtracted 
(additive model) from the original series, or the original series will be divided by 
these values (multiplicative model). For multiplicative models, user-specified 
trading-day adjustment weights can also be specified. These weights will be used 
to adjust the monthly observations depending on the number of respective 
trading-days represented by the observation.  

B. Preliminary estimation of trading-day variation (monthly X-11) and weights. 
Next, preliminary trading-day adjustment factors (monthly X-11 only) and 
weights for reducing the effect of extreme observations are computed.  

r weights (monthly X- 
 in B above are then used to derive 

improved trend-cycle and seasonal estimates. These improved estimates are used 
to com in nthly X-11 only) and weights.  

e o -cycle, irregular, and seasonally 
justed -d s and weights computed in C above 

are used ates of the components.  
E. Modified original, seasonally adjusted, and irregular series. The original and 

final seasonally adjusted series, and the irregular component are modified for 
extremes. The resulting modified series allow the user to examine the stability of 
the seasonal adjustment.  

C. Final estimation of trading-day variation and irregula
11). The adjustments and weights computed

pute the final trad g-day factors (mo
D. Final 
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F. Month (quarter) for cyclical dominance (MCD, QCD), moving average, and 
summary measures. In this part of the computations, various summary measures 
(see below) are computed to allow the user to examine the relative importance of 
the different components, the average fluctuation from month-to-month (quarter-
to-quarter), the average number of consecutive changes in the same direction 
(average number of runs), etc.  

G. Charts. Finally, you will compute various charts (graphs) to summarize the 
results. For example, the final seasonally adjusted series will be plotted, in 
chronological order, or by month (see below).  

Specific Description of all Result Tables Computed by the X-11 Method  
In each part A through G of the analysis (see Results Tables Computed by the X-
11 Method), different result tables are computed. Customarily, these tables are 
numbered, and also identified by a letter to indicate the respective part of the 
analysis. For example, table B 11 shows the initial seasonally adjusted series; C 
11 is the refined seasonally adjusted series, and D 11 is the final seasonally 
adjusted series. Shown below is a list of all available tables. Those tables 
identified by an asterisk (*) are not available (applicable) when analyzing 

terly adjustment, some of the computations 
tlined bel rent; for example instead of a 12-term [monthly] 

moving ave erm [quarterly] moving average is applied to compute the 
l fa  initial trend-cycle estimate is computed via a centered 4-

end-cycle estimate in each part is computed by 

Bureau of the Census version of the X-11 
method, three levels of prin

n. (For 

quarterly series. (Also, for quar
ou ow are slightly diffe

rage, a 4-t
seasona
term moving average, the final tr

ctors; the

a 5-term Henderson average.)  
Following the convention of the 

tout detail are offered: Standard (17 to 27 tables), 
Long (27 to 39 tables), and Full (44 to 59 tables). In the description of each table 
below, the letters S, L, and F are used next to each title to indicate, which tables 
will be displayed and/or printed at the respective setting of the output optio
the charts, two levels of detail are available: Standard and All.)  
See the table name below, to obtain more information about that table.  

*A 1. Original Series(S)
* A 2. Prior Monthly Adjustment (S)Factors
* A 3. Original Series Adjusted by Prior Monthly Adjustment Factors(S)
* A 4. Prior Trading Day Adjustment Factors(S)



B 1. Prior Adju or Original Series(S)sted Series 
B 2. Trend-cycle (L )
B 3. Unmodified S-I Differences or Ratios(F)
B 4. Replacement Values for Extreme S-I Differences (Ratios)(F)
B 5. Seasonal Factors(F)
B 6. Seasonally Adjusted Series(F)
B 7. Trend-cycle(L)
B 8. Unmodified S-I Differences (Ratios)(F)
B 9. Replacement Values for Extreme S-I Differences (Ratios)(F)
B 10. Seasonal Factors(L)
B 11. Seasonally Adjusted Series(F)
B 12. (not used)  
B 13. Irregular Series (L)
Tables B 14 through B 16, B18, and B19: Adjustment for trading-day 
variation. These tables are only available when analyzing monthly series. 
Different months contain different numbers of days of the week (i.e., Mondays, 
Tuesdays, etc.). In some series, the variation in the different numbers of trading-
days may contribute significantly to monthly fluctuations (e.g., the monthly 
revenues of an amusement park will be greatly influenced by the number of 
Saturdays/Sundays in each month). The user can specify initial weights for each 
trading-day (see A 4), and/or these weights can be estimated from the data (the 
user can also choose to apply those weights conditionally, i.e., only if they 
explain a significant proportion of variance). 
* B 14. Extreme Irregular Values Excluded from Trading-day Regression (L)
* B 15. Preliminary Trading-day Regression (L)
* B 16. Trading-day Adjustment Factors Derived from Regression Coefficients 
(F)
B 17. Preliminary Weights for Irregular Component(L)
* B 18. Trading-day Factors Derived from Combined Daily Weights (F)
* B 19. Original Series Adjusted for Trading-day and Prior Variation(F)
C 1. Original Series Modified by Preliminary Weights and Adjusted for 
Trading-day and Prior Variation (L)
C 2. Trend-cycle (F)
C 3. (not used)  
C 4. Modified S-I Differences (Ratios) (F)
C 5. Seasonal Factors(F)
C 6. Seasonally Adjusted Series(F)
C 7. Trend-cycle(L)
C 8. (not used)  

erences (Ratios)(FC 9. Modified S-I Diff



C 10. Seasonal Factors (L)
C 11. Seasonally Adjusted Series (F> 
C 12. (not used) 

egular S
 
erC 13. Irr ies (S)

Tables C
variation
when ad
day adju

 14 thr
. These

justment
stment f

ou  C 18, and C 19: Adjustment for trading-day 
 ta  only available when analyzing monthly series, and 
 fo g-day variation is requested. In that case, the trading-
ac computed from the refined adjusted series, analogous 

to the adjustment performed in part B (B 14 through B 16, B 18 and B 19).  
* C 14. Extreme Irregular Values Excluded from Trading-day Regression (S)

gh C 16
bles are
r tradin

tors are 

,

* C 15. Final Trading-day Regression (S)
* C 16. Final Trading-day Adjustment Factors Derived from Regression X11 
output: Coefficients (S)
C 17. Final Weights for Irregular Component (S)
* C 18. Final Trading-day Factors Derived From Combined Daily Weights (S)
* C 19. Original Series Adjusted for Trading-day and Prior Variation (S)
D 1. Original Series Modified by Final Weights and Adjusted for Trading-day 
and Prior Variation (L)
D 2. Trend-cycle
D 3. (not used)  

dified S-D 4. Mo I D ces (Ratios) (F)ifferen
D 5. Seasonal Factors (F)
D 6. Seasonally Adjusted Series (F)
D 7. Trend-cycle (L)
D 8. Final Unmodified S-I Differences (Ratios) (S)
D 9. Final Replacement Values for Extreme S-I Differences (Ratios) (S)
D 10. Final Seasonal Factors (S)
D 11. Final Seasonally Adjusted Series (S)
D 12. Final Trend-cycle (S)
D 13. Final Irregular (S)
E 1. Modified Original Series (S)
E 2. Modified Seasonally Adjusted Series (S)
E 3. Modified Irregular Series (S)
E 4. Differences (Ratios) of Annual Totals (S)
E 5. Differences (Percent Changes) in Original Series (S)
E 6. Differences (Percent Changes) in Final Seasonally Adjusted Series (S)
F 1. MCD (QCD) Moving Average (S)
F 2. Summary Measures (S)
G 1. Chart (S)



G 2. Chart (S)
G 3. Chart (A)
G 4. Chart (A)

 
 

 

ppose 
 you want to determine the 

relationship between the number of inquiries that are received, and the number 
of orders that You could record those numbers 

ly for a one year nd then cor the two variables. However, 
quiries will pre de actual orders, and one can expect that the 

number of orders will follow the number of inquiries with some delay. Put another 
way, there will be a (time) lagged correlation between the number of inquiries 
and the number of orders that are received.  
Time-lagged correlations are particularly common in econometrics. For example, 
the benefits of investments in new machinery usually only become evident after 
some time. Higher income will change people's choice of rental apartments, 
however, this relationship will be lagged because it will take some time for people 
to terminate their current leases, find new apartments, and move. In general, the 
relationship between capital appropriations and capital expenditures will be 
lagged, because it will require some time before investment decisions are 
actually acted upon.  
In all of these cases, we have an independent or explanatory variable that affects 
the dependent variables with some lag. The distributed lags method allows you 
to investigate those lags.  

Distributed Lags Analysis Introductory Overview   

  

General Purpose  
Distributed lags analysis is a specialized technique for examining the 
relationships between variables that involve some delay. For example, su
that you are a manufacturer of computer software, and

 are placed by your customers. 
month  period, a relate 
obviously in ce



Detailed discussions of distributed lags correlation can be found in most 
econometrics textbooks, for example, in Judge, Griffith, Hill, Luetkepohl, and Lee 
(1985), Maddala (1977), and Fomby, Hill, and Johnson (1984). In the following 
paragraphs we will present a brief description of these methods. We will assume 

ee Basic Statisticsthat you are familiar with the concept of correlation (s ), and the 
basic ideas gression of multiple regression (see Multiple Re ).  

ral Mo
 d p v b ent or explanatory 

ariable x which are both measured repeatedly over time. In some textbooks, the 
ependent variable is also referred to as the endogenous variable, and the 

o 

Gene del  
Suppose we have a e endent aria le y and an independ
v
d
independent or explanatory variable the exogenous variable. The simplest way t
describe the relationship between the two would be in a simple linear 
relationship:  
Yt = i*xt-i  
In this equation, the value of the dependent variable at time t is expressed as a 
linear function of x measured at times t, t-1, t-2, etc. Thus, the dependent 
variable is a linear function of x, and x is lagged by 1, 2, etc. time periods. The 
beta weights ( i) can be considered slope parameters in this equation. You may 
ecognize this equation as a special case of the general linear regression

equation (see the 
r  

Multiple Regressionoverview). If the weights for the lagged 
time periods are statistically significant, we can conclude that the y variable is 
predicted (or explained) with the respective lag.  

A common problem that often ari or the multiple 
ear regres e  the values of adjacent (in time) 

 in the b igh corre d. In extreme cases, their independent 
utions a me so redundant that the correlation 

atrix of measures can no longer be inverted, and thus, the beta weights cannot 
e computed. In less extreme cases, the computation of the beta weights and 

their standard errors can become very imprecise, due to round-off error. In the 

Almon Distributed Lag  
ses when computing the weights f

lin
values

sion mod
x varia

el show
le are h

n abov
ly 

 is that
late

contrib to the prediction of y m y beco
m
b



context of Multiple Regression this general computational problem is d
as the multicollinearity or matrix ill-conditioning issue.  

iscussed 

 that will reduce the multicollinearity in this 
case peci  each weight in the linear regression 

ua ion in 

Almon (1965) proposed a procedure
. S fically, suppose we express

eq t the following manner:  

i = 0 + *i + ... + 1 q*i  
at in m

q  
any casAlmon could easier (i.e., it avoids the 

ulticollinearity problem) to estimate the alpha values than the beta weights 
irectly. Note that with this method, the precision of the beta weight estimates is 

dependent on the degree or order of the polynomial approximation.  
Misspecifications. A general problem with this technique is that, of course, the lag 
length and correct polynomial degree are not known a priori. The effects of 
misspecifications of these parameters are potentially serious (in terms of biased 
estimation). This issue is discussed in greater detail in Frost (1975), Schmidt and 
Waud (1973), Schmidt and Sickles (1975), and Trivedi and Pagan (1979).  

 show th es it is 
m
d

 
Single Spectrum (Fourier) Analysis  
Spectrum analysis is concerned with the exploration of cyclical patterns of data. 
The purpose of the analysis is to decompose a complex time series with cyclical 
components into a few underlying sinusoidal (sine and cosine) functions of 
particular wavelengths. The term "spectrum" provides an appropriate metaphor 

r the nature of this analysis: Suppose you study a beam of white sun light, 
hich at first looks like a random (white noise) accumulation of light of different 

wavelengths. However, when put through a prism, we can separate the different 
s that make up white sun light. In fact, via this 

technique we can now identify and distinguish between different sources of light. 
hus, by identifying the important underlying cyclical components, we have 
arned something about the phenomenon of interest. In essence, performing 

pectrum analysis on a time series is like putting the series through a prism in 
rder to identify the wave lengths and importance of underlying cyclical 
omponents. As a result of a successful analysis one might uncover just a few 

fo
w

wave lengths or cyclical component

T
le
s
o
c



recurring cycles of different lengths in the time series of interest, which at first 
oked more or less like random noise.  
 much cited example for spectrum analysis is the cyclical nature of sun spot 
ctivity (e.g., see Bloomfield, 1976, or Shumway, 1988). It turns out that sun spot 
ctivity varies over 11 year cycles. Other examples of celestial phenomena, 
eather patterns, fluctuations in commodity prices, economic activity, etc. are 
lso often used in the literature to demonstrate this technique. To contrast this 
chnique with ARIMA

lo
A
a
a
w
a
te  or Exponential Smoothing, the purpose of spectrum 

nalysis is to identify the seasonal fluctuations of different lengths, while in the 
rmer types of analysis, the length of the seasonal component is usually known 
r guessed) a priori and then included in some theoretical model of moving 

verages or autocorrelations.  

a
fo
(o
a

 

 
ross-spectrum Analysis   

  

eneral Introduction  
ross-spectrum analysis is an extension of Single Spectrum (Fourier) Analysis

C

G
C  to 
he simultaneous analysis  paragraphs, we will 

assume that you have already read the introduction to 
t of two series. In the following

single spectrum analysis. 
 

ncy. A much cited 
example for spectrum analysis is the cyclical nature of sun spot activity (e.g., see 
Bloomfield, 1976, or Shumway, 1988). It turns out that sun spot activity varies 
over 11 year cycles. Other examples of celestial phenomena, weather patterns, 
fluctuations in commodity prices, economic activity, etc. are also often used in 
the literature to demonstrate this technique.  

Detailed discussions of this technique can be found in Bloomfield (1976), Jenkins
and Watts (1968), Brillinger (1975), Brigham (1974), Elliott and Rao (1982), 
Priestley (1981), Shumway (1988), or Wei (1989).  
Strong periodicity in the series at the respective freque



The purpose of cross-spectrum analysis is to uncover the correlations between 

to weather phenomena here on earth. If so, then if we were to record those 
phenomena (e.g., yearly average temperature) and submit the resulting series to 
a cross-spectrum analysis together with the sun spot data, we may find that the 
weather indeed correlates with the sunspot activity at the 11 year cycle. That is, 
we may find a periodicity in the weather data that is "in-sync" with the sun spot 
cycles. One can easily think of other areas of research where such knowledge 
could be very useful; for example, various economic indicators may show similar 
(correlated) cyclical behavior; various physiological measures likely will also 
display "coordinated" (i.e., correlated) cyclical behavior, and so on.  

Basic Notation and Principles  
A simple example 
Consider the following two series with 16 cases:  
  VAR1 VAR2 

two series at different frequencies. For example, sun spot activity may be related 

1 
2 
3 
4 

1.000 
1.637 
1.148 
-.058 

-.058 
-.713 
-.383 
.006 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

-.713 
-.383 
.006 

-.483 
-1.441 
-1.637 
-.707 
.331 
.441 

-.058 
-.006 
.924 

-.483 
-1.441 
-1.637 
-.707 
.331 
.441 

-.058 
-.006 
.924 

1.713 
1.365 
.266 

 
 
At first sight it is not easy to see the relationship between the two series. 
However, as shown below the series were created so that they would contain two 
s ong corr d d s w lo e  of the ary from the tr elate  perio icitie . Sho n be w ar  parts summ



cross-spectrum analysis (the spectral estimates
3).  

AR1 
R2 

 were smoothed with a Parzen 
window of width 
Indep.(X): V
Dep.(Y): VA

  
Frequncy Period

  
 

X 
Densit

Cross  
y Dens

Y C
ity De

ross
nsity Quad 

Cross
Amplit.

0.0000
.06

00 
2500 16

.125000 8.

.187

.25
500 

0000 
5.
4.

.3

28571 

.05877

630

0
3
0

2
-.0

0
0
0

0.

.06059
2.31191

.14221

0

9
0

12500 3.
.375
.43

000 
7500 

2.
2.

.500000 2.

  
.00000 
00000 
33333 
00000 
20000 
66667 

00000 

.000000 
8.094709 

.024
7.798

1 .100
3.617294 
.333005 

3.8451
.278

.091897 .067

.052575 

.040248 
.036
.026

.037115 0.000

292
284

-.
2.

936 -.
54

685
-2.926
-.

056
633

-.
-.

000 0.

0000
5583 -7
4755

45
6941
7435
4253
3256
0000 0

00000
.58781

.02622

.00930

.00342

.00000

.00000
7.945114
.077020

3.729484
.304637
.078835
.04353
.03274

0.000000

 
 

Results for Each Variable  
The complete summary contains all spectrum statistics comp

e
uted for each 

variable, as described in the Singl  Spectrum (Fourier) Analysis overview 
iables show 

e  
r mary will also 

e e cross-
b

section. Looking at the results shown above, it is clear that both var
strong periodicities at the frequencies .0625 and .1875.  

Cross-periodogram, Cross-Density, Quadrature-density, Cross-
amplitud
Analogous to the results for the single va iables, the complete sum
display periodogram values for the cross periodogram. How ver, th
spectrum consists of complex num ers that can be divided into a real and an 

d  and 
r shor  (The reasons 

m thing are 
discussed in the Single Spectrum (Fourier) Analysis

imaginary part. These can be smoothed to obtain the cross- ensity
quadrature density (quad density fo t) estimates, respectively.
for smoothing, and the different co mon weight functions for smoo

.) The square root of the sum 
f the squared cross-density and quad-density values is called the cross- 

itude can be interpreted as a measure of covariance 
uency components in the two series. Thus we can 

o
amplitude. The cross-ampl
between the respective freq



conclude from the results shown in the table above that the .0625 and .1875 
frequency components in the two series covary.  

Squared Coherency, Gain, and Phase Shift  
There are additional statistics that can be displayed in the complete summary.  
Squared coherency. One can standardize the cross-amplitude values by 
squaring them and dividing by the product of the spectrum density estimates for 
each series. The result is called the squared coherency, which can be interpreted 
similar to the squared correlation coefficient (see Correlations - Overview), that 
is, the coherency value is the squared correlation between the cyclical 
components in the two series at the respective frequency. However, the 
coherency values should not be interpreted by themselves; for example, when 
the spectral density estimates in both series are very small, large coherency 
values may result (the divisor in the computation of the coherency values will be 
very small), even though there are no strong cyclical components in either series 
at the respective frequencies.  
Gain. The gain value is computed by dividing the cross-amplitude value by the 

tr  f th  se n the analy
Con in value  a e as the 
s e
P s  a p  of the 
r e o s e phase 
shift estima l ures of the extent 

t of one series leads the other.  

How the Example Data were Created  
Now, let us return to the example data set presented above. The large spectral 
density estimates for both series, and the cross-amplitude values at frequencies 

spec um density estimates for one o e two ries i sis. 
sequently, two ga s are computed, which c n be int rpreted 

tandard least squares regression coefficients for the r spective frequencies.  
ha e shift. Finally, the phase shift estimates re com uted as tan**-1 

atio of the quad density estimates ov r the cr ss-den ity estimate. Th
tes (usual y denoted by the Greek letter ) are meas

to which each frequency componen

= 0.0625 and = .1875 sug s i s in both 
ries at those frequencies. In fact, the two series were created as:  

v

gest two strong ynchronized per odicitie
se
1 = cos(2* *.0625*(v0-1)) + .75*sin(2* *.2*(

v
v0-1))  

2 = cos(2* *.0625*(v0+2)) + .75*sin(2* *.2*  (v0+2)) 



( the case d e  overview 
r o he period nto the d  
where v0 is  number). Indee , the analysis pr sented in this 
epr duced t icity "inserted" i ata very well.  

 
 
 
Spe o  Princi  
 

Frequency and Period  
e "wave length" of a sine or cosine function is typically expressed in terms of 

the number of cycles per unit r y), often denoted by the Greek letter 

ctrum Analysis - Basic Notati n and ples  

Th
time (F equenc

nu ( ; some text books also use f). For example, the number of letters handled 
in a post office may sh e th a large 
amount of mail is sent (many bills come due on the first of the month), then the 
amount of mail decreases in the middle of the month, then it increases again 
towards the end of th r  the fluctu n the 
amo d by the g g c hus, if the 
u qual to 12 ld be 12 
c ar. Of co ikely be o c  t 
f e might u s

ow 12 cycles per year: On the first of ev ry mon

e month. Therefore, eve y month ation i
unt of mail handle  post office will o throu h a full ycle. T

nit of analysis is one year, then n would be e , as there wou
ycles per ye urse, there will l ther cy les with differen
requencies. For example, ther  be ann al cycle  ( =1), erhaps 
eekly cycles <

 and p
w ( =52 weeks per year).  
The period T required 

r one full cycle. Thus, it is the reciprocal of the frequency, or: T = 1/
 of a sine or cosine function is defined as the length of time 

fo . To return 
to the mail example in the previous paragraph, the monthly cycle, expressed in 
yearly terms, would be equal to 1/12 = 0.0833. Put into words, there is a period in 
the series of length 0.0833 years.  

The General Structural Model  
As mentioned before, the purpose of spectrum analysis is to decompose the 
original series into underlying sine and cosine functions of different frequencies, 
in order to determine those that appear particularly strong or important. One way 
to do so would be to cast the issue as a linear Multiple Regression problem, 
where the dependent variable is the observed time series, and the independent 



variables are the sine functions of all possible (discrete) frequencies. Such a 
linear multiple regression model may be written as:  
xt = a0 + [ak*cos( k*t) + bk*sin( k*t)]    (for k = 1 to q)  
Following the common notation from classical harmonic analysis, in this equation 

(lambda) is the frequency expressed in terms of radians per unit time, that is: 
= 2* * k, where is the constant pi=3.14... and k = k/q. What is important 

here is to recognize that the computational problem of fitting sine and cosine 
functions of different lengths to the data can be considered in terms of multiple 
linear regression. Note that the cosine parameters ak and sine parameters bk are 
regression coefficients that tell us the degree to which the respective functions 
are correlated with the data. Overall there are q different sine and cosine 
functions; intuitively (as also discussed in Multiple Regression), it should be clear 
that we cannot have more sine and cosine functions than there are data points in 
the series. Without going into detail, if there are N data points in the series, then 
there will be N/2+1 cosine functions and N/2-1 sine functions. In other words, 

ill s m iffe sin al w  as  ar a p  an
wi e c d  o g n
(N  t e r s  n
usually be ignored; in order for a id t e
lea tw s a o .
To m , m e e t in o

nctions of different frequency with the observed data. If a large correlation (sine 
or cosine coefficient) is identified, one can conclude that there is a strong 
pe di c )
Complex numbers (real aginary n ) y
spectrum analysis, the structural s b d

mplex numbers, that is, the parameter estimation process is described in terms 
of  F r r real and i r
numbe s n a n in
Imaginary numbers, by definition, are numbers that are multiplied 

there w  be a any d rent usoid aves  there e dat oints, d we 
ll b able to ompletely repro uce the series fr m the underlyin  functio s. 
ote hat if th  numbe  of cases in the eries is odd, the  the last data point will 

 sinuso al func ion to be identifi d, you need at 
st o point : the high peak nd the l w peak )  
 su marize  spectru  analysis will id ntify th  correla ion of s e and c sine 

fu

rio city of the respe tive frequency (or period  in the data.  
and im umbers . In man  text books on 

 model hown a ove is presente  in terms of 
co

 the ourier t ansform of a se ies into magina y parts. Complex 
rs are the super et that i cludes ll real a d imag ary numbers. 

by the constant 



i, r f t re root of
es not exist, hence the term imaginary number; however, meaningful 

arithmetic operations on a b   (e.g., [i
-4). It is useful to think o n n bers as 
dimensional plane, where the horizontal or 
and the vertical or y numbers. Complex numbers 

n then be represented as points in the two- dimensional plane. For example, 
th m y  
in  p a r examp
on a c x numbe
origin (complex number 0+i*0), and mea
horizon o s c omposi

rmula shown above, consisting of sine and cosine functions, can be rewritten in 
terms of operations on complex s ,
mathematical discussion and required computations are often more elegant and 
ea r  
sp ru  

A Simple Example  
humway (1988) presents a simple example to clarify the underlying 

"mechanics" of spectrum analysis. Let us create a series with 16 cases following 
en see how we may "extract" the information 

that was put in it. First, create a variable and define it as:  
x = 1*cos(2

whe e i is de ined as he squa  -1. Obviously, the square root of -1 
do

 imagin ry num ers can still be performed *2]**2= 
f real a d imagi ary num forming a two 

X-axis represents all real numbers, 
Y-axis represents all imaginar

ca
e co plex number 3+i*2 can be represented b  a point with coordinates {3,2} 
 this lane. One can also think of complex numbers as ngles, fo le, 
e c n conne t the point representing a comple r in the plane with the 

sure the angle of that vector to the 
tal line. Thus, intuitively ne can ee how the spe trum dec tion 

fo
number . In fact  in this manner the 

sie to perform; which is why many text books prefer the presentation of 
ect m analysis in terms of complex numbers.  

S

the equation shown above, and th

* *.0625*(v0-1)) + .75*sin(2* *.2*(v0-1))  
This variable is made up of two underlying periodicities: The first at the frequency 
of =.0625 (or period 1/ =16; one observation completes 1/16'th of a full cycle, 
and a full cycle is completed every 16 observations) and the second at the 
frequency of =.2 (or period of 5). The cosine coefficient (1.0) is larger than the 
sine coefficient (.75). The spectrum analysis summary is shown below.  

  Spectral analysis:VAR1 (shumex.sta)
No. of cases: 16 

  
t 

Freq- 
uency 

  
Period 

Cosine 
Coeffs 

Sine 
Coeffs 

Period-
ogram



0 
1 
2 
3 
4 
5 
6 
7 
8 

.0000 

.0625 

.1250 

.1875 

.2500 

.3125 

.3750 

.4375 

.5000 

  
16.00 
8.00 
5.33 
4.00 
3.20 
2.67 
2.29 
2.00 

.000 
1.006 
.033 
.374 

-.144 
-.089 
-.075 
-.070 
-.068 

0.000 
.028 
.079 
.559 

-.144 
-.060 
-.031 
-.014 
0.000 

.000
8.095 

.059 
3.617 

.333 

.092 

.053 

.040 

.037

 
Let us now review the columns. Clearly, the largest cosine coefficient can be 
found for the .0625 frequency. A smaller sine coefficient can be found at 
frequency = .1875. Thus, clearly the two sine/cosine frequencies which were 

 data file are reflected in the above table.  

Periodogram  
The sine and cosine functions are mutually independent (or orthogonal); thus we 

m  squa  coef ents for each frequency to obtain the periodogr
Specifically
Pk 2 2  
where p lu q

"inserted" into the example

may su the red fici am. 
, the periodogram values above are computed as:  

 = sine coefficientk  + cosine coefficientk  * N/2 
Pk is the eriodogram va e at fre uency k and N g

the series. The periodogram valu  b r  t  v
ums of squares) of the data at the respective frequency or period. Customarily, 

th eri  te n e e io

is the overall len th of 
es can e interp eted in erms of ariance 

(s
e p odogram values are plot d agai st the fr quenci s or per ds.  

 
T r o a

 the example above, a sine function with a frequency of 0.2 was "inserted" into 
th ri e c f g  (1 e

he P oblem f Leak ge  
In

e se es. How ver, be ause o the len th of the series 6), non  of the 



fr en o a ts a n r n
happens in those cases is that th c q  a
frequen r l  la ri m values for two 
adjacent frequencies, when, in fac

hat falls in-between those implied by the length of 
the series. There are three wa ro f
le ge

By padding the series one ma
B n r  t a  u

• By smoothing the periodogram one may identify the general frequency "regions" 
or (spectral densities) that significantly contribute to the cyclical behavio  of the 
s

Se lo s  o p s

Padding the Time Series  
Because the frequency values are computed as N n f f

e may simply pad the series with a constant (e.g., zeros) and thereby 
in uc e  the frequency values. In a sense, padding allows 
on  a i e  d  f e d
described in the example above wit
that is, the largest periodogram peaks would still occur at the frequency values 
losest to .0625 and .2. (Padding is also often desirable for computational 

w.)  

Tapering  
The so-called process of split-cosine-bell tapering is a recommended 
transformation of the series prior to the spectrum analysis. It usually leads to a 
reduction of leakage in the periodogram. The rationale for this transformation is 

Bloomfield (1976, p. 80-94). In essence, p) of 
th at r
multiplic ig
wt .5

equ cies rep rted ex ctly "hi " on th t freque cy. In p actice, what ofte  
e respe tive fre uency will "leak" into adj cent 

cies. Fo  examp e, one may find rge pe odogra
t, there is only one strong underlying sine or 

cosine function at a frequency t
ys in which one can approach the p blem o  

aka :  

y apply a finer frequency "roster" to the data,  • 
• y taperi g the se ies prior o the an lysis one may red ce leakage, or  

r
eries.  

e be w for de criptions of each f these a proache .  

/t (the umber o  units o  times) 
on

trod e small r increments in
e to pply a f ner rost r to the ata. In act, if w  padde  the example data file 

h ten zeros, the results would not change, 

c
efficiency reasons; see belo

explained in detail in  a proportion (
e d a at the beginning and at the end of the series is t ansformed via 

ation by the we hts:  
 = 0 *{1-cos[ *(t - 0.5   (  to

wt .5*
)/m]}   for t=0  m-1) 

 = 0 {1-cos[ *(N - t + ]} r t= o  0.5)/m      (fo N-m t N-1)  



where m se a /N i al pr n  t p
).  

D  W s p  D  E te
In practice, when analyzing actual
identify exactly the frequencies for particular underlying sine
Rather, b e rio m s a je ub l  

ctuation, one is faced with the problem of very many "chaotic" periodogram 
sp s. In a  w lik d qu s w  g t 
spectral densities s, q  re  co ng y en
frequencies, that contribute most t ov eri eh f ie
This can be accomplished by smoothing the periodogram values via gh
moving average transformation. S e vi rage wind f 

 (which must be an odd number); the following are the most commonly used 
smoothers (note: -
D ll ( l ) w an d an 6) amoun
a ple  w moving av  tr mation of t od  
va s, t a c ns im co d m  th

/2 preceding and subsequent periodogram values.  
Tukey window. In the Tukey (Blackman and Tukey ) o y- g
w w (  a lius Von H fo  fre cy ei r 
w ted g e  p gr lues are co d 
wj .5*cos(

 is cho n so th t 2*m s equ to the oportio  of data o be ta ered 
(p

ata indow and S ectral ensity stima s  
 data, it is usually not of crucial importance to 

 or cosine functions. 
ecaus the pe dogra  value re sub ct to s stantia random

flu
ike  that c se, one ould e to fin the fre encie ith the reates

, that i  the fre uency gions, nsisti  of man  adjac t 
o the erall p odic b avior o the ser s. 

 a wei ted 
uppos the mo ng ave ow is o width 

m
p = (m 1)/2).  

anie or equa weight indow. The D iell win ow (D iell 194 ts to 
sim  (equal eight) erage ansfor he peri ogram
lue hat is, e ch spe tral de ity est ate is mpute as the ean of e 

m
, 1958 r Tuke Hannin  

indo named fter Ju ann), r each quen , the w ghts fo the 
eigh  movin  averag  of the eriodo am va mpute as:  
 = 0.5 + 0 *j/p)    (for j=0 to p) 

w-j = wj    (for j 0)  
Hamming window. In the Hamming (named after R. W. Hamming) wind  or 
Tukey-Hamming window (Blackman and Tukey, 1958), for each frequency, 
w ts for the w  m  a e o eriodogra es
co ute
w .54 *

ow
the 

eigh eighted oving verag f the p m valu  are 
mp d as:  

j = 0  + 0.46 cos( *j/ r p)
w-j = wj    (for j 

p)    (fo j=0 to  
0)  



Parzen window. I a in Pa q , t
w ts f w  m  a e o e ra es
computed as:  

 = 1-6*(j/p)2 + 6*(j/p)3    (for j = 0 to p/2) 
1 to p) 

w-j = wj    (for j 

n the P rzen w dow ( rzen, 1961), for each fre uency he 
eigh or the eighted oving verag f the p riodog m valu  are 

wj

wj = 2*(1-j/p)3    (for j = p/2 + 
0)  

 wi ow. In the Bartlett window (Bartlett, 1950) the weights ar ompu
as
wj -(j/p)    (for  
w-j wj 

Bartlett nd e c ted 
:  
 = 1  j = 0 to p) 
 =    (for j 0)  

With the exception of the Daniell window, all weight functions will assign the 
eatest weight to the observation being smoothed in the center of the window, 

an ncre y r w s t es re r a om e
In many cases, all of these data w s w du ry  r

Pr arin  D r si
Le s now consider a few  p l points in um s al
one wants to subtract the mean fr  s an en e  t

 stationary

gr
d i asingl smalle eight o valu  that a  furthe way fr  the c nter. 

indow ill pro ce ve similar esults  

ep g the ata fo Analy s  
t u  other ractica spectr  analy is. Usu ly, 

om the eries, d detr d the s ries (so hat it 
is ) prior to the analysis. Otherwise the periodogram and density 
spectrum will mostly be "overwhelmed" by a very large value for e first cosin
coefficient (for frequency 0.0). In a sense, the mean is a cycle of frequency 0 
(z  pe im t i a c nt arly, a trend is also of little 
interest when one wants to uncover the pe tie e series. In o

ose potentially strong effects may mask the more interesting periodicities in the 
data, and o m nd en ar) ld o m the 
series prior to the analysis. Sometimes, it is also useful to s  th  p
to the analysis, in order to "tame" dom noise a ure mean
pe ic in the peri m

hen no Periodicity in the Series Exists  
F y, w here are n rr cle e ha a
ob vat o ly en f a r o at f t

 th e 

ero) r unit t e; tha s, it is onsta . Simil
riodici s in th  fact, b th of 

th
 thus b th the ean a  the tr d (line  shou be rem ved fro

mooth e data rior 
the ran  that m y obsc ingful 

riod cycles odogra .  

Results w
inall hat if t o recu ing cy s in th data, t t is, if e ch 
ser ion is c mplete  indep dent o ll othe bserv ions? I he 



di uti e va fol e l distributio h  s
is  re to white noise series ( e w oise one h n 
radio when tuned in-betw ati  w oi ut w lt 

riodogram values that follow an exponential distribution

strib on of th  obser tions lows th  norma n, suc  a time eries 
 also ferred like th hite n ears o as a the 

een st ons). A hite n se inp series ill resu in 
pe . Thus, by testing the 
distribution 
test whether the input series is different from a white noise s
yo an qu  c e t lm -S v m ta
(s lso arametric Di ion

of periodogram values against the exponential distribution, one may 
eries. In addition, the 

u c also re est to omput he Ko ogorov mirno one-sa ple d s tistic 
 Nonp s and stribut s for mee a or ils

sting for white noise in certain frequency bands. Note that you can also plot 
the periodogram values for a parti re y r n in, if the in
is hite noise s it ec os e (i.e re o 
significan d s se en th  di on of the 
p dogram valu u in  an ne ist

e deta ).  
Te

cular f quenc ange o ly. Aga put 
 a w eries w h resp t to th e frequ ncies ., it the  are n

t perio ic cycle  of tho  frequ cies), en the stributi
 expo ntial d ributionerio es sho ld aga follow .  

 
 

 
Fast Fourier Transforms (FFT)  
 

General Introduction  
The interpretation of the results of spectrum analysis is discussed in the Basic 
Notation d Prin lesan cip  topic, however, we have not described how it is done 
co u d  the stand
spectrum decomposition was to u r th an
co e p er  c at vo eq t **2 (comp
multiplica T e  to hig ed ut w  v
time consuming to analyze even sm

million multiplications).  
The time requirements changed dr lly he develop f t -ca
fa Fou ns lgorithm

mp tationally. Up until the mi -1960s ard way of performing the 
se explicit formulae to solve fo e sine d 

sin aramet s. The omput ions in lved r uired a least N lex) 
tions. hus, ev n with day's h-spe  comp ers , it ould be ery 

all time series (e.g., 8,000 observations 
would result in at least 64 

astica with t ment o he so lled 
st rier tra form a , or  for . In id s, J oo

and J.W. Tukey (1965) popularized alg  w in r ec  in
been discovered independently by us ua rio ine  a

 FFT  short  the m -1960 .W. C ley 
 this orithm hich, etrosp t, had  fact 
vario individ ls. Va us ref ments nd 



improvements of this algorithm can be found in Monro (1975) and Monro and 
Branch (1976). Readers interested e co tati eta thi rith
may refer y o ex d in the overview. Suffice it  th the
F lgor the to rm ctr lys pro al
N*log2(N) -- a huge improvement.  

 draw-back of the standard FFT algorithm is that the number of cases 
in the series must be equal to a power of 2 (i.e., 16, 64, 128,
th eces d p g  se whi  de ed , w mo
cases not change the characteristic ks o  pe gra he ral
density estimates. In cases, however, where the time units are mean , s
pa ng m ak inte atio res ore be .  

omputation of FFT in Time Series  
The implementation of the FFT algorithm allows you to take full
savings afforded by this algorit . On er th o
100,000 cases can easily aly ow , th re a
re be n a ing s o  siz

 mentioned above, the standard (and most efficient) FFT algorithm requires 
th e le f t ut s is l to we . If  no cas
additional ut  have to be rm  wil  the le e it 
computational formulas as long as pu s i tive all, he
nu er o ut  ca  pe ed ela  sho ount of tim
For long time series, i  still utilize the FFT algo hm plementation 

h described by Monro and Branch (1976) is used. This 
method requires significantly more storage space, however, seri
c era ng  st ana  ve ick en um f 
observations is not equal to a power of 2.  
For time series of lengths not equal to a power of 2, we would like to make the 

llowing recommendations: If the input series is small to moderately sized (e.g., 
nly a few thousand cases), then do not worry. The analysis will typically only 
ke a few seconds anyway. In order to analyze moderately large and large 

in th mpu onal d ils of s algo m 
 to an f the t ts cite to say at via  

FT a ithm,  time perfo a spe al ana is is portion  to 

However, a
 256, ...). Usually, 

is n sitate addin of the ries, ch, as scrib  above ill in st 
 pea f the riodo m or t  spect  

ingful uch 
ddi ay m e the rpret n of ults m  cum rsome

C
 advantage of the 

hm  most standard computers, s ies wi ver 
be an zed. H ever ere a  few things to 

mem r whe nalyz  serie f that e.  
As

at th ngth o he inp  serie  equa  a po r of 2 this is t the e, 
 comp ations  perfo ed. It l use  simp xplic

the in t serie s rela ly sm  and t  
mb f comp ations n be rform in a r tively rt am e. 

n order to rit , an im
of the general approac

es of 
onsid ble le th can ill be lyzed ry qu ly, ev if the n ber o

fo
o
ta



series (e.g., over 100,000 cases), pad the series to a power of 2 and then taper 
e series during the exploratory part of your data analysis.  
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Variance Components and Mixed Model 

ANOVA/ANCOVA 

  
 

s a 
om 

 
d  factors where 
t se weights.  
There are several chapters in this textbook that will discuss Analysis of Variance 

 
t  

The Variance Components and Mixed Model ANOVA/ANCOVA chapter describe
comprehensive set of techniques for analyzing research designs that include rand
effects; however, these techniques are also well suited for analyzing large main effect

esigns (e.g., designs with over 200 levels per factor), designs with many
he higher order interactions are not of interest, and analyses involving ca

for factorial or specialized designs. For a discussion of these chapters and the
ypes of designs for which they are best suited refer to the section on Methods

for Analysis of Variance. Note, however, that the General Linear Models chapter 
describes how to analyze designs with any number and type of between effects 



and compute ANOVA-based variance component estimates for any effect in a 
mixed-model analysis.  

 

ought to involve only the 
manipulation of levels of the independent variables and the observation of 

h e 
l

Basic Ideas  
Experimentation is sometimes mistakenly th

subsequent responses on the dependent variables. Independent variables w os
evels are determined or set by the experimenter are said to have fixed effects. 
There is a second class of effects, however, which is often of great interest to the 
researcher, Random effects are classification effects where the levels of the 

of 
 Many independent variables of research interest are not fully 

 
c

effects are assumed to be randomly selected from an infinite population 
possible levels.
amenable to experimental manipulation, but nevertheless can be studied by
onsidering them to have random effects. For example, the genetic makeup of 

individual members of a species cannot at present be (fully) experimentally 

 individual variation on outcomes such as health, behavioral 
characteristics, and the like. As another example, a manufacturer might want to 

ines operated by a random sample of operators. The 

manipulated, yet it is of great interest to the geneticist to assess the genetic 
contribution to

estimate the components of variation in the characteristics of a product for a 
random sample of mach
statistical analysis of random effects is accomplished by using the random e
model, if all of the independent variables are assumed to have 

ffect 
random effects,

y using the mixed model, if some of the independent vari
 or 

b ables are assumed to 
have random effects and other independent variables are assumed to have fixed 
effects.  
Properties of random effects. To illustrate some of the properties of random 
effects, suppose you collected data on the amount of insect damage done to 
different varieties of wheat. It is impractical to study insect damage for every 
possible variety of wheat, so to conduct the experiment, you randomly select four 
varieties of wheat to study. Plant damage is rated for up to a maximum of four 
plots per variety. Ratings are on a 0 (no damage) to 10 (great damage) scale. 



The following data for this example are presented in Milliken and Johnson
p. 237).  

 (1992, 

DATA: wheat.sta 3v 
VARIETY PLOT DAMAGE 

A 
A 

1 
2 

3.90 
4.05 

A 

C 

3 

8 

4.25 

4.15 

B 
B 
B 
B 

4 
5 
6 
7 

3.60 
4.20 
4.05 
3.85 

C 
C 
C 
D 
D 

9 
10 
11 
12 
13 

4.60 
4.15 
4.40 
3.35 
3.80 

 

T tion in resistance to insect damage for 
, in the 

A thout 
influencing the results (provided that Type I Sums of squares are used and that 

e  
of a mixed model analysis treating Variety as a fixed effect

 
o determine the components of varia

Variety and Plot, an ANOVA can first be performed. Perhaps surprisingly
NOVA, Variety can be treated as a fixed or as a random factor wi

Variety is always entered first in th  model). The Spreadsheet below shows the
ANOVA results  and 
ignoring Plot, i.e., treating the plot-to-plot variation as a measure of random error.  
ANOVA Results: DAMAGE (wheat.sta) 
  
Effect (F/R) Effect Effect 

df 
Error

MS 
Error

  
F 

  
p 

Effect df MS 

{1}VARIETY Fixed 3 .270053 9 .056435 4.785196 .029275

 
 
Another way to perform the same mixed model analysis is to treat Variety as a 
fixed effect and Plot as a random effect. The Spreadsheet below shows the 
ANOVA results for this mixed model analysis.  
ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  

  df error computed using Satterthwaite method 
  Effect df MS df MS     



Effect (F/R) Effect Effect Error Error F p 
{
{

3
5

9 
-----

.056435
----- 

4.785196
----- 

.029275
----- 

1}VARIETY 
2}PLOT  

Fixed 
Random 

3 
9 

.27005

.05643

 
 
The Spreadsheet below shows the ANOVA results for a random effect model 

 treating Plot as a random effect nested within Variety, which is also treated as a
random effect.  
ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  

  df error computed using Satterthwaite method 
  
Effect 

Effect
(F/R) 

df 
Effect 

MS 
Effect

df 
Error

MS 
Error

  
F 

  
p 

{
{2}PLOT  Random 9 .056435 -----

5
----- 

4.785196
----- 

.029275
----- 

1}VARIETY Random 3 .270053 9 .05643

 
 
As can be seen, the tests of significance for the Variety effect are identical in all 

 
r iance are estimated, however, the difference 

Variety
( ows 
the variance component

three analyses (and in fact, there are even more ways to produce the same
esult). When components of var

between the mixed model (treating  as fixed) and the random model 
treating Variety as random) becomes apparent. The Spreadsheet below sh

 estimates for the mixed model treating Variety as a fixed 
effect.  
Components of Variance (wheat.sta) 

  Mean Squares Type: 1 
Source DAMAGE 
{2}PLOT 
Error 

.056435 
0.000000 

 
 
The Spreadsheet below shows the variance component estimates for the random 
effects model treating Variety and Plot as random effects.  
Components of Variance (wheat.sta) 

  Mean Squares Type: 1

S AGEource DAM



{1}VARIETY 
{2}PLOT 
Error 

.067186

.056435
0.000000

 

riance 
 
As can be seen, the difference in the two sets of estimates is that a va
component is estimated for Variety only when it is considered to be a random 
effect. This reflects the basic distinction between fixed and random effects. The 
variation in the levels of random factors is assumed to be representative of the 

els 

importantly, covariation between the levels of a random factor and responses on 

table to the random factor. The 
i itrarily 

d e., the experimenter can make the levels of a 
fixed factor vary as little or as much as desired). Thus, the variation of a fixed 

e lation 
c ent variable be meaningfully estimated. With this 
basic distinction between fixed effects

variation of the whole population of possible levels. Thus, variation in the lev
of a random factor can be used to estimate the population variation. Even more 

a dependent variable can be used to estimate the population component of 
variance in the dependent variable attribu
variation in the levels of fixed factors is instead cons dered to be arb

etermined by the experimenter (i.

factor cannot be used to estimat its population variance, nor can the popu
ovariance with the depend

 and random effects in mind, we now can 
look more closely at the properties of variance components.  
 

E verview)  
The basic goal of variance component

 

stimation of Variance Components (Technical O
 estimation is to estimate the population 

the method used to estimate variance components, the population variances of 
 

st whether the population covariation between the random factors 
and the dependent variable are nonzero.  

covariation between random factors and the dependent variable. Depending on 

the random factors can also be estimated, and significance tests can be
performed to te



Estimating the variation of random factors. The ANOVA method provides an 
integrative approach to estimating variance components, because ANOVA 
techniques can be used to estimate the variance of random factors, to estimate 
the components of variance in the dependent variable attributable to the random 

b tructing the Sums of squares and cross products (SSCP) matrix 
 

factors, and to test whether the variance components differ significantly from 
zero. The ANOVA method for estimating the variance of the random factors 

egins by cons
for the independent variables. The sums of squares and cross products for the
random effects are then residualized on the fixed effects, leaving the random 
effects independent of the fixed effects, as required in the mixed model (see, for 

 and cross products for each random factor are then divided by their 
degrees of freedom to produce the coefficients in the Expected mean squares 

i ken into account when estimating the 
ariety 

oefficients in the Expected mean squares matrix 
show that the two factors are at least somewhat confounded. The Expected 

E

example, Searle, Casella, & McCulloch, 1992). The residualized Sums of 
squares

matrix. Nonzero off-diagonal coefficients for the random effects in this matrix 
ndicate confounding, which must be ta
population variance for each factor. For the wheat.sta data, treating both V
and Plot as random effects, the c

mean squares Spreadsheet is shown below.  
xpected Mean Squares (wheat.sta) 

  Mean Squares Type: 1 
  
Source 

Effect
(F/R) 

  
VARIETY 

  
PLOT 

  
Error 

{1}VARIETY 
{2}PLOT 

Random 
Random 

3.179487 
  

1.000000
1.000000

1.000000
1.000000

Error      1.000000

 
 
The coefficients in the Expected mean squares matrix are used to estimate the 
population variation of the random effects by equating their variances to their 
expected mean squares. For example, the estimated population variance for 
Variety using Type I Sums of squares would be 3.179487 times the Mean square 



for Variety plus 1 times the Mean square for Plot plus 1 times the Mean s
for Error.  

quare 

The ANOVA method provides an integrative approach to estimating variance 
components, but it is not without problems (i.e., ANOVA estimates of variance 
components are generally biased, and can be negative, even though variances, 

e
by definition, must be either zero or positive). An alternative to ANOVA 

stimation is provided by maximum likelihood estimation. Maximum likelihood 
methods for estimating variance components are based on quadratic forms, and 

t 
m likelihood

typically, but not always, require iteration to find a solution. Perhaps the simples
form of maximu  estimation is MIVQUE(0) estimation. MIVQUE(0) 
produces Minimum Variance Quadratic Unbiased Estimators (i.e., MIVQUE). In 
MIVQUE(0) estimation, there is no weighting of the random effects (thus the 0 
[zero] after MIVQUE), so an iterative solution for estimating variance components 

uadratic 
sums of squares (SSQ) matrix. The elements for the random effects
is not required. MIVQUE(0) estimation begins by constructing the Q

 in the SSQ 

residualization on the fixed effects

matrix can most simply be described as the sums of squares of the sums of 
squares and cross products for each random effect in the model (after 

). The elements of this matrix provide 
h 

a  random factors and the 
 

 the 
two random factors are at least somewhat confounded.  

coefficients, similar to the elements of the Expected Mean Squares matrix, whic
re used to estimate the covariances among the

dependent variable. The SSQ matrix for the wheat.sta data is shown below. Note
that the nonzero off-diagonal element for Variety and Plot again shows that

MIVQUE(0) Variance Component Estimation (wheat.sta)
  SSQ Matrix 
Source VARIETY PLOT Error DAMAGE
{1}VARIET
{2}PLO

Y 
T 

Error 

31.90533 
9.53846 
9.53846 

9.53846 
12.00000 
12.00000 

9.53846
12.00000
12.00000

2.418964
1.318077
1.318077

 
 



Restricted Maximum Likelihood (REML) and Maximum Likelihood (ML) variance 
component estimation methods are closely related to MIVQUE(0). In fact,
program, REML and ML use MIVQUE(0) estimates as start values for an i
olution for the 

 in the 
terative 

s  componentsvariance , so the elements of the SSQ matrix serve 
as initial estimates of the covariances among the random factors and the 

 
ce 

dependent variable for both REML and ML.  
 

Estimating components of variation. For ANOVA methods for estimating varian
components, a solution is found for the system of equations relating the 
estimated population variances and covariances among the random factors to 

d efines the variance components. The 
Spreadsheet below shows the Type I Sums of squares estimates of the variance 

C

the estimated population covariances between the random factors and the 
ependent variable. The solution then d

components for the wheat.sta data.  
omponents of Variance (wheat.sta) 

  Mean Squares Type: 1
Source DAMAGE 
{
{2
Error 0.000000 

1}VARIETY 
}PLOT 

0.067186 
0.056435 

 
 
MIVQUE(0) variance components are estimated by inverting the partition of the
SSQ matrix that does not include the d

 
ependent variable (or finding the 

generalized inverse, for singular matrices), and postmultiplying the inverse by the 
dependent variable column vector. This amounts to solving the system of 
equations that relates the dependent variable to the random independent 
variables, taking into account the covariation among the independent variables. 

MIVQUE(0) Variance Component Estimation (wheat.sta)

The MIVQUE(0) estimates for the wheat.sta data are listed in the Spreadsheet 
shown below.  

  Variance Components 



Source DAMAGE 
{
{
Error 0.000000 

1}VARIETY 
2}PLOT 

0.056376 
0.065028 

 

REML and M
 

L variance components are estimated by iteratively optimizing the 
parameter estimates for the effects in the model. REML differs from ML in that 
the likelihood of the data is maximized only for the random effects, thus R

 restricted solution. In both REMLand
EML is 

a MLestimation, an iterative solution is found 
f 

s MIVQUE(0)) estimates as the start values for both 
REML and ML estimation, so the relation between these three techniques is 

for the weights for the random effects in the model that maximize the likelihood o
the data. The program use

close indeed. The statistical theory underlying maximum likelihood varian
component estimation techniques is an advanced topic (Searle, Casella, & 

ce 

McCulloch, 1992, is recommended as an authoritative and comprehensive 
source). Implementation of maximum likelihood estimation algorithms, 
urthermore, is difficult (see, fof r example, Hemmerle & Hartley, 1973, and 

Jennrich & Sampson, 1976, for descriptions of these algorithms), and faulty
implementation can lead to variance component estimates that lie outside
parameter space, converge prematurely to nonoptimal solutions, or gi

onsensical results. Milliken and Johnson (1992) noted all of these pro

 
 the 

ve 
n blems with 
the commercial software packages they used to estimate variance components.  

eights 
 effects

The basic idea behind both REML and ML estimation is to find the set of w
for the random  in the model that minimize the negative of the natural 
logarithm times the likelihood of the data (the likelihood of the data can vary from 

mounts to maximizing the probability, or the likelihood, of 

d in the last row of the 
Iteration history Spreadsheet shown below.  
Iteration History (wheat.sta) 

zero to one, so minimizing the negative of the natural logarithm times the 
likelihood of the data a
the data). The logarithm of the REMLlikelihood and the REML variance 
component estimates for the wheat.sta data are liste



  Variable: DAMAGE 
Iter. Log LL Error VARIETY  
1 -2.30618 .057430 .068746 
2 

5
6 
7 

-2.25253 

-2.25081 
-2.25081 

.057795 

.057003 

.057003 

.073744 

.073155 

.073155 

3 
4 

 

-2.25130 
-2.25088 
-2.25081 

.056977 

.057005 

.057006 

.072244 

.073138 

.073160 
 

 
 
The logarithm of the MLlikelihood and the ML estimates for the vari
components for the wheat.sta d

ance 
ata are listed in the last row of the Iteration 

history Spreadsheet shown below.  
Iteration History (wheat.sta) 
  Variable: DAMAGE 
Iter. Log LL Error VARIETY  
1 
2 

 
 

-2.53585 
-2.48382 
-2.48381 
-2.48381 

.057454 

.057427 

.057492 

.057491 

.048799 

.048541 

.048639 

.048552  3
4
5 -2.48381 .057492 .048552 
6 -2.48381 .057492 .048552 

 
 
As can be seen, the estimates of the variance components for the different 

& 
Monahan, 1984).  

cance of variance components. When maximum likelihood 

 

iate for linear methods of estimation, but generally are not 
appropriate for quadratic methods of estimation. When ANOVA methods are 

methods are quite similar. In general, components of variance using different 
estimation methods tend to agree fairly well (see, for example, Swallow 

 
 
Testing the signifi
estimation techniques are used, standard linear model significance testing 
techniques may not be applicable. ANOVA techniques such as decomposing
sums of squares and testing the significance of effects by taking ratios of mean 
squares are appropr



used for estimation, standard significance testing techniques can be employe
with the exception that any confounding among 

d, 
random effects must be take

into accou
n 

nt.  
To test the significance of effects in mixed or random models, error terms must 

for 
e using Satterthwaite's 

r 
tion that serve as appropriate error 

terms for testing the significance of the respective effect of interest. The 
Spreadsheet below shows the coefficients used to construct these linear 
combinations for testing the Variety and Plot effects.  
Denominator Synthesis: Coefficients (MS Type: 1) (wheat.sta)

be constructed that contain all the same sources of random variation except 
the variation of the respective effect of interest. This is don
method of denominator synthesis (Satterthwaite, 1946), which finds the linea
combinations of sources of random varia

  The synthesized MS Errors are linear 
combinations of the resp. MS effects 

Effect (F/R) VARIETY PLOT Error 
{1}VARIETY Random   1.000000   
{2}PLOT Random     1.000000

 
 
The coefficients show that the Mean square for Variety should be tested against 
the Mean square for Plot, and that the Mean square for Plot should be tested 

uares 
S inator synthesis has identified appropriate 

omplex analyses with various degrees of confounding among 
the random effects, the denominator synthesis can identify appropriate error 

against the Mean square for Error. Referring back to the Expected mean sq
preadsheet, it is clear that the denom

error terms for testing the Variety and Plot effects. Although this is a simple 
example, in more c

terms for testing the random effects that would not be readily apparent.  
To perform the tests of significance of the random effects, ratios of appropriate 
Mean squares are formed to compute F statistics and p levels for each effect. 

variation were used in synthesizing appropriate error terms for testing the 

Note that in complex analyses the degrees of freedom for random effects can be 
fractional rather than integer values, indicating that fractions of sources of 



random effects. The Spreadsheet displaying the results of the ANOVA for the 
Variety and Plot random effects is shown below. Note that for this simple design 
the results are identical to the results presented earlier in the Spreadsheet for the 
ANOVA treating Plot as a random effect nested within Variety.  

NOVA Results for Synthesized Errors: DAA MAGE (wheat.sta)  
  df error computed using Satterthwaite method 

  
ffect 

Effect
(F/R) 

df 
Effect 

MS 
Effect

df 
Error

MS 
Error

  
F 

  
p E

{1}VARIETY 
{2}PLOT  

Fixed 
Random 

3 
9 

.270053

.056435
9 

-----
.056435

----- 
4.785196

----- 
.029275

----- 

 

As shown in the Spreadsheet, the Variety effect is found to be significant at p < 

 of plants 
taken within plots were available, a test of the significance of the Plot effect could 
be constructed.  
Appropriate tests of significance for MIVQUE(0) variance component estimates 

la, & 
mple) tests of significance of REML and 

s the asymptotic (large sample) tests of significance for the REML 
estimates for the wheat.sta data.  

 

.05, but as would be expected, the Plot effect cannot be tested for significance 
because plots served as the basic unit of analysis. If data on samples

generally cannot be constructed, except in special cases (see Searle, Casel
McCulloch, 1992). Asymptotic (large sa
ML variance component estimates, however, can be constructed for the 
parameter estimates from the final iteration of the solution. The Spreadsheet 
below show

Restricted Maximum Likelihood Estimates (wheat.sta)

  Variable: DAMAGE 
-2*Log(Likelihood)=4.50162399 

  
Effect Comp. Std.Err. z p 

Variance Asympt. Asympt. Asympt.

{1}VARIETY 
Error 

.073155 

.057003 
.078019 
.027132 

.937656
2.100914

.348421

.035648

 
 



The Spreadsheet below shows the asymptotic (large sample) tests of 
ignificance for the ML estimates for the wheat.sta datas .  

Maximum Likelihood Estimates (wheat.sta) 

  Variable: DAMAGE 
-2*Log(Likelihood)=4.96761616 

  Variance Asympt. Asympt. Asympt.
Effect Comp. Std.Err. z p 
{1}VARIETY 
Error 

.048552 

.057492 
.050747 
.027598 

.956748
2.0 13

.338694

.037232832

 

nd 
iance component estimates are based on large sample sizes, which 

certainly is not the case for the wheat.sta data. For this data set, the tests of 

formation on ANOVA in linear models, see also Elementary 

 
It should be emphasized that the asymptotic tests of significance for REML a
ML var

significance from both analyses agree in suggesting that the Variety variance 
component does not differ significantly from zero.  
For basic in
Concepts.  
 
Estimating the population intraclass correlation. Note that if the variance 
component estimates for the random effects in the model are divided by the sum 
of all components (including the error component), the resulting percentages are 
population intraclass correlation coefficients for the respective effects.  
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Distribution Tables

t uch as those presented below, has the 
advantage of showing many values simultaneously and, thus, enables the user to 

 
 

 
 
 

 
 
 

 

 
 
 

 

 
 
 

 

Compared to probability calculators (e.g., the one included in STATISTICA), the 
raditional format of distribution tables s

examine and quickly explore ranges of probabilities.  

 
able• Z T  
ble• t Ta  

• Chi-Square Table 
• F Tables for: 

o alpha=.10
o alpha=.05

o alpha=.025
o alpha=.01 



  
Note that all table values were calculated using the distribution facilities in STATISTICA 
BASIC, and they were verified against other published tables.  

 
Standard Normal (Z) Table  

 

The Standard Normal distribution is used in various hypothesis tests including 

p ormal distribution has a mean of 0 and a standard 
deviation of 1. The animation above shows various (left) tail areas for this 

in 

tests on single means, the difference between two means, and tests on 
roportions. The Standard N

distribution. For more information on the Normal Distribution as it is used 
statistical testing, see the chapter on Elementary Concepts. See also, the Normal 
Distribution.  

the 
under the standard normal curve for values between 0 and the relative z-

score. For example, to determine the area under the curve between 0 and 2.36, 
6. 

is .4909. To determine the area between 0 and a 

der the 
curve between -1.3 and 0 is equal to the area under the curve between 1.3 and 

Area between 0 and z 

As shown in the illustration below, the values inside the given table represent 
areas 

look in the intersecting cell for the row labeled 2.30 and the column labeled 0.0
The area under the curve 
negative value, look in the intersecting cell of the row and column which sums to 
the absolute value of the number in question. For example, the area un

0, so look at the cell on the 1.3 row and the 0.00 column (the area is 0.4032).  



 
  0.00  0.01  0.02  0.03  0.04 0.05 0.06 0.07 0.08 0.09  

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 
0 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 .1 0.0398 0.0438 0.0478 0.0517 
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 
0 38 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 .9 0.3159 0.3186 0.3212 0.32

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 
1 0.4429 0.4441 .5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 
1  0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 .8 0.4641 0.4649 0.4656 0.4664

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 



 

Student's t Table  

 

The Shape of the Student's t distribution is determined by the degrees of 
freedom. As shown in the animation above, its shape changes as the degrees of 
freedom increases. For more information on how this distribution is used in 
hypothesis testing, see t-test for independent samples and t-test for dependent 
samples in the chapter on Basic Statistics and Tables. See also, Student's t 
Distribution. As indicated by the chart below, the areas given at the top of this 
table are the right tail areas for the t-value inside the table. To determine the 0.05 
critical value from the t-distribution with 6 degrees of freedom, look in the 0.05 
column at the 6 row: t(.05,6) = 1.943180.  

t table with right tail probabilities 

 
df\p 0.40  0.25  0.10  0.05  0.025  0.01  0.005  0.0005  

1  0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192 
2  0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991 
3  0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240 
4  0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103 
5  0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688 

  
6  0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588 



7  0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079 
8  0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413 
9  0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809 

10  0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869 

  
11  0.259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370 
12  0.259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178 
13  0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208 
14  0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405 
15  0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728 

  
16  0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150 
17  0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651 
18  0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216 
19  0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834 
20  0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495 

  
21  0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193 
22  0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921 
23  0.256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676 
24  0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454 
25  0.256060 0.684430 1.3 45 1.708141 2.05954 2.48511 2.78744 3.  163 7251

  
26  0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066 
27  0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896 
28  0.255768 .683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739 0

29  0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594 
30  0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460 

  
inf 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905 

 



Chi-Square Table  

 

Like the Student's t-Distribution, the Chi-square distribtuion's shape is 
determined by its degrees of freedom. The animation above shows the shape of 

a
the Chi-square distribution as the degrees of freedom increase (1, 2, 5, 10, 25 

nd 50). For examples of tests of hypothesis which use the Chi-square 
distribution, see Statistics in crosstabulation tables in the Basic Statistics and 
Tables chapter as well as the Nonlinear Estimation chapter. See also, Chi-square 
Distribution. As shown in the illustration below, the values inside this table are 

freedom. To determine the value from a Chi-square distribution (with a specific 
n 

or example, the .25 critical value for a 
rea to 

.25.  

ion 

critical values of the Chi-square distribution with the corresponding degrees of 

degree of freedom) which has a given area above it, go to the given area colum
and the desired degree of freedom row. F
Chi-square with 4 degrees of freedom is 5.38527. This means that the a
the right of 5.38527 in a Chi-square distribution with 4 degrees of freedom is 

Right tail areas for the Chi-square Distribut

 
df\area .995  .990  .975  .950  .900  .750  .500  .250  .100  .050  .025  

1  0.00004 0.00016 0.00098 0.00393 0.01579 0.10153 0.45494 1.32330 2.70554 3.84146 5.02389 
2  0.01003 0.02010 0.05064 0.10259 0.21072 0.57536 1.38629 2.77259 4.60517 5.99146 7.37776 
3  0.07172 0.11483 0.21580 0.35185 0.58437 1.21253 2.36597 4.10834 6.25139 7.81473 9.34840 
4  0.20699 0.29711 0.48442 0.71072 1.06362 1.92256 3.35669 5.38527 7.77944 9.48773 11.14329

5  0.41174 0.55430 0.83121 1.14548 1.61031 2.67460 4.35146 6.62568 9.23636 11.07050 12.83250



  
6  0.67573 0.87209 1.23734 1.63538 2.20413 3.45460 5.34812 7.84080 10.64464 12.59159 14.44938

7  0.98926 1.23904 1.68987 2.16735 2.83311 4.25485 6.34581 9.03715 12.01704 14.06714 16.01276

8  1.34441 1.64650 2.17973 2.73264 3.48954 5.07064 7.34412 10.21885 13.36157 15.50731 17.53455

9  1.73493 2.08790 2.70039 3.32511 4.16816 5.89883 8.34283 11.38875 14.68366 16.91898 19.02277

10 2.15586 2.55821 3.24697 3.94030 4.86518 6.73720 9.34182 12.54886 15.98718 18.30704 20.48318

  
11 2.60322 3.05348 3.81575 4.57481 5.57778 7.58414 10.34100 13.70069 17.27501 19.67514 21.92005

12 3.07382 3.57057 4.40379 5.22603 6.30380 8.43842 11.34032 14.84540 18.54935 21.02607 23.33666

13 3.56503 4.10692 5.00875 5.89186 7.04150 9.29907 12.33976 15.98391 19.81193 22.36203 24.73560

14 4.07467 4.66043 5.62873 6.57063 7.78953 10.16531 13.33927 17.11693 21.06414 23.68479 26.11895

15 4.60092 5.22935 6.26214 7.26094 8.54676 11.03654 14.33886 18.24509 22.30713 24.99579 27.48839

  
16 5.14221 5.81221 6.90766 7.96165 9.31224 11.91222 15 50 19.36886 23.541.338 83 26.29623 28.84535

17 5.69722 6.40776 7.56419 8.67176 10.08519 12.79193 16.33818 20.48868 24.76904 27.58711 30.19101

18 6.26480 7.01491 8.23075 9.39046 10.86494 13.67529 17.33790 21.60489 25.98942 28.86930 31.52638

19 6.84397 7.63273 8.90652 10.11701 11.65091 14.56200 18.33765 22.71781 27.20357 30.14353 32.85233

20 7.43384 8.26040 9.59078 10.85081 12.44261 15.45177 19.33743 23.82769 28.41198 31.41043 34.16961

  
21 8.03365 8.89720 10.28290 11.59131 13.23960 16.34438 20.33723 24.93478 29.61509 32.67057 35.47888

22 8.64272 9.54249 10 32 12.33801 14.04149 17.23962 21.33704 26.03927 30.813.982 28 33.92444 36.78071

23 9.26042 10.19572 11.68855 13.09051 14.84796 18.13730 22.33688 27.14134 32.00690 35.17246 38.07563

24 9.88623 10.85636 12.40115 13.84843 15.65868 19.03725 23.33673 28.24115 33.19624 36.41503 39.36408

25 10.51965 11.52398 13.11972 14.61141 16.47341 19.93934 24.33659 29.33885 34.38159 37.65248 40.64647

  
26 11.16024 12.19815 13.84390 15.37916 17.29188 20.84343 25.33646 30.43457 35.56317 38.88514 41.92317

27 11.80759 12.87850 14.57338 16.15140 18.11390 21.74940 26.33634 31.52841 36.74122     40.11327 43.19451

28 12.46134 13.56471 15.30786 16.92788 18.93924 22.65716 27.33623 32.62049 37.91592 41.33714 44.46079

29 13.12115 14.25645 16.04707 17.70837 19.76774 23.56659 28.33613 33.71091 39.08747 42.55697 45.72229

30 13.78672 14.95346 16.79077 18.49266 20.59923 24.47761 29.33603 34.79974 40.25602 43.77297 46.97924

 



F Distribution Tables  

 

The F distribution is a right-skewed distribution used most commonly in Analysis 
of Variance (see ANOVA/MANOVA). The F distribution is a ratio of two Ch
square distributions, and a specific F distribution is denoted by the

i-
 degrees of 

freedom for the numerator Chi-square and the degrees of freedom for the 
denominator Chi-square. An example of the F(10,10) distribution is shown in the 
animation above. When referencing the F distribution, the numerator degrees of 

 
changes the distribution (e.g., F(10,12) does not equal F(12,10)). For the four F tables 
below, the rows represent denominator degrees of freedom and the columns 
represent numerator degrees of freedom. The right tail area is given in the name 
of the table. For example, to determine the .05 critical value for an F distribution 
with 10 and 12 degrees of freedom, look in the 10 column (numerator) and 12 
row (denominator) of the F Table for alpha=.05. F(.05, 10, 12) = 2.7534.  

F Table for alpha=.10 .  

freedom are always given first, as switching the order of degrees of freedom

 
df2/df1 1 2  3  4  5  6  7  8  9  10  12  

1  39.86346 49.50000 53.59324 55.83296 57.24008 58.20442 58.90595 59.43898 59.85759 60.19498 60.70521

2  8.52632 9.00000 9.16179 9.24342 9.29263 9.32553 9.34908 9.36677 9.38054 9.39157 9.40813

3  5.53832 5.46238 5.39077 5.34264 5.30916 5.28473 5.26619 5.25167 5.24000 5.23041 5.21562

4  4.54477 4.32456 4.19086 4.10725 4.05058 4.00975 3.97897 3.95494 3.93567 3.91988 3.89553



5  4.06042 3.77972 3.61948 3.52020 3.45298 3.40451 3.36790 3.33928 3.31628 3.29740 3.26824

  
6  3.77595 3.46330 3.28876 3.18076 3.10751 3.05455 3.01446 2.98304 2.95774 2.93693 2.90472

7  3.58943 3.25744 3.07407 2.96053 2.88334 2.82739 2.78493 2.75158 2.72468 2.70251 2.66811

8  3.45792 3.11312 2.92380 2.80643 2.72645 2.66833 2.62413 2.58935 2.56124 2.53804 2.50196

9  3.36030 3.00645 2.81286 2.69268 2.61061 2.55086 2.50531 2.46941 2.44034 2.41632 2.37888

10  3.28502 2.92447 2.72767 2.60534 2.52164 2.46058 2.41397 2.37715 2.34731 2.32260 2.28405

  
11  3.22520 2.85951 2.66023 2.53619 2.45118 2.38907 2.34157 2.30400 2.27350 2.24823 2.20873

12  3.17655 2.80680 2.60552 2.48010 2.39402 2.33102 2.28278 2.24457 2.21352 2.18776 2.14744

13  3.13621 2.76317 2.56027 2.43371 2.34672 2.28298 2.23410 2.19535 2.16382 2.13763 2.09659

14  3.10221 2.72647 2.52222 2.39469 2.30694 2.24256 2.19313 2.15390 2.12195 2.09540 2.05371

15  3.07319 2.69517 2.48979 2.36143 2.27302 2.20808 2.15818 2.11853 2.08621 2.05932 2.01707

  
16  3.04811 2.66817 2.46181 2.33274 2.24376 2.17833 2.12800 2.08798 2.05533 2.02815 1.98539

17  3.02623 2.64464 2.43743 2.30775 2.21825 2.15239 2.10169 2.06134 2.02839 2.00094 1.95772

18  3.00698 2.62395 2.41601 2.28577 2.19583 2.12958 2.07854 2.03789 2.00467 1.97698 1.93334

19  2.98990 2.60561 2.39702 2.26630 2.17596 2.10936 2.05802 2.01710 1.98364 1.95573 1.91170

20  2.97465 2.58925 2.38009 2.24893 2.15823 2.09132 2.03970 1.99853 1.96485 1.93674 1.89236

  
21  2.96096 2.57457 2.36489 2.23334 2.14231 2.07512 2.02325 1.98186 1.94797 1.91967 1.87497

22  2.94858 2.56131 2.35117 2.21927 2.12794 2.06050 2.00840 1.96680 1.93273 1.90425 1.85925

23  2.93736 2.54929 2.33873 2.20651 2.11491 2.04723 1.99492 1.95312 1.91888 1.89025 1.84497

24  2.92712 2.53833 2.32739 2.19488 2.10303 2.03513 1.98263 1.94066 1.90625 1.87748 1.83194

25  2.91774 2.52831 2.31702 2.18424 2.09216 2.02406 1.97138 1.92925 1.89469 1.86578 1.82000

  
26  2.90913 2.51910 2.30749 2.17447 2.08218 2.01389 1.96104 1.91876 1.88407 1.85503 1.80902

27  2.90119 2.51061 2.29871 2.16546 2.07298 2.00452 1.95151 1.90909 1.87427 1.84511 1.79889

28  2.89385 2.50276 2.29060 2.15714 2.06447 1.99585 1.94270 1.90014 1.86520 1.83593 1.78951

29  2.88703 2.49548 2.28307 2.14941 2.05658 1.98781 1.93452 1.89184 1.85679 1.82741 1.78081

30  2.88069 2.48872 2.27607 2.14223 2.04925 1.98033 1.92692 1.88412 1.84896 1.81949 1.77270

  
40  2.83535 2.44037 2.22609 2.09095 1.99682 1.92688 1.87252 1.82886 1.79290 1.76269 1.71456

60  2.79107 2.39325 2.17741 2.04099 1.94571 1.87472 1.81939 1.77483 1.73802 1.70701 1.65743



120 2.74781 2.34734 2.12999 1.99230 1.89587 1.82381 1.76748 1.72196 1.68425 1.65238 1.60120

inf 2.70554 2.30259 2.08380 1.94486 1.84727 1.77411 1.71672 1.67020 1.63152 1.59872 1.54578

 

F Table for alpha=.05 .  

 
df2/df1 1 2  3  4  5  6  7  8  9  10  12  

1  161.4476 199.5000 215.7073 224.5832 230.1619 233.9860 236.7684 238.8827 240.5433 241.8817 243.9060

2  18.5128 19.0000 19.1643 19.2468 19.2964 19.3295 19.3532 19.3710 19.3848 19.3959 19.4125

3  10.1280 9.5521 9.2766 9.1172 9.0135 8.9406 8.8867 8.8452 8.8123 8.7855 8.7446

4  7.7086 6.9443 6.5914 6.3882 6.2561 6.1631 6.0942 6.0410 5.9988 5.9644 5.9117

5  6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725 4.7351 4.6777

  
6  5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2067 4.1468 4.0990 4.0600 3.9999

7  5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767 3.6365 3.5747

8  5.3177 4.4590 4.0662 3.8379 3.6875 3.5806 3.50   05 3.4381 3.3881 3.3472 3.2839

9  5.1174 4.2565 3.8625 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789 3.1373 3.0729

10  4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782 2.9130

  
11  4.8443 3.9823 3.5874 3.3567 3.20 9 3.0946 3.0123 2.948  2.8963 0 2 2.8536 2.7876

12  4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964 2.7534 2.6866

13  4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144 2.6710 2.6037

14  4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458 2.6022 2.5342

15  4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437 2.4753

  
16  4.4940 3.6337 3.23 9 3.0069 2. 24 2.7413 2.6572 2.5911 2.53778 85 2.4935 2.4247

17  4.4513 3.5915 3.19 8 2.9647 2. 00 2.6987 2.6143 2.5480 2.49436 81 2.4499 2.3807

18  4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563 2.4117 2.3421

19  4.3807 3. 19 3.1274 2.8951 2.7401 2.62   52 83 2.5435 2.4768 2.4227 2.3779 2.3080

20  4.3512 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928 2.3479 2.2776



  
21  4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3660 2.3210 2.2504

22  4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419 2.2967 2.2258

23  4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748 2.3201 2.2747 2.2036

24  4.2597 3.4028 3.0088 2.7763 2.6207 2.5082 2.4226 2.3551 2.3002 2.2547 2.1834

25  4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.404  2.3371 7 2.2821 2.2365 2.1649

  
26  4.2252 3.3690 2.9752 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655 2.2197 2.1479

27  4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501 2.2043 2.1323

28  4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.2360 2.1900 2.1179

29  4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2783 2.2229 2.1768 2.1045

30  4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646 2.0921

  
40  4.0847 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 2.0772 2.0035

60  4.0012 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401 1.9926 1.9174

120 3.9201 3.0718 2.6802 2.4472 2.2899 2.1750 2.08  2.0164 1.958868 1.9105 1.8337

inf 3.8415 2.9957 2.6049 2.3719 2.2141 2.0986 2.009  1.9384 1.87996 1.8307 1.7522

 

F Table for alpha=.025 .  

 
df2/df1 1 2  3  4  5  6  7  8  9  10  12  

1  647.7890 799.5000 864.1630 899.5833 921.8479 937.1111 948.2169 956.6562 963.2846 968.6274 976.7079

2  38.5063 39.0000 39.1655 39.2484 39.2982 39.3315 39.3552 39.3730 39.3869 39.3980 39.4146

3  17.4434 16.0441 15.4392 15.1010 14.8848 14.7347 14.6244 14.5399 14.4731 14.4189 14.3366

4  12.2179 10.6491 9.9792 9.6045 9.3645 9.1973 9.0741 8.979   6 8.9047 8.8439 8.7512

5  10.0070 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6811 6.6192 6.5245

  
6  8.8131 7.2599 6.5988 6.2272 5.9876 5.8198 5.6955 5.5996 5.5234 5.4613 5.3662

7  8.0727 6.5415 5.8898 5.5226 5.28 2 5.1186 4.9949 4.8993 4.8235 2 4.7611 4.6658



8  7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4333 4.3572 4.2951 4.1997

9  7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.1970 4.1020 4.0260 3.9639 3.8682

10  6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.7790 3.7168 3.6209

  
11  6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 3.7586 3.6638 3.5879 3.5257 3.4296

12  6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 3.6065 3.5118 3.4358 3.3736 3.2773

13  6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.3880 3.3120 3.2497 3.1532

14  6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853 3.2093 3.1469 3.0502

15  6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987 3.1227 3.0602 2.9633

  
16  6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248 3.0488 2.9862 2.8890

17  6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.0610 2.9849 2.9222 2.8249

18  5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 3.0999 3.0053 2.9291 2.8664 2.7689

19  5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563 2.8801 2.8172 2.7196

20  5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365 2.7737 2.6758

  
21  5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.8740 2.7977 2.7348 2.6368

22  5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392 2.7628 2.6998 2.6017

23  5.7498 4.3492 3.7505 3.4083 3.183 3.0232 2.9023 2.8075 7 2.7313 2.6682 2.5699

24  5.7166 4.3187 3.7211 3.3794 3.1548 2.9946 2.8738 2.7791 2.7027 2.6396 2.5411

25  5.6864 4.2909 3.6943 3.3530 3.1287 2.9685 2.8478 2.7531 2.6766 2.6135 2.5149

  
26  5.6586 4.2655 3.6697 3.3289 3.1048 2.9447 2.8240 2.7293 2.6528 2.5896 2.4908

27  5.6331 4.2421 3.6472 3.3067 3.0828 2.9228 2.8021 2.7074 2.6309 2.5676 2.4688

28  5.6096 4.2205 3.6264 3.2863 3.0626 2.9027 2.7820 2.6872 2.6106 2.5473 2.4484

29  5.5878 4.2006 3.6072 3.2674 3.0438 2.8840 2.7633 2.6686 2.5919 2.5286 2.4295

30  5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.7460 2.6513 2.5746 2.5112 2.4120

  
40  5.4239 4.0510 3.4633 3.1261 2.9037 2.7444 2.6238 2.5289 2.4519 2.3882 2.2882

60  5.2856 3.9253 3.3425 3.0077 2.7863 2.6274 2.5068 2.4117 2.3344 2.2702 2.1692

120 5.1523 3.8046 3.2269 2.8943 2.6740 2.5154 2.3948 2.2994 2.2217 2.1570 2.0548

inf 5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136 2.0483 1.9447



 

 Table for alpha=.01 .  F

 
df2/df1 1 2 3 4 5 6 7 8 9 10 12 

1  4052.181 4999.500 5403.352 5624.583 5763.650 5858.986 5928.356 5981.070 6022.473 6055.847 6106.321

2  98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388 99.399 99.416

3  34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 27.229 27.052

4  21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 14.546 14.374

5  16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051 9.888

  
6  13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976 7.874 7.718

7  12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719 6.620 6.469

8  11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 5.667

9  10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 5.111

10  10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849 4.706

  
11  9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632 4.539 4.397

12  9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388 4.296 4.155

13  9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191 4.100 3.960

14  8.862 6.515 5.564 5.035 4.695 4.456 4.278 4.140 4.030 3.939 3.800

15  8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 3.666

  
16  8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780 3.691 3.553

17  8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682 3.593 3.455

18  8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597 3.508 3.371

19  8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523 3.434 3.297

20  8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 3.231

  
21  8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398 3.310 3.173

22  7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346 3.258 3.121



23  7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299 3.211 3.074

24  7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 3.032

25  7.770 5.568 4.675 4.177 3.855 3.627 3.457 3.324 3.217 3.129 2.993

  
26  7.721 5.526 4.637 4.140 3.818 3.591 3.421 3.288 3.182 3.094 2.958

27  7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149 3.062 2.926

28  7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120 3.032 2.896

29  7.598 5.420 4.538 4.045 3. 25 3.499 3.330 7 3.198 3.092 3.005 2.868

30  7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067 2.979 2.843

  
40  7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888 2.801 2.665

60  7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 2.496

120 6.851 4.787 3.949 3.480 3.174 2.956 2.792 2.663 2.559 2.472 2.336

inf 6.635 4. 05 3.782 3.319 3.017 2.802 2.6 639 2.511 2.407 2.321 2.185
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